Math 582G - Homework 2

Due on Friday, February 4, 2021
Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together, but you should try the problems on your own first and write up your own solutions.

Problem 1. The Newton polytope of a polynomial $f=\sum_{\alpha} c_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is the convex hull of the exponent vectors of f :

$$
\operatorname{Newt}(f)=\operatorname{conv}\left(\left\{\alpha: c_{\alpha} \neq 0\right\}\right) \subset \mathbb{R}^{n}
$$

For $w \in \mathbb{R}^{n}$, it can also be useful to consider the w-initial form of $f, \operatorname{in}_{w}(f)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} \underline{x}^{\alpha}$, where $\mathcal{A}=\left\{\alpha \in \operatorname{Newt}(f) \cap \mathbb{Z}^{n}: w^{T} \alpha \geq w^{T} \beta\right.$ for all $\left.\beta \in \operatorname{Newt}(f)\right\}$.
(a) Prove that if $f=\sum_{i=1}^{k} h_{i}^{2}$, then $\operatorname{Newt}\left(h_{i}\right) \subseteq \frac{1}{2} \operatorname{Newt}(f)$.
(b) Show that the Motzkin polynomial $1-3 x^{2} y^{2}+x^{4} y^{2}+x^{2} y^{4}$ is not a sum of squares.

Problem 2. For $d \in \mathbb{Z}_{\geq 0}$, let $\mathcal{C}_{d}=\left\{\left(t, t^{2}, \ldots, t^{d}\right): t \in[-1,1]\right\}$.
(a) Write $\operatorname{conv}\left(\mathcal{C}_{d}\right)$ as a spectrahedron.
(b) Show that any point on the boundary of $\operatorname{conv}\left(\mathcal{C}_{d}\right)$ can be written as a convex combination of $\left\lceil\frac{d+1}{2}\right\rceil$ points of \mathcal{C}_{d}.
(Hint: consider a supporting hyperplane and corresponding univariate polynomial.)
(c) Show that any point in $\operatorname{conv}\left(\mathcal{C}_{d}\right)$ can be written as a convex combination of
$\left\lceil\frac{d+1}{2}\right\rceil+1$ points of \mathcal{C}_{d}. How does this compare to the bound give by Carathéodory?

Problem 3. Let $G=([6], E)$ be the wheel graph on six vertices:
(a) Write the problem

$$
\theta_{1}(G)=\min c \text { such that } c-\sum_{i=1}^{6} x_{i} \in \operatorname{SOS}_{6,2}+I_{G}
$$

explicitly as a semidefinite program

$$
\min \langle C, X\rangle \text { such that }\left\langle A_{i}, X\right\rangle=b_{i} \text { for } i=1, \ldots, m
$$

for some m, real symmetric matrices $C, A_{1}, \ldots, A_{m} \in \mathbb{R}_{\mathrm{sym}}^{7 \times 7}$ and $b \in \mathbb{R}^{m}$. Here I_{G} denotes the the ideal generated by $x_{i}^{2}-x_{i}$ for $i=1, \ldots, 6$ and $x_{i} x_{j}$ for $\{i, j\} \in E$.
(b) Write down the dual semidefinite program.
(c) How does $\theta_{1}(G)$ compare to the size $\alpha(G)$ of the maximum stable set of G ?

See https://sums-of-squares.github.io/sos/exercises.html for other exercises and https://sums-of-squares.github.io/sos/ for SOS computational tools.

