
Chapter 2
Gröbner Bases

§1 Introduction

In Chapter 1, we have seen how the algebra of the polynomial rings k[x1, . . . , xn] and
the geometry of affine algebraic varieties are linked. In this chapter, we will study the
method of Gröbner bases, which will allow us to solve problems about polynomial
ideals in an algorithmic or computational fashion. The method of Gröbner bases is
also used in several powerful computer algebra systems to study specific polynomial
ideals that arise in applications. In Chapter 1, we posed many problems concerning
the algebra of polynomial ideals and the geometry of affine varieties. In this chapter
and the next, we will focus on four of these problems.

Problems

a. The IDEAL DESCRIPTION PROBLEM: Does every ideal I ⊆ k[x1, . . . , xn] have a
finite basis? In other words, can we write I = ⟨ f1, . . . , fs⟩ for fi ∈ k[x1, . . . , xn]?

b. The IDEAL MEMBERSHIP PROBLEM: Given f ∈ k[x1, . . . , xn] and an ideal
I = ⟨ f1, . . . , fs⟩, determine if f ∈ I. Geometrically, this is closely related to
the problem of determining whether V( f1, . . . , fs) lies on the variety V( f ).

c. The PROBLEM OF SOLVING POLYNOMIAL EQUATIONS: Find all common solu-
tions in kn of a system of polynomial equations

f1(x1, . . . , xn) = · · · = fs(x1, . . . , xn) = 0.

This is the same as asking for the points in the affine variety V( f1, . . . , fs).
d. The IMPLICITIZATION PROBLEM: Let V ⊆ kn be given parametrically as

x1 = g1(t1, . . . , tm),
...

xn = gn(t1, . . . , tm).
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50 Chapter 2 Gröbner Bases

If the gi are polynomials (or rational functions) in the variables tj, then V will be
an affine variety or part of one. Find a system of polynomial equations (in the xi)
that defines the variety.

Some comments are in order. Problem (a) asks whether every polynomial ideal
has a finite description via generators. Many of the ideals we have seen so far do
have such descriptions—indeed, the way we have specified most of the ideals we
have studied has been to give a finite generating set. However, there are other ways
of constructing ideals that do not lead directly to this sort of description. The main
example we have seen is the ideal of a variety, I(V). It will be useful to know that
these ideals also have finite descriptions. On the other hand, in the exercises, we will
see that if we allow infinitelymany variables to appear in our polynomials, then the
answer to Problem (a) is no.

Note that Problems (c) and (d) are, so to speak, inverse problems. In Problem (c),
we ask for the set of solutions of a given system of polynomial equations. In Prob-
lem (d), on the other hand, we are given the solutions, and the problem is to find a
system of equations with those solutions.

To begin our study of Gröbner bases, let us consider some special cases in which
you have seen algorithmic techniques to solve the problems given above.

Example 1. When n = 1, we solved the ideal description problem in §5 of
Chapter 1. Namely, given an ideal I ⊆ k[x], we showed that I = ⟨g⟩ for some
g ∈ k[x] (see Corollary 4 of Chapter 1, §5). So ideals have an especially simple
description in this case.

We also saw in §5 of Chapter 1 that the solution of the ideal membership problem
follows easily from the division algorithm: given f ∈ k[x], to check whether f ∈ I =
⟨g⟩, we divide g into f :

f = q · g+ r,

where q, r ∈ k[x] and r = 0 or deg(r) < deg(g). Then we proved that f ∈ I if and
only if r = 0. Thus, we have an algorithmic test for ideal membership in the case
n = 1.

Example 2. Next, let n (the number of variables) be arbitrary, and consider the prob-
lem of solving a system of polynomial equations:

(1)

a11x1 + · · ·+ a1nxn + b1 = 0,
...

am1x1 + · · ·+ amnxn + bm = 0,

where each polynomial is linear (total degree 1).
For example, consider the system

2x1 + 3x2 − x3 = 0,

x1 + x2 − 1 = 0,(2)

x1 + x3 − 3 = 0.
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We row-reduce the matrix of the system to reduced row echelon form:
⎛

⎝
1 0 1 3
0 1 −1 −2
0 0 0 0

⎞

⎠ .

The form of this matrix shows that x3 is a free variable, and setting x3 = t
(any element of k), we have

x1 = −t + 3,

x2 = t − 2,

x3 = t.

These are parametric equations for a line L in k3. The original system of equa-
tions (2) presents L as an affine variety.

In the general case, one performs row operations on the matrix of (1)

⎛

⎜⎝

a11 · · · a1n −b1
...

...
...

am1 · · · amn −bm

⎞

⎟⎠

until it is in reduced row echelon form (where the first nonzero entry on each row
is 1, and all other entries in the column containing a leading 1 are zero). Then we
can find all solutions of the original system (1) by substituting values for the free
variables in the reduced row echelon form system. In some examples there may
be only one solution, or no solutions. This last case will occur, for instance, if the
reduced row echelon matrix contains a row (0 . . . 0 1), corresponding to the incon-
sistent equation 0 = 1.

Example 3. Again, take n arbitrary, and consider the subset V of kn parametrized by

(3)

x1 = a11t1 + · · ·+ a1mtm + b1,
...

xn = an1t1 + · · ·+ anmtm + bn.

We see that V is an affine linear subspace of kn since V is the image of the
mapping F : km → kn defined by

F(t1, . . . , tm) = (a11t1 + · · ·+ a1mtm + b1, . . . , an1t1 + · · ·+ anmtm + bn).

This is a linear mapping, followed by a translation. Let us consider the impliciti-
zation problem in this case. In other words, we seek a system of linear equations
[as in (1)] whose solutions are the points of V .

For example, consider the affine linear subspace V ⊆ k4 defined by
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x1 = t1 + t2 + 1,

x2 = t1 − t2 + 3,

x3 = 2t1 − 2,

x4 = t1 + 2t2 − 3.

We rewrite the equations by subtracting the xi terms and constants from both sides
and apply the row reduction algorithm to the corresponding matrix:

⎛

⎜⎜⎝

1 1 −1 0 0 0 −1
1 −1 0 −1 0 0 −3
2 0 0 0 −1 0 2
1 2 0 0 0 −1 3

⎞

⎟⎟⎠

(where the coefficients of the xi have been placed after the coefficients of the tj in
each row). We obtain the reduced row echelon form:

⎛

⎜⎜⎝

1 0 0 0 −1/2 0 1
0 1 0 0 1/4 −1/2 1
0 0 1 0 −1/4 −1/2 3
0 0 0 1 −3/4 1/2 3

⎞

⎟⎟⎠ .

Because the entries in the first two columns of rows 3 and 4 are zero, the last two
rows of this matrix correspond to the following two equations with no tj terms:

x1 − (1/4)x3 − (1/2)x4 − 3 = 0,

x2 − (3/4)x3 + (1/2)x4 − 3 = 0.

(Note that this system is also in echelon form.) These two equations define V in k4.
The same method can be applied to find implicit equations for any affine linear

subspace V given parametrically as in (3): one computes the reduced row echelon
form of (3), and the rows involving only x1, . . . , xn give the equations for V . We thus
have an algorithmic solution to the implicitization problem in this case.

Our goal in this chapter will be to develop extensions of the methods used in
these examples to systems of polynomial equations of any degrees in any number
of variables. What we will see is that a sort of “combination” of row-reduction and
division of polynomials—the method of Gröbner bases mentioned at the outset—
allows us to handle all these problems.

EXERCISES FOR §1

1. Determine whether the given polynomial is in the given ideal I ⊆ R[x] using the method
of Example 1.
a. f (x) = x2 − 3x+ 2, I = ⟨x− 2⟩.
b. f (x) = x5 − 4x+ 1, I = ⟨x3 − x2 + x⟩.
c. f (x) = x2 − 4x+ 4, I = ⟨x4 − 6x2 + 12x− 8, 2x3 − 10x2 + 16x− 8⟩.
d. f (x) = x3 − 1, I = ⟨x9 − 1, x5 + x3 − x2 − 1⟩.
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2. Find parametrizations of the affine varieties defined by the following sets of equations.
a. In R3 or C3:

2x+ 3y− z = 9,
x− y = 1,

3x+ 7y− 2z = 17.

b. In R4 or C4:

x1 + x2 − x3 − x4 = 0,
x1 − x2 + x3 = 0.

c. In R3 or C3:

y− x3 = 0,

z− x5 = 0.

3. Find implicit equations for the affine varieties parametrized as follows.
a. In R3 or C3:

x1 = t − 5,
x2 = 2t + 1,
x3 = −t + 6.

b. In R4 or C4:

x1 = 2t − 5u,
x2 = t + 2u,
x3 = −t + u,
x4 = t + 3u.

c. In R3 or C3:
x = t, y = t4, z = t7.

4. Let x1, x2, x3, . . . be an infinite collection of independent variables indexed by the natural
numbers. A polynomial with coefficients in a field k in the xi is a finite linear combination
of (finite) monomials xe1i1 . . . x

en
in . Let R denote the set of all polynomials in the xi. Note that

we can add and multiply elements of R in the usual way. Thus, R is the polynomial ring
k[x1, x2, . . .] in infinitely many variables.
a. Let I = ⟨x1, x2, x3, . . .⟩ be the set of polynomials of the form xt1 f1+ · · ·+xtm fm, where

fj ∈ R. Show that I is an ideal in the ring R.
b. Show, arguing by contradiction, that I has no finite generating set. Hint: It is not enough

only to consider subsets of {xi | i ≥ 1}.
5. In this problem you will show that all polynomial parametric curves in k2 are contained in

affine algebraic varieties.
a. Show that the number of distinct monomials xayb of total degree≤ m in k[x, y] is equal

to (m+ 1)(m+ 2)/2. [Note: This is the binomial coefficient
(m+2

2

)
.]

b. Show that if f (t) and g(t) are polynomials of degree ≤ n in t, then for m large enough,
the “monomials”

[ f (t)]a[g(t)]b

with a+ b ≤ m are linearly dependent.
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c. Deduce from part (b) that if C is a curve in k2 given parametrically by x = f (t), y =
g(t) for f (t), g(t) ∈ k[t], then C is contained in V(F) for some nonzero F ∈ k[x, y].

d. Generalize parts (a), (b), and (c) to show that any polynomial parametric surface

x = f (t, u), y = g(t, u), z = h(t, u)

is contained in an algebraic surface V(F), where F ∈ k[x, y, z] is nonzero.

§2 Orderings on the Monomials in k[x1, . . . , xn]

If we examine the division algorithm in k[x] and the row-reduction (Gaussian elimi-
nation) algorithm for systems of linear equations (or matrices) in detail, we see that a
notion of ordering of terms in polynomials is a key ingredient of both (though this is
not often stressed). For example, in dividing f (x) = x5−3x2+1 by g(x) = x2−4x+7
by the standard method, we would:
• Write the terms in the polynomials in decreasing order by degree in x.
• At the first step, the leading term (the term of highest degree) in f is x5 = x3 · x2 =

x3 · (leading term in g). Thus, we would subtract x3 · g(x) from f to cancel the
leading term, leaving 4x4 − 7x3 − 3x2 + 1.

• Then, we would repeat the same process on f (x)− x3 · g(x), etc., until we obtain
a polynomial of degree less than 2.

For the division algorithm on polynomials in one variable, we are dealing with the
degree ordering on the one-variable monomials:

(1) · · · > xm+1 > xm > · · · > x2 > x > 1.

The success of the algorithm depends on working systematically with the leading
terms in f and g, and not removing terms “at random” from f using arbitrary terms
from g.

Similarly, in the row-reduction algorithm on matrices, in any given row, we sys-
tematically work with entries to the left first—leading entries are those nonzero en-
tries farthest to the left on the row. On the level of linear equations, this is expressed
by ordering the variables x1, . . . , xn as follows:

(2) x1 > x2 > · · · > xn.

We write the terms in our equations in decreasing order. Furthermore, in an echelon
form system, the equations are listed with their leading terms in decreasing order.
(In fact, the precise definition of an echelon form system could be given in terms of
this ordering—see Exercise 8.)

From the above evidence, we might guess that a major component of any exten-
sion of division and row-reduction to arbitrary polynomials in several variables will
be an ordering on the terms in polynomials in k[x1, . . . , xn]. In this section, we will
discuss the desirable properties such an ordering should have, and we will construct
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several different examples that satisfy our requirements. Each of these orderings
will be useful in different contexts.

First, we note that we can reconstruct the monomial xα = xα1
1 · · · xαn

n from
the n-tuple of exponents α = (α1, . . . ,αn) ∈ Zn

≥0. This observation establishes a
one-to-one correspondence between the monomials in k[x1, . . . , xn] and Zn

≥0. Fur-
thermore, any ordering> we establish on the space Zn

≥0 will give us an ordering on
monomials: if α > β according to this ordering, we will also say that xα > xβ .

There are many different ways to define orderings on Zn
≥0. For our purposes,

most of these orderingswill not be useful, however, since we will want our orderings
to be compatible with the algebraic structure of polynomial rings.

To begin, since a polynomial is a sum of monomials, we would like to be able
to arrange the terms in a polynomial unambiguously in descending (or ascending)
order. To do this, we must be able to compare every pair of monomials to establish
their proper relative positions. Thus, we will require that our orderings be linear or
total orderings. This means that for every pair of monomials xα and x β , exactly one
of the three statements

xα > x β, xα = x β , x β > xα

should be true. A total order is also required to be transitive, so that xα > x β and
x β > xγ always imply xα > xγ .

Next, we must take into account the effect of the sum and product operations
on polynomials. When we add polynomials, after combining like terms, we may
simply rearrange the terms present into the appropriate order, so sums present no
difficulties. Products are more subtle, however. Since multiplication in a polynomial
ring distributes over addition, it suffices to consider what happens when we multiply
a monomial times a polynomial. If doing this changed the relative ordering of terms,
significant problems could result in any process similar to the division algorithm in
k[x], in which we must identify the leading terms in polynomials. The reason is that
the leading term in the product could be different from the product of the monomial
and the leading term of the original polynomial.

Hence, we will require that all monomial orderings have the following additional
property. If xα > xβ and xγ is any monomial, then we require that xαxγ > xβxγ . In
terms of the exponent vectors, this property means that if α > β in our ordering on
Zn
≥0, then, for all γ ∈ Zn

≥0,α+ γ > β + γ.
With these considerations in mind, we make the following definition.

Definition 1. A monomial ordering > on k[x1, . . . , xn] is a relation > on Zn
≥0, or

equivalently, a relation on the set of monomials xα,α ∈ Zn
≥0, satisfying:

(i) > is a total (or linear) ordering on Zn
≥0.

(ii) If α > β and γ ∈ Zn
≥0, then α+ γ > β + γ.

(iii) > is a well-ordering on Zn
≥0. This means that every nonempty subset of Zn

≥0
has a smallest element under >. In other words, if A ⊆ Zn

≥0 is nonempty, then
there is α ∈ A such that β > α for every β ̸= α in A.

Given a monomial ordering>, we say that α ≥ β when either α > β or α = β.
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The following lemma will help us understand what the well-ordering condition
of part (iii) of the definition means.

Lemma 2. An order relation> on Zn
≥0 is a well-ordering if and only if every strictly

decreasing sequence in Zn
≥0

α(1) > α(2) > α(3) > · · ·

eventually terminates.

Proof. We will prove this in contrapositive form: > is not a well-ordering if and
only if there is an infinite strictly decreasing sequence in Zn

≥0.
If > is not a well-ordering, then some nonempty subset S ⊆ Zn

≥0 has no least
element. Now pick α(1) ∈ S. Since α(1) is not the least element, we can find
α(1) > α(2) in S. Then α(2) is also not the least element, so that there is α(2) >
α(3) in S. Continuing this way, we get an infinite strictly decreasing sequence

α(1) > α(2) > α(3) > · · · .

Conversely, given such an infinite sequence, then {α(1),α(2),α(3), . . .} is a non-
empty subset of Zn

≥0 with no least element, and thus, > is not a well-ordering. !
The importance of this lemma will become evident in what follows. It will be

used to show that various algorithms must terminate because some term strictly
decreases (with respect to a fixed monomial order) at each step of the algorithm.

In §4, we will see that given parts (i) and (ii) in Definition 1, the well-ordering
condition of part (iii) is equivalent to α ≥ 0 for all α ∈ Zn

≥0.
For a simple example of a monomial order, note that the usual numerical order

· · · > m+ 1 > m > · · · > 3 > 2 > 1 > 0

on the elements of Z≥0 satisfies the three conditions of Definition 1. Hence, the
degree ordering (1) on the monomials in k[x] is a monomial ordering, unique by
Exercise 13.

Our first example of an ordering on n-tuples will be lexicographic order (or lex
order, for short).

Definition 3 (Lexicographic Order). Let α = (α1, . . . ,αn) and β = (β1, . . . ,βn)
be in Zn

≥0. We say α >lex β if the leftmost nonzero entry of the vector difference
α− β ∈ Zn is positive. We will write xα >lex xβ if α >lex β.

Here are some examples:
a. (1, 2, 0) >lex (0, 3, 4) since α− β = (1,−1,−4).
b. (3, 2, 4) >lex (3, 2, 1) since α− β = (0, 0, 3).
c. The variables x1, . . . , xn are ordered in the usual way [see (2)] by the lex ordering:

(1, 0, . . . , 0) >lex (0, 1, 0, . . . , 0) >lex · · · >lex (0, . . . , 0, 1).

so x1 >lex x2 >lex · · · >lex xn.
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In practice, when we work with polynomials in two or three variables, we will
call the variables x, y, z rather than x1, x2, x3. We will also assume that the alphabet-
ical order x > y > z on the variables is used to define the lexicographic ordering
unless we explicitly say otherwise.

Lex order is analogous to the ordering of words used in dictionaries (hence the
name). We can view the entries of an n-tuple α ∈ Zn

≥0 as analogues of the letters in
a word. The letters are ordered alphabetically:

a > b > · · · > y > z.

Then, for instance,
arrow >lex arson

since the third letter of “arson” comes after the third letter of “arrow” in alphabetical
order, whereas the first two letters are the same in both. Since all elements α ∈ Zn

≥0
have length n, this analogy only applies to words with a fixed number of letters.

For completeness, we must check that the lexicographic order satisfies the three
conditions of Definition 1.

Proposition 4. The lex ordering on Zn
≥0 is a monomial ordering.

Proof. (i) That >lex is a total ordering follows directly from the definition and the
fact that the usual numerical order on Z≥0 is a total ordering.

(ii) If α >lex β, then we have that the leftmost nonzero entry in α−β, say αi−βi,
is positive. But xα · xγ = xα+γ and xβ · xγ = xβ+γ . Then in (α+ γ)− (β + γ) =
α− β, the leftmost nonzero entry is again αi − βi > 0.

(iii) Suppose that >lex were not a well-ordering. Then by Lemma 2, there would
be an infinite strictly descending sequence

α(1) >lex α(2) >lex α(3) >lex · · ·

of elements of Zn
≥0. We will show that this leads to a contradiction.

Consider the first entries of the vectors α(i) ∈ Zn
≥0. By the definition of the

lex order, these first entries form a nonincreasing sequence of nonnegative integers.
Since Z≥0 is well-ordered, the first entries of the α(i) must “stabilize” eventually.
In other words, there exists an ℓ such that all the first entries of the α(i) with i ≥ ℓ
are equal.

Beginning at α(ℓ), the second and subsequent entries come into play in deter-
mining the lex order. The second entries of α(ℓ),α(ℓ+ 1), . . . form a nonincreasing
sequence. By the same reasoning as before, the second entries “stabilize” eventually
as well. Continuing in the same way, we see that for somem, the α(m),α(m+1), . . .
all are equal. This contradicts the fact that α(m) >lex α(m+ 1). !

It is important to realize that there are many lex orders, corresponding to how the
variables are ordered. So far, we have used lex order with x1 > x2 > · · · > xn. But
given any ordering of the variables x1, . . . , xn, there is a corresponding lex order.
For example, if the variables are x and y, then we get one lex order with x > y and
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a second with y > x. In the general case of n variables, there are n! lex orders. In
what follows, the phrase “lex order” will refer to the one with x1 > · · · > xn unless
otherwise stated.

In lex order, notice that a variable dominates any monomial involving only
smaller variables, regardless of its total degree. Thus, for the lex order with x >
y > z, we have x >lex y5z3. For some purposes, we may also want to take the total
degrees of the monomials into account and order monomials of bigger degree first.
One way to do this is the graded lexicographic order (or grlex order).

Definition 5 (Graded Lex Order). Let α,β ∈ Zn
≥0. We say α >grlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi, or |α| = |β| and α >lex β.

We see that grlex orders by total degree first, then “break ties” using lex order.
Here are some examples:
a. (1, 2, 3) >grlex (3, 2, 0) since |(1, 2, 3)| = 6 > |(3, 2, 0)| = 5.
b. (1, 2, 4) >grlex (1, 1, 5) since |(1, 2, 4)| = |(1, 1, 5)| and (1, 2, 4) >lex (1, 1, 5).
c. The variables are ordered according to the lex order, i.e., x1 >grlex · · · >grlex xn.

We will leave it as an exercise to show that the grlex ordering satisfies the three
conditions of Definition 1. As in the case of lex order, there are n! grlex orders
on n variables, depending on how the variables are ordered.
Another (somewhat less intuitive) order on monomials is the graded reverse lexi-

cographical order (or grevlex order). Even though this ordering “takes some getting
used to,” it has been shown that for some operations, the grevlex ordering is the most
efficient for computations.

Definition 6 (Graded Reverse Lex Order). Let α,β ∈ Zn
≥0. We say α >grevlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi, or |α| = |β| and the rightmost nonzero entry
of α− β ∈ Zn is negative.

Like grlex, grevlex orders by total degree, but it “breaks ties” in a different way.
For example:
a. (4, 7, 1) >grevlex (4, 2, 3) since |(4, 7, 1)| = 12 > |(4, 2, 3)| = 9.
b. (1, 5, 2) >grevlex (4, 1, 3) since |(1, 5, 2)| = |(4, 1, 3)| and (1, 5, 2) −(4, 1, 3) =

(−3, 4,−1).
You will show in the exercises that the grevlex ordering gives a monomial ordering.

Note also that lex and grevlex give the same ordering on the variables. That is,

(1, 0, . . . , 0) >grevlex (0, 1, . . . , 0) >grevlex · · · >grevlex (0, . . . , 0, 1)

or
x1 >grevlex x2 >grevlex · · · >grevlex xn
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Thus, grevlex is really different from the grlex order with the variables rearranged
(as one might be tempted to believe from the name).

To explain the relation between grlex and grevlex, note that both use total degree
in the same way. To break a tie, grlex uses lex order, so that it looks at the leftmost
(or largest) variable and favors the larger power. In contrast, when grevlex finds
the same total degree, it looks at the rightmost (or smallest) variable and favors
the smaller power. In the exercises, you will check that this amounts to a “double-
reversal” of lex order. For example,

x5yz >grlex x4yz2,

since both monomials have total degree 7 and x5yz >lex x4yz2. In this case, we also
have

x5yz >grevlex x4yz2,

but for a different reason: x5yz is larger because the smaller variable z appears to a
smaller power.

As with lex and grlex, there are n! grevlex orderings corresponding to how the n
variables are ordered.

There are many other monomial orders besides the ones considered here. Some
of these will be explored in the exercises for §4. Most computer algebra systems
implement lex order, and most also allow other orders, such as grlex and grevlex.
Once such an order is chosen, these systems allow the user to specify any of the n!
orderings of the variables. As we will see in §8 of this chapter and in later chapters,
this facility becomes very useful when studying a variety of questions.

We will end this section with a discussion of how a monomial ordering can be
applied to polynomials. If f =

∑
α aαxα is a nonzero polynomial in k[x1, . . . , xn]

and we have selected a monomial ordering >, then we can order the monomials of
f in an unambiguous way with respect to >. For example, consider the polynomial
f = 4xy2z+ 4z2 − 5x3 + 7x2z2 ∈ k[x, y, z]. Then:
• With respect to lex order, we would reorder the terms of f in decreasing order as

f = −5x3 + 7x2z2 + 4xy2z+ 4z2.

• With respect to grlex order, we would have

f = 7x2z2 + 4xy2z− 5x3 + 4z2.

• With respect to grevlex order, we would have

f = 4xy2z+ 7x2z2 − 5x3 + 4z2.

We will use the following terminology.

Definition 7. Let f =
∑

α aαxα be a nonzero polynomial in k[x1, . . . , xn] and let >
be a monomial order.
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(i) Themultidegree of f is

multideg( f ) = max(α ∈ Zn
≥0 | aα ̸= 0)

(the maximum is taken with respect to >).
(ii) The leading coefficient of f is

LC( f ) = amultideg( f ) ∈ k.

(iii) The leading monomial of f is

LM( f ) = xmultideg( f )

(with coefficient 1).
(iv) The leading term of f is

LT( f ) = LC( f ) · LM( f ).

To illustrate, let f = 4xy2z + 4z2 − 5x3 + 7x2z2 as before and let > denote lex
order. Then

multideg( f ) = (3, 0, 0),

LC( f ) = −5,

LM( f ) = x3,

LT( f ) = −5x3.

In the exercises, you will show that the multidegree has the following useful
properties.

Lemma 8. Let f , g ∈ k[x1, . . . , xn] be nonzero polynomials. Then:
(i) multideg( fg) = multideg( f ) +multideg(g).
(ii) If f + g ̸= 0, then multideg( f + g) ≤ max(multideg( f ),multideg(g)). If, in

addition,multideg( f ) ̸= multideg(g), then equality occurs.

Some books use different terminology. In EISENBUD (1999), the leading term
LT( f ) becomes the initial term in>( f ). A more substantial difference appears in
BECKER and WEISPFENNING (1993), where the meanings of “monomial” and
“term” are interchanged. For them, the leading term LT( f ) is the head monomial
HM( f ), while the leading monomial LM( f ) is the head term HT( f ). Page 10 of
KREUZER and ROBBIANO (2000) has a summary of the terminology used in differ-
ent books. Our advice when reading other texts is to check the definitions carefully.

EXERCISES FOR §2

1. Rewrite each of the following polynomials, ordering the terms using the lex order, the
grlex order, and the grevlex order, giving LM( f ), LT( f ), and multideg( f ) in each case.
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a. f (x, y, z) = 2x+ 3y+ z+ x2 − z2 + x3.
b. f (x, y, z) = 2x2y8 − 3x5yz4 + xyz3 − xy4.

2. Each of the following polynomials is written with its monomials ordered according to
(exactly) one of lex, grlex, or grevlex order. Determine which monomial order was used
in each case.
a. f (x, y, z) = 7x2y4z− 2xy6 + x2y2.
b. f (x, y, z) = xy3z + xy2z2 + x2z3.
c. f (x, y, z) = x4y5z+ 2x3y2z− 4xy2z4.

3. Repeat Exercise 1 when the variables are ordered z > y > x.
4. Show that grlex is a monomial order according to Definition 1.
5. Show that grevlex is a monomial order according to Definition 1.
6. Another monomial order is the inverse lexicographic or invlex order defined by the

following: for α,β ∈ Zn
≥0,α >invlex β if and only if the rightmost nonzero entry of

α − β is positive. Show that invlex is equivalent to the lex order with the variables
permuted in a certain way. (Which permutation?)

7. Let > be any monomial order.
a. Show that α ≥ 0 for all α ∈ Zn

≥0. Hint: Proof by contradiction.
b. Show that if xα divides xβ , then α ≤ β. Is the converse true?
c. Show that if α ∈ Zn

≥0, then α is the smallest element of α + Zn
≥0 = {α + β | β ∈

Zn
≥0}.

8. Write a precise definition of what it means for a system of linear equations to be in
echelon form, using the ordering given in equation (2).

9. In this exercise, we will study grevlex in more detail. Let >invlex, be the order given in
Exercise 6, and define >rinvlex to be the reversal of this ordering, i.e., for α, β ∈ Zn

≥0.

α >rinvlex β ⇐⇒ β >invlex α.

Notice that rinvlex is a “double reversal” of lex, in the sense that we first reverse the
order of the variables and then we reverse the ordering itself.
a. Show that α >grevlex β if and only if |α| > |β|, or |α| = |β| and α >rinvlex β.
b. Is rinvlex a monomial ordering according to Definition 1? If so, prove it; if not, say

which properties fail.
10. In Z≥0 with the usual ordering, between any two integers, there are only a finite number

of other integers. Is this necessarily true in Zn
≥0 for a monomial order? Is it true for the

grlex order?
11. Let > be a monomial order on k[x1, . . . , xn].

a. Let f ∈ k[x1, . . . , xn] and let m be a monomial. Show that LT(m · f ) = m · LT( f ).
b. Let f , g ∈ k[x1, . . . , xn]. Is LT( f · g) necessarily the same as LT( f ) · LT(g)?
c. If fi, gi ∈ k[x1, . . . , xn], 1 ≤ i ≤ s, is LM(

∑s
i=1 figi) necessarily equal to LM( fi) ·

LM(gi) for some i?
12. Lemma 8 gives two properties of the multidegree.

a. Prove Lemma 8. Hint: The arguments used in Exercise 11 may be relevant.
b. Suppose that multideg( f ) = multideg(g) and f + g ̸= 0. Give examples to show that

multideg( f + g) may or may not equal max(multideg( f ), multideg(g)).
13. Prove that 1 < x < x2 < x3 < · · · is the unique monomial order on k[x].

§3 A Division Algorithm in k[x1, . . . , xn]

In §1, we saw how the division algorithm could be used to solve the ideal mem-
bership problem for polynomials of one variable. To study this problem when
there are more variables, we will formulate a division algorithm for polynomials
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in k[x1, . . . , xn] that extends the algorithm for k[x]. In the general case, the goal is
to divide f ∈ k[x1, . . . , xn] by f1, . . . , fs ∈ k[x1, . . . , xn]. As we will see, this means
expressing f in the form

f = q1 f1 + · · ·+ qs fs + r,

where the “quotients” q1, . . . , qs and remainder r lie in k[x1, . . . , xn]. Some care will
be needed in deciding how to characterize the remainder. This is where we will
use the monomial orderings introduced in §2. We will then see how the division
algorithm applies to the ideal membership problem.

The basic idea of the algorithm is the same as in the one-variable case: we want to
cancel the leading term of f (with respect to a fixed monomial order) by multiplying
some fi by an appropriate monomial and subtracting. Then this monomial becomes
a term in the corresponding qi. Rather than state the algorithm in general, let us first
work through some examples to see what is involved.

Example 1. We will first divide f = xy2 + 1 by f1 = xy + 1 and f2 = y + 1, using
lex order with x > y. We want to employ the same scheme as for division of one-
variable polynomials, the difference being that there are now several divisors and
quotients. Listing the divisors f1, f2 and the quotients q1, q2 vertically, we have the
following setup:

q1 :
q2 :

xy+ 1
y+ 1

)
xy2 + 1

The leading terms LT( f1) = xy and LT( f2) = y both divide the leading term LT( f ) =
xy2. Since f1 is listed first, we will use it. Thus, we divide xy into xy2, leaving y, and
then subtract y · f1 from f :

q1 : y
q2 :

xy+ 1
y+ 1

)
xy2 + 1
xy2 + y

−y+ 1

Now we repeat the same process on−y+1. This time we must use f2 since LT( f1) =
xy does not divide LT(−y+ 1) = −y. We obtain:

q1 : y
q2 : −1

xy+ 1
y+ 1

)
xy2 + 1
xy2 + y

−y+ 1
−y− 1

2
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Since LT( f1) and LT( f2) do not divide 2, the remainder is r = 2 and we are done.
Thus, we have written f = xy2 + 1 in the form

xy2 + 1 = y · (xy+ 1) + (−1) · (y+ 1) + 2.

Example 2. In this example, we will encounter an unexpected subtlety that can
occur when dealing with polynomials of more than one variable. Let us divide
f = x2y + xy2 + y2 by f1 = xy − 1 and f2 = y2 − 1. As in the previous exam-
ple, we will use lex order with x > y. The first two steps of the algorithm go as
usual, giving us the following partially completed division (remember that when
both leading terms divide, we use f1):

q1 : x+ y
q2 :

xy− 1
y2 − 1

)
x2y+ xy2 + y2

x2y− x

xy2 + x+ y2

xy2 − y

x+ y2 + y

Note that neither LT( f1) = xy nor LT( f2) = y2 divides LT(x+ y2+ y) = x. However,
x + y2 + y is not the remainder since LT( f2) divides y2. Thus, if we move x to the
remainder, we can continue dividing. (This is something that never happens in the
one-variable case: once the leading term of the divisor no longer divides the leading
term of what is at the bottom of the division, the algorithm terminates.)

To implement this idea, we create a remainder column r, to the right of the divi-
sion, where we put the terms belonging to the remainder. Also, we call the polyno-
mial at the bottom of division the intermediate dividend. Then we continue dividing
until the intermediate dividend is zero. Here is the next step, where we move x to
the remainder column (as indicated by the arrow):

q1 : x+ y
q2 :

xy− 1
y2 − 1

)
x2y+ xy2 + y2

xy2 − x

xy2 + x+ y2

x2y− y

x+ y2 + y
y2 + y

r

−→ x

Now we continue dividing. If we can divide by LT( f1) or LT( f2), we proceed as
usual, and if neither divides, we move the leading term of the intermediate dividend
to the remainder column.
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Here is the rest of the division:

q1 : x+ y
q2 : 1

xy− 1
y2 − 1

)
x2y+ xy2 + y2

x2y− x

xy2 + x+ y2

xy2 − y

x+ y2 + y
y2 + y

r

−→ x
y2 − 1

y+ 1
1 −→ x+ y
0 −→ x+ y+ 1

Thus, the remainder is x+ y+ 1, and we obtain

(1) x2y+ xy2 + y2 = (x+ y) · (xy− 1) + 1 · (y2 − 1) + x+ y+ 1.

Note that the remainder is a sum of monomials, none of which is divisible by the
leading terms LT( f1) or LT( f2).

The above example is a fairly complete illustration of how the division algorithm
works. It also shows us what property we want the remainder to have: none of its
terms should be divisible by the leading terms of the polynomials by which we are
dividing. We can now state the general form of the division algorithm.

Theorem 3 (Division Algorithm in k[x1, . . . , xn]). Let > be a monomial order on
Zn
≥0, and let F = ( f1, . . . , fs) be an ordered s-tuple of polynomials in k[x1, . . . , xn].

Then every f ∈ k[x1, . . . , xn] can be written as

f = q1 f1 + · · ·+ qs fs + r,

where qi, r ∈ k[x1, . . . , xn], and either r = 0 or r is a linear combination, with coef-
ficients in k, of monomials, none of which is divisible by any of LT( f1), . . . , LT( fs).
We call r a remainder of f on division by F. Furthermore, if qi fi ̸= 0, then

multideg( f ) ≥ multideg(qi fi).

Proof. We prove the existence of q1, . . . , qs and r by giving an algorithm for their
construction and showing that it operates correctly on any given input. We recom-
mend that the reader review the division algorithm in k[x] given in Proposition 2 of
Chapter 1, §5 before studying the following generalization:
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Input : f1, . . . , fs, f

Output : q1, . . . , qs, r

q1 := 0; . . . ; qs := 0; r := 0

p := f

WHILE p ̸= 0 DO

i := 1

divisionoccurred := false
WHILE i ≤ s AND divisionoccurred = false DO

IF LT( fi) divides LT(p) THEN

qi := qi + LT(p)/LT( fi)

p := p− (LT(p)/LT( fi)) fi
divisionoccurred := true

ELSE

i := i+ 1

IF divisionoccurred = false THEN

r := r + LT(p)

p := p− LT(p)

RETURN q1, . . . , qs, r

We can relate this algorithm to the previous example by noting that the variable
p represents the intermediate dividend at each stage, the variable r represents the
column on the right-hand side, and the variables q1, . . . , qs are the quotients listed
above the division. Finally, the boolean variable “divisionoccurred” tells us when
some LT( fi) divides the leading term of the intermediate dividend. You should check
that each time we go through the main WHILE . . .DO loop, precisely one of two
things happens:
• (Division Step) If some LT( fi) divides LT(p), then the algorithm proceeds as in

the one-variable case.
• (Remainder Step) If no LT( fi) divides LT(p), then the algorithm adds LT(p) to

the remainder.
These steps correspond exactly to what we did in Example 2.

To prove that the algorithm works, we will first show that

(2) f = q1 f1 + · · ·+ qs fs + p+ r

holds at every stage. This is clearly true for the initial values of q1, . . . , qs, p, and r.
Now suppose that (2) holds at one step of the algorithm. If the next step is a Division
Step, then some LT( fi) divides LT(p), and the equality

qi fi + p = (qi + LT(p)/LT( fi)) fi + (p− (LT(p)/LT( fi)) fi)
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shows that qi fi+p is unchanged. Since all other variables are unaffected, (2) remains
true in this case. On the other hand, if the next step is a Remainder Step, then p and
r will be changed, but the sum p+ r is unchanged since

p+ r = (p− LT(p)) + (r + LT(p)).

As before, equality (2) is still preserved.
Next, notice that the algorithm comes to a halt when p = 0. In this situation, (2)

becomes
f = q1 f1 + · · ·+ qs fs + r.

Since terms are added to r only when they are divisible by none of the LT( fi), it fol-
lows that q1, . . . , qs and r have the desired properties when the algorithm terminates.

Finally, we need to show that the algorithm does eventually terminate. The key
observation is that each time we redefine the variable p, either its multidegree drops
(relative to our term ordering) or it becomes 0. To see this, first suppose that during
a Division Step, p is redefined to be

p′ = p− LT(p)
LT( fi)

fi.

By Lemma 8 of §2, we have

LT
( LT(p)
LT( fi)

fi
)
=

LT(p)
LT( fi)

LT( fi) = LT(p),

so that p and (LT(p)/LT( fi)) fi have the same leading term. Hence, their difference
p′ must have strictly smaller multidegree when p′ ̸= 0. Next, suppose that during a
Remainder Step, p is redefined to be

p′ = p− LT(p).

Here, it is obvious that multideg(p′) < multideg(p) when p′ ̸= 0. Thus, in ei-
ther case, the multidegree must decrease. If the algorithm never terminated, then we
would get an infinite decreasing sequence of multidegrees. The well-ordering prop-
erty of >, as stated in Lemma 2 of §2, shows that this cannot occur. Thus p = 0
must happen eventually, so that the algorithm terminates after finitely many steps.

It remains to study the relation between multideg( f ) and multideg(qi fi). Every
term in qi is of the form LT(p)/LT( fi) for some value of the variable p. The algorithm
starts with p = f , and we just finished proving that the multidegree of p decreases.
This shows that LT(p) ≤ LT( f ), and then it follows easily [using condition (ii) of the
definition of a monomial order] that multideg(qi fi) ≤ multideg( f ) when qi fi ̸= 0
(see Exercise 4). This completes the proof of the theorem. !

The algebra behind the division algorithm is very simple (there is nothing beyond
high school algebra in what we did), which makes it surprising that this form of the
algorithm was first isolated and exploited only within the past 50 years.
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We will conclude this section by asking whether the division algorithm has the
same nice properties as the one-variable version. Unfortunately, the answer is not
pretty—the examples given below will show that the division algorithm is far from
perfect. In fact, the algorithm achieves its full potential only when coupled with the
Gröbner bases studied in §§5 and 6.

A first important property of the division algorithm in k[x] is that the remainder is
uniquely determined. To see how this can fail when there is more than one variable,
consider the following example.

Example 4. Let us divide f = x2y + xy2 + y2 by f1 = y2 − 1 and f2 = xy – 1. We
will use lex order with x > y. This is the same as Example 2, except that we have
changed the order of the divisors. For practice, we suggest that the reader should do
the division. You should get the following answer:

q1 : x+ 1
q2 : x

y2 − 1
xy− 1

)
x2y+ xy2 + y2

x2y− x

xy2 + x+ y2

xy2 − x
2x+ y2

y2

r

−→ 2x
y2 − 1

1
0 −→ 2x+ 1

This shows that

(3) x2y+ xy2 + y2 = (x+ 1) · (y2 − 1) + x · (xy− 1) + 2x+ 1.

If you compare this with equation (1), you will see that the remainder is different
from what we got in Example 2.

This shows that the remainder r is not uniquely characterized by the require-
ment that none of its terms be divisible by LT( f1), . . . , LT( fs). The situation is not
completely chaotic: if we follow the algorithm precisely as stated [most importantly,
testing LT(p) for divisibility by LT( f1), LT( f2), . . . in that order], then q1, . . . , qs and
r are uniquely determined. (See Exercise 11 for a more detailed discussion of how
to characterize the output of the algorithm.) However, Examples 2 and 4 show that
the ordering of the s-tuple of polynomials ( f1, . . . , fs) definitely matters, both in the
number of steps the algorithm will take to complete the calculation and in the re-
sults. The qi and r can change if we simply rearrange the fi. (The qi and r may also
change if we change the monomial ordering, but that is another story.)

One nice feature of the division algorithm in k[x] is the way it solves the ideal
membership problem—recall Example 1 from §1. Do we get something similar
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for several variables? One implication is an easy corollary of Theorem 3: if after
division of f by F = ( f1, . . . , fs) we obtain a remainder r = 0, then

f = q1 f1 + · · ·+ qs fs,

so that f ∈ ⟨ f1, . . . , fs⟩. Thus r = 0 is a sufficient condition for ideal membership.
However, as the following example shows, r = 0 is not a necessary condition for
being in the ideal.

Example 5. Let f1 = xy − 1, f2 = y2 − 1 ∈ k[x, y] with the lex order. Dividing
f = xy2 − x by F = ( f1, f2), the result is

xy2 − x = y · (xy− 1) + 0 · (y2 − 1) + (−x+ y).

With F = ( f2, f1), however, we have

xy2 − x = x · (y2 − 1) + 0 · (xy− 1) + 0.

The second calculation shows that f ∈ ⟨ f1, f2⟩. Then the first calculation shows that
even if f ∈ ⟨ f1, f2⟩, it is still possible to obtain a nonzero remainder on division by
F = ( f1, f2).

Thus, we must conclude that the division algorithm given in Theorem 3 is an
imperfect generalization of its one-variable counterpart. To remedy this situation,
we turn to one of the lessons learned in Chapter 1. Namely, in dealing with a col-
lection of polynomials f1, . . . , fs ∈ k[x1, . . . , xn], it is frequently desirable to pass
to the ideal I they generate. This allows the possibility of going from f1, . . . , fs to a
different generating set for I. So we can still ask whether there might be a “good”
generating set for I. For such a set, we would want the remainder r on division by
the “good” generators to be uniquely determined and the condition r = 0 should be
equivalent to membership in the ideal. In §6, we will see that Gröbner bases have
exactly these “good” properties.

In the exercises, you will experiment with a computer algebra system to try to
discover for yourself what properties a “good” generating set should have. We will
give a precise definition of “good” in §5 of this chapter.

EXERCISES FOR §3

1. Compute the remainder on division of the given polynomial f by the ordered set F (by
hand). Use the grlex order, then the lex order in each case.
a. f = x7y2 + x3y2 − y+ 1, F = (xy2 − x, x− y3).
b. Repeat part (a) with the order of the pair F reversed.

2. Compute the remainder on division:
a. f = xy2z2 + xy− yz, F = (x− y2, y− z3, z2 − 1).
b. Repeat part (a) with the order of the set F permuted cyclically.

3. Using a computer algebra system, check your work from Exercises 1 and 2. (You may
need to consult documentation to learn whether the system you are using has an explicit
polynomial division command or you will need to perform the individual steps of the
algorithm yourself.)
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4. Let f = q1 f1 + · · ·+ qs fs + r be the output of the division algorithm.
a. Complete the proof begun in the text that multideg( f ) ≥ multideg(qi fi) provided that

qi fi ̸= 0.
b. Prove that multideg( f ) ≥ multideg(r) when r ̸= 0.

The following problems investigate in greater detail the way the remainder computed by
the division algorithm depends on the ordering and the form of the s-tuple of divisors F =
( f1, . . . , fs). You may wish to use a computer algebra system to perform these calculations.

5. We will study the division of f = x3 − x2y− x2z+ x by f1 = x2y− z and f2 = xy− 1.
a. Compute using grlex order:

r1 = remainder of f on division by ( f1, f2).
r2 = remainder of f on division by ( f2, f1).

Your results should be different. Where in the division algorithm did the difference
occur? (You may need to do a few steps by hand here.)

b. Is r = r1 − r2 in the ideal ⟨ f1, f2⟩? If so, find an explicit expression r = Af1 + Bf2. If
not, say why not.

c. Compute the remainder of r on division by ( f1, f2). Why could you have predicted
your answer before doing the division?

d. Find another polynomial g ∈ ⟨ f1, f2⟩ such that the remainder on division of g by
( f1, f2) is nonzero. Hint: (xy+ 1) · f2 = x2y2 − 1, whereas y · f1 = x2y2 − yz.

e. Does the division algorithm give us a solution for the ideal membership problem for
the ideal ⟨ f1, f2⟩ ? Explain your answer.

6. Using the grlex order, find an element g of ⟨ f1, f2⟩ = ⟨2xy2 − x, 3x2y− y− 1⟩ ⊆ R[x, y]
whose remainder on division by ( f1, f2) is nonzero. Hint: You can find such a g where
the remainder is g itself.

7. Answer the question of Exercise 6 for ⟨ f1, f2, f3⟩ = ⟨x4y2 − z, x3y3 − 1, x2y4 − 2z⟩
⊆ R[x, y, z]. Find two different polynomials g (not constant multiples of each other).

8. Try to formulate a general pattern that fits the examples in Exercises 5(c)(d), 6, and 7.
What condition on the leading term of the polynomial g = A1 f1 + · · · + As fs would
guarantee that there was a nonzero remainder on division by ( f1, . . . , fs)? What does
your condition imply about the ideal membership problem?

9. The discussion around equation (2) of Chapter 1, §4 shows that every polynomial f ∈
R[x, y, z] can be written as

f = h1(y− x2) + h2(z− x3) + r,

where r is a polynomial in x alone and V(y− x2, z− x3) is the twisted cubic curve in R3.
a. Give a proof of this fact using the division algorithm. Hint: You need to specify

carefully the monomial ordering to be used.
b. Use the parametrization of the twisted cubic to show that z2 − x4y vanishes at every

point of the twisted cubic.
c. Find an explicit representation

z2 − x4y = h1(y− x2) + h2(z− x3)

using the division algorithm.
10. Let V ⊆ R3 be the curve parametrized by (t, tm, tn), n,m ≥ 2.

a. Show that V is an affine variety.
b. Adapt the ideas in Exercise 9 to determine I(V).
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11. In this exercise, we will characterize completely the expression

f = q1 f1 + · · ·+ qs fs + r

that is produced by the division algorithm (among all the possible expressions for f of
this form). Let LM( fi) = xα(i) and define

∆1 = α(1) + Zn
≥0,

∆2 = (α(2) + Zn
≥0) \∆1,

...

∆s = (α(s) + Zn
≥0) \

( s−1⋃

i=1

∆i

)
,

∆ = Zn
≥0 \

( s⋃

i=1

∆i

)
.

(Note that Zn
≥0 is the disjoint union of the ∆i and ∆.)

a. Show that β ∈ ∆i if and only if xα(i) divides xβ and no xα(j) with j < i divides xβ .
b. Show that γ ∈ ∆ if and only if no xα(i) divides xγ .
c. Show that in the expression f = q1 f1 + · · · + qs fs + r computed by the division

algorithm, for every i, every monomial xβ in qi satisfies β + α(i) ∈ ∆i, and every
monomial xγ in r satisfies γ ∈ ∆.

d. Show that there is exactly one expression f = q1 f1 + · · · + qs fs + r satisfying the
properties given in part (c).

12. Show that the operation of computing remainders on division by F = ( f1, . . . , fs) is
linear over k. That is, if the remainder on division of gi by F is ri, i = 1, 2, then, for any
c1, c2 ∈ k, the remainder on division of c1g1+c2g2 is c1r1+c2r2. Hint: Use Exercise 11.

§4 Monomial Ideals and Dickson’s Lemma

In this section, we will consider the ideal description problem of §1 for the special
case of monomial ideals. This will require a careful study of the properties of these
ideals. Our results will also have an unexpected application to monomial orderings.

To start, we define monomial ideals in k[x1, . . . , xn].

Definition 1. An ideal I ⊆ k[x1, . . . , xn] is a monomial ideal if there is a subset
A ⊆ Zn

≥0 (possibly infinite) such that I consists of all polynomials which are finite
sums of the form

∑
α∈A hαx

α, where hα ∈ k[x1, . . . , xn]. In this case, we write
I = ⟨xα | α ∈ A⟩.

An example of a monomial ideal is given by I = ⟨x4y2, x3y4, x2y5⟩ ⊆ k[x, y].
More interesting examples of monomial ideals will be given in §5.

We first need to characterize all monomials that lie in a given monomial ideal.

Lemma 2. Let I = ⟨xα | α ∈ A⟩ be a monomial ideal. Then a monomial xβ lies in I
if and only if xβ is divisible by xα for some α ∈ A.
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Proof. If xβ is a multiple of xα for some α ∈ A, then xβ ∈ I by the definition of
ideal. Conversely, if xβ ∈ I, then xβ =

∑s
i=1 hi x

α(i), where hi ∈ k[x1, . . . , xn] and
α(i) ∈ A. If we expand each hi as a sum of terms, we obtain

xβ =
s∑

i=1

hi xα(i) =
s∑

i=1

(∑

j

ci, j xβ(i, j)
)
xα(i) =

∑

i, j

ci, j xβ(i, j)xα(i).

After collecting terms of the same multidegree, every term on the right side of the
equation is divisible by some xα(i). Hence, the left side xβ must have the same
property. !

Note that xβ is divisible by xα exactly when xβ = xα ·xγ for some γ ∈ Zn
≥0. This

is equivalent to β = α+ γ. Thus, the set

α+ Zn
≥0 = {α+ γ | γ ∈ Zn

≥0}

consists of the exponents of all monomials divisible by xα. This observation and
Lemma 2 allows us to draw pictures of the monomials in a given monomial ideal.
For example, if I = ⟨x4y2, x3y4, x2y5⟩, then the exponents of the monomials in I
form the set

((4, 2) + Z2
≥0) ∪ ((3, 4) + Z2

≥0) ∪ ((2, 5) + Z2
≥0).

We can visualize this set as the union of the integer points in three translated copies
of the first quadrant in the plane:

n

m
(m,n) ←→ xm yn

(2,5)

(3,4)

(4,2)

Let us next show that whether a given polynomial f lies in a monomial ideal can
be determined by looking at the monomials of f .

Lemma 3. Let I be a monomial ideal, and let f ∈ k[x1, . . . , xn]. Then the following
are equivalent:
(i) f ∈ I.
(ii) Every term of f lies in I.
(iii) f is a k-linear combination of the monomials in I.
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Proof. The implications (iii) ⇒ (ii) ⇒ (i) and (ii) ⇒ (iii) are trivial. The proof of
(i)⇒ (ii) is similar to what we did in Lemma 2 and is left as an exercise. !

An immediate consequence of part (iii) of the lemma is that a monomial ideal is
uniquely determined by its monomials. Hence, we have the following corollary.

Corollary 4. Two monomial ideals are the same if and only if they contain the same
monomials.

The main result of this section is that all monomial ideals of k[x1, . . . , xn] are
finitely generated.

Theorem 5 (Dickson’s Lemma). Let I = ⟨xα | α ∈ A⟩ ⊆ k[x1, . . . , xn] be a
monomial ideal. Then I can be written in the form I = ⟨xα(1), . . . , xα(s)⟩, where
α(1), . . . ,α(s) ∈ A. In particular, I has a finite basis.

Proof. (By induction on n, the number of variables.) If n = 1, then I is generated by
the monomials xα1 , where α ∈ A ⊆ Z≥0. Let β be the smallest element of A ⊆ Z≥0.
Then β ≤ α for all α ∈ A, so that xβ1 divides all other generators xα1 . From here,
I = ⟨xβ1 ⟩ follows easily.

Now assume that n > 1 and that the theorem is true for n − 1. We will write the
variables as x1, . . . , xn−1, y, so that monomials in k[x1, . . . , xn−1, y] can be written as
xαym, where α = (α1, . . . ,αn−1) ∈ Zn−1

≥0 and m ∈ Z≥0.
Suppose that I ⊆ k[x1, . . . , xn−1, y] is a monomial ideal. To find generators for

I, let J be the ideal in k[x1, . . . , xn−1] generated by the monomials xα for which
xαym ∈ I for some m ≥ 0. Since J is a monomial ideal in k[x1, . . . , xn−1],
our inductive hypothesis implies that finitely many of the xα’s generate J, say
J = ⟨xα(1), . . . , xα(s)⟩. The ideal J can be understood as the “projection” of I into
k[x1, . . . , xn−1].

For each i between 1 and s, the definition of J tells us that xα(i)ymi ∈ I for some
mi ≥ 0. Let m be the largest of the mi. Then, for each ℓ between 0 and m − 1,
consider the ideal Jℓ ⊆ k[x1, . . . , xn−1] generated by the monomials xβ such that
xβyℓ ∈ I. One can think of Jℓ as the “slice” of I generated by monomials containing
y exactly to the ℓth power. Using our inductive hypothesis again, Jℓ has a finite
generating set of monomials, say Jℓ = ⟨xαℓ(1), . . . , xαℓ(sℓ)⟩.

We claim that I is generated by the monomials in the following list:

from J : xα(1)ym, . . . , xα(s)ym,

from J0 : xα0(1), . . . , xα0(s0),

from J1 : xα1(1)y, . . . , xα1(s1)y,
...

from Jm−1 : xαm−1(1)ym−1, . . . , xαm−1(sm−1)ym−1.

First note that every monomial in I is divisible by one on the list. To see why, let
xαyp ∈ I. If p ≥ m, then xαyp is divisible by some xα(i)ym by the construction of J.
On the other hand, if p ≤ m − 1, then xαyp is divisible by some xαp(j)yp by the
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construction of Jp. It follows from Lemma 2 that the above monomials generate an
ideal having the same monomials as I. By Corollary 4, this forces the ideals to be
the same, and our claim is proved.

To complete the proof, we need to show that the finite set of generators can be
chosen from a given set of generators for the ideal. If we switch back to writing the
variables as x1, . . . , xn, then our monomial ideal is I = ⟨xα | α ∈ A⟩ ⊆ k[x1, . . . , xn].
We need to show that I is generated by finitely many of the xα’s, where α ∈ A. By
the previous paragraph, we know that I = ⟨xβ(1), . . . , xβ(s)⟩ for some monomials
xβ(i) in I. Since xβ(i) ∈ I = ⟨xα : α ∈ A⟩, Lemma 2 tells us that each xβ(i) is divisible
by xα(i) for some α(i) ∈ A. From here, it is easy to show that I = ⟨xα(1), . . . , xα(s)⟩
(see Exercise 6 for the details). This completes the proof. !

To better understand how the proof of Theorem 5 works, let us apply it to the
ideal I = ⟨x4y2, x3y4, x2y5⟩ discussed earlier in the section. From the picture of the
exponents, you can see that the “projection” is J = ⟨x2⟩ ⊆ k[x]. Since x2y5 ∈ I,
we have m = 5. Then we get the “slices” Jℓ, 0 ≤ ℓ ≤ 4 = m − 1, generated by
monomials containing yℓ:

J0 = J1 = {0},
J2 = J3 = ⟨x4⟩,

J4 = ⟨x3⟩.

These “slices” are easy to see using the picture of the exponents. Then the proof of
Theorem 5 gives I = ⟨x2y5, x4y2, x4y3, x3y4⟩.

Theorem 5 solves the ideal description problem for monomial ideals, for it tells
that such an ideal has a finite basis. This, in turn, allows us to solve the ideal mem-
bership problem for monomial ideals. Namely, if I = ⟨xα(1), . . . , xα(s)⟩, then one
can easily show that a given polynomial f is in I if and only if the remainder of f on
division by xα(1), . . . , xα(s) is zero. See Exercise 8 for the details.

We can also use Dickson’s Lemma to prove the following important fact about
monomial orderings in k[x1, . . . , xn].

Corollary 6. Let > be a relation on Zn
≥0 satisfying:

(i) > is a total ordering on Zn
≥0.

(ii) If α > β and γ ∈ Zn
≥0, then α+ γ > β + γ.

Then > is well-ordering if and only if α ≥ 0 for all α ∈ Zn
≥0.

Proof. ⇒: Assuming> is a well-ordering, let α0 be the smallest element of Zn
≥0. It

suffices to show α0 ≥ 0. This is easy: if 0 > α0, then by hypothesis (ii), we can add
α0 to both sides to obtain α0 > 2α0, which is impossible since α0 is the smallest
element of Zn

≥0.
⇐: Assuming that α ≥ 0 for all α ∈ Zn

≥0, let A ⊆ Zn
≥0 be nonempty. We need

to show that A has a smallest element. Since I = ⟨xα | α ∈ A⟩ is a monomial
ideal, Dickson’s Lemma gives us α(1), . . . ,α(s) ∈ A so that I = ⟨xα(1), . . . , xα(s)⟩.
Relabeling if necessary, we can assume that α(1) < α(2) < . . . < α(s). We claim
that α(1) is the smallest element of A. To prove this, take α ∈ A. Then xα ∈ I =
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⟨xα(1), . . . , xα(s)⟩, so that by Lemma 2, xα is divisible by some xα(i). This tells us
that α = α(i) + γ for some γ ∈ Zn

≥0. Then γ ≥ 0 and hypothesis (ii) imply that

α = α(i) + γ ≥ α(i) + 0 = α(i) ≥ α(1).

Thus, α(1) is the least element of A. !

As a result of this corollary, the definition of monomial ordering given in Defi-
nition 1 of §2 can be simplified. Conditions (i) and (ii) in the definition would be
unchanged, but we could replace (iii) by the simpler condition that α ≥ 0 for all
α ∈ Zn

≥0. This makes it much easier to verify that a given ordering is actually a
monomial ordering. See Exercises 9–11 for some examples.

Among all bases of a monomial ideal, there is one that is better than the others.

Proposition 7. A monomial ideal I ⊆ k[x1, . . . , xn] has a basis xα(1), . . . , xα(s) with
the property that xα(i) does not divide xα(j) for i ̸= j. Furthermore, this basis is
unique and is called theminimal basis of I.

Proof. By Theorem 5, I has a finite basis consisting of monomials. If one monomial
in this basis divides another, then we can discard the other and still have a basis.
Doing this repeatedly proves the existence of a minimal basis xα(1), . . . , xα(s).

For uniqueness, assume that xβ(1), . . . , xβ(t) is a second minimal basis of I. Then
xα(1) ∈ I and Lemma 2 imply that xβ(i) | xα(1) for some i. Switching to the other
basis, xβ(i) ∈ I implies that xα(j) | xβ(i) for some j. Thus xα(j) | xα(1), which
by minimality implies j = 1, and xα(1) = xβ(i) follows easily. Continuing in this
way, we see that the first basis is contained in the second. Then equality follows by
interchanging the two bases. !

EXERCISES FOR §4

1. Let I ⊆ k[x1, . . . , xn] be an ideal with the property that for every f =
∑

cαxα ∈ I, every
monomial xα appearing in f is also in I. Show that I is a monomial ideal.

2. Complete the proof of Lemma 3 begun in the text.
3. Let I = ⟨x6, x2y3, xy7⟩ ⊆ k[x, y].

a. In the (m, n)-plane, plot the set of exponent vectors (m, n) of monomials xmyn ap-
pearing in elements of I.

b. If we apply the division algorithm to an element f ∈ k[x, y], using the generators of I
as divisors, what terms can appear in the remainder?

4. Let I ⊆ k[x, y] be the monomial ideal spanned over k by the monomials xβ corresponding
to β in the shaded region shown at the top of the next page.
a. Use the method given in the proof of Theorem 5 to find an ideal basis for I.
b. Find a minimal basis for I in the sense of Proposition 7.

5. Suppose that I = ⟨xα | α ∈ A⟩ is a monomial ideal, and let S be the set of all exponents
that occur as monomials of I. For any monomial order>, prove that the smallest element
of S with respect to> must lie in A.
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n

m
(m,n) ←→ xm yn

(3,6)

(5,4)

(6,0)

6. Let I = ⟨xα | α ∈ A⟩ be a monomial ideal, and assume that we have a finite basis
I = ⟨xβ(1), . . . , xβ(s)⟩. In the proof of Dickson’s Lemma, we observed that each xβ(i) is
divisible by xα(i) for some α(i) ∈ A. Prove that I = ⟨xα(1), . . . , xα(s)⟩.

7. Prove that Dickson’s Lemma (Theorem 5) is equivalent to the following statement: given
a nonempty subset A ⊆ Zn

≥0, there are finitely many elements α(1), . . . ,α(s) ∈ A such
that for every α ∈ A, there exists some i and some γ ∈ Zn

≥0 such that α = α(i) + γ.

8. If I = ⟨xα(1), . . . , xα(s)⟩ is a monomial ideal, prove that a polynomial f is in I if and
only if the remainder of f on division by xα(1), . . . , xα(s) is zero. Hint: Use Lemmas 2
and 3.

9. Suppose we have the polynomial ring k[x1, . . . , xn, y1, . . . , ym]. Let us define a mono-
mial order >mixed on this ring that mixes lex order for x1, . . . xn, with grlex order for
y1, . . . , ym. If we write monomials in the n + m variables as xα yβ , where α ∈ Zn

≥0 and
β ∈ Zm

≥0, then we define

xα yβ >mixed x
γ yδ ⇐⇒ xα >lex x

γ or xα = xγ and yβ >grlex y
δ .

Use Corollary 6 to prove that >mixed is a monomial order. This is an example of what
is called a product order. It is clear that many other monomial orders can be created by
this method.

10. In this exercise we will investigate a special case of a weight order. Let u = (u1, . . . , un)
be a vector in Rn such that u1, . . . , un are positive and linearly independent over Q. We
say that u is an independent weight vector. Then, for α,β ∈ Zn

≥0, define

α >u β ⇐⇒ u · α > u · β,

where the centered dot is the usual dot product of vectors. We call >u the weight order
determined by u.
a. Use Corollary 6 to prove that >u is a monomial order. Hint: Where does your argu-

ment use the linear independence of u1, . . . , un?
b. Show that u = (1,

√
2) is an independent weight vector, so that >u is a weight order

on Z2
≥0.

c. Show that u = (1,
√
2,
√
3) is an independent weight vector, so that >u is a weight

order on Z3
≥0.

11. Another important weight order is constructed as follows. Let u = (u1, . . . , un) be in
Zn

≥0, and fix a monomial order >σ (such as >lex or >grevlex) on Zn
≥0. Then, for α, β ∈

Zn
≥0, define α >u,σ β if and only if
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u · α > u · β or u · α = u · β and α >σ β.

We call >u,σ the weight order determined by u and >σ.
a. Use Corollary 6 to prove that >u,σ is a monomial order.
b. Find u ∈ Zn

≥0 so that the weight order >u,lex is the grlex order >grlex.
c. In the definition of >u,σ, the order >σ is used to break ties, and it turns out that ties

will always occur when n ≥ 2. More precisely, prove that given u ∈ Zn
≥0, there are

α ̸= β in Zn
≥0 such that u · α = u · β. Hint: Consider the linear equation u1a1 +

· · · + unan = 0 over Q. Show that there is a nonzero integer solution (a1, . . . , an),
and then show that (a1, . . . , an) = α− β for some α,β ∈ Zn

≥0.
d. A useful example of a weight order is the elimination order introduced by BAYER

and STILLMAN (1987b). Fix an integer 1 ≤ l ≤ n and let u = (1, . . . , 1, 0, . . . , 0),
where there are l 1’s and n − l 0’s. Then the l-th elimination order >l is the weight
order >u,grevlex. Prove that >l has the following property: if xα is a monomial in
which one of x1, . . . , xl appears, then xα >l xβ for any monomial involving only
xl+1, . . . , xn. Elimination orders play an important role in elimination theory, which
we will study in the next chapter.

The weight orders described in Exercises 10 and 11 are only special cases of weight orders.
In general, to determine a weight order, one starts with a vector u1 ∈ Rn, whose entries may
not be linearly independent over Q. Then α > β if u1 ·α > u1 ·β. But to break ties, one uses
a second weight vector u2 ∈ Rn. Thus, α > β also holds if u1 ·α = u1 ·β and u2 ·α > u2 ·β.
If there are still ties (when u1 · α = u1 · β and u2 · α = u2 · β), then one uses a third
weight vector u3, and so on. It can be proved that every monomial order on Zn

≥0 arises in this
way. For a detailed treatment of weight orders and their relation to monomial orders, consult
ROBBIANO (1986). See also Tutorial 10 of KREUZER and ROBBIANO (2000) or Section 1.2
of GREUEL and PFISTER (2008).

§5 The Hilbert Basis Theorem and Gröbner Bases

In this section, we will give a complete solution of the ideal description problem
from §1. Our treatment will also lead to ideal bases with “good” properties relative
to the division algorithm introduced in §3. The key idea we will use is that once we
choose a monomial ordering, each nonzero f ∈ k[x1, . . . , xn] has a unique leading
term LT( f ). Then, for any ideal I, we can define its ideal of leading terms as follows.

Definition 1. Let I ⊆ k[x1, . . . , xn] be an ideal other than {0}, and fix a monomial
ordering on k[x1, . . . , xn]. Then:
(i) We denote by LT(I) the set of leading terms of nonzero elements of I. Thus,

LT(I) = {cxα | there exists f ∈ I \ {0} with LT( f ) = cxα}.

(ii) We denote by ⟨LT(I)⟩ the ideal generated by the elements of LT(I).

We have already seen that leading terms play an important role in the divi-
sion algorithm. This brings up a subtle but important point concerning ⟨LT(I)⟩.
Namely, if we are given a finite generating set for I, say I = ⟨ f1, . . . , fs⟩, then
⟨LT( f1), . . . , LT( fs)⟩ and ⟨LT(I)⟩ may be different ideals. It is true that LT( fi) ∈
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LT(I) ⊆ ⟨LT(I)⟩ by definition, which implies ⟨LT( f1), . . . , LT( fs)⟩ ⊆ ⟨LT(I)⟩. How-
ever, ⟨LT(I)⟩ can be strictly larger. To see this, consider the following example.

Example 2. Let I = ⟨ f1, f2⟩, where f1 = x3 − 2xy and f2 = x2y − 2y2 + x, and use
the grlex ordering on monomials in k[x, y]. Then

x · (x2y− 2y2 + x)− y · (x3 − 2xy) = x2,

so that x2 ∈ I. Thus x2 = LT(x2) ∈ ⟨LT(I)⟩. However x2 is not divisible by LT( f1) =
x3 or LT( f2) = x2y, so that x2 /∈ ⟨LT( f1), LT( f2)⟩ by Lemma 2 of §4.

In the exercises for §3, you computed other examples of ideals I = ⟨ f1, . . . , fs⟩,
where ⟨LT(I)⟩was strictly bigger than ⟨LT( f1), . . . , LT( fs)⟩. The exercises at the end
of the section will explore what this implies about the ideal membership problem.

We will now show that ⟨LT(I)⟩ is a monomial ideal. This will allow us to apply
the results of §4. In particular, it will follow that ⟨LT(I)⟩ is generated by finitely
many leading terms.

Proposition 3. Let I ⊆ k[x1, . . . , xn] be an ideal different from {0}.
(i) ⟨LT(I)⟩ is a monomial ideal.
(ii) There are g1, . . . , gt ∈ I such that ⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩.

Proof. (i) The leading monomials LM(g) of elements g ∈ I \ {0} generate the
monomial ideal ⟨LM(g) | g ∈ I \ {0}⟩. Since LM(g) and LT(g) differ by a nonzero
constant, this ideal equals ⟨LT(g) | g ∈ I \ {0}⟩ = ⟨LT(I)⟩ (see Exercise 4). Thus,
⟨LT(I)⟩ is a monomial ideal.

(ii) Since ⟨LT(I)⟩ is generated by the monomials LM(g) for g ∈ I\{0}, Dickson’s
Lemma from §4 tells us that ⟨LT(I)⟩ = ⟨LM(g1), . . . , LM(gt)⟩ for finitely many
g1, . . . , gt ∈ I. Since LM(gi) differs from LT(gi) by a nonzero constant, it follows
that ⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩. This completes the proof. !

We can now use Proposition 3 and the division algorithm to prove the existence
of a finite generating set of every polynomial ideal, thus giving an affirmative answer
to the ideal description problem from §1.

Theorem 4 (Hilbert Basis Theorem). Every ideal I ⊆ k[x1, . . . , xn] has a finite
generating set. In other words, I = ⟨g1, . . . , gt⟩ for some g1, . . . , gt ∈ I.

Proof. If I = {0}, we take our generating set to be {0}, which is certainly finite.
If I contains some nonzero polynomial, then a generating set g1, . . . , gt for I can be
constructed as follows.

We first select one particular monomial order to use in the division algorithm
and in computing leading terms. Then I has an ideal of leading terms ⟨LT(I)⟩. By
Proposition 3, there are g1, . . . , gt ∈ I such that ⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩. We
claim that I = ⟨g1, . . . , gt⟩.

It is clear that ⟨g1, . . . , gt⟩ ⊆ I since each gi ∈ I. Conversely, let f ∈ I be any
polynomial. If we apply the division algorithm from §3 to divide f by (g1, . . . , gt),
then we get an expression of the form
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f = q1g1 + · · ·+ qtgt + r

where no term of r is divisible by any of LT(g1), . . . , LT(gt). We claim that r = 0.
To see this, note that

r = f − q1g1 − · · ·− qtgt ∈ I.

If r ̸= 0, then LT(r) ∈ ⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩, and by Lemma 2 of §4,
it follows that LT(r) must be divisible by some LT(gi). This contradicts what it
means to be a remainder, and, consequently, r must be zero. Thus,

f = q1g1 + · · ·+ qtgt + 0 ∈ ⟨g1, . . . , gt⟩,

which shows that I ⊆ ⟨g1, . . . , gt⟩. This completes the proof. !

Besides answering the ideal description question, the basis {g1, . . . , gt} used in
the proof of Theorem 4 has the special property that ⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩.
As we saw in Example 2, not all bases of an ideal behave this way.We will give these
special bases the following name.

Definition 5. Fix a monomial order on the polynomial ring k[x1, . . . , xn]. A finite
subset G = {g1, . . . , gt} of an ideal I ⊆ k[x1, . . . , xn] different from {0} is said to
be a Gröbner basis (or standard basis) if

⟨LT(g1), . . . , LT(gt)⟩ = ⟨LT(I)⟩.

Using the convention that ⟨∅⟩ = {0}, we define the empty set ∅ to be the Gröbner
basis of the zero ideal {0}.

Equivalently, but more informally, a set {g1, . . . , gt} ⊆ I is a Gröbner basis of I
if and only if the leading term of any element of I is divisible by one of the LT(gi)
(this follows from Lemma 2 of §4—see Exercise 5). The proof of Theorem 4 also
establishes the following result.

Corollary 6. Fix a monomial order. Then every ideal I ⊆ k[x1, . . . , xn] has a Gröb-
ner basis. Furthermore, any Gröbner basis for an ideal I is a basis of I.

Proof. Given a nonzero ideal, the set G = {g1, . . . , gt} constructed in the proof
of Theorem 4 is a Gröbner basis by definition. For the second claim, note that if
⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩, then the argument given in Theorem 4 shows that
I = ⟨g1, . . . , gt⟩, so that G is a basis for I. (A slightly different proof is given in
Exercise 6.) !

In §6 we will study the properties of Gröbner bases in more detail, and, in partic-
ular, we will see how they give a solution of the ideal membership problem. Gröbner
bases are the “good” generating sets we hoped for at the end of §3.

For some examples of Gröbner bases, first consider the ideal I from Example 2,
which had the basis { f1, f2} = {x3 − 2xy, x2y − 2y2 + x}. Then { f1, f2} is not
a Gröbner basis for I with respect to grlex order since we saw in Example 2 that
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x2 ∈ ⟨LT(I)⟩, but x2 /∈ ⟨LT( f1), LT( f2)⟩. In §7 we will learn how to find a Gröbner
basis of I.

Next, consider the ideal J = ⟨g1, g2⟩ = ⟨x+z, y−z⟩. We claim that g1 and g2 form
a Gröbner basis using lex order in R[x, y, z]. Thus, we must show that the leading
term of every nonzero element of J lies in the ideal ⟨LT(g1), LT(g2)⟩ = ⟨x, y⟩. By
Lemma 2 of §4, this is equivalent to showing that the leading term of any nonzero
element of J is divisible by either x or y.

To prove this, consider any f = Ag1 + Bg2 ∈ J. Suppose on the contrary that f
is nonzero and LT( f ) is divisible by neither x nor y. Then by the definition of lex
order, f must be a polynomial in z alone. However, f vanishes on the linear subspace
L = V(x+z, y−z) ⊆ R3 since f ∈ J. It is easy to check that (x, y, z) = (−t, t, t) ∈ L
for any real number t. The only polynomial in z alone that vanishes at all of these
points is the zero polynomial, which is a contradiction. It follows that ⟨g1, g2⟩ is a
Gröbner basis for J. In §6, we will learn a more systematic way to detect when a
basis is a Gröbner basis.

Note, by the way, that the generators for the ideal J come from a row echelon
matrix of coefficients: (

1 0 1
0 1 −1

)
.

This is no accident: for ideals generated by linear polynomials, a Gröbner basis
for lex order is determined by the row echelon form of the matrix made from the
coefficients of the generators (see Exercise 9).

Gröbner bases for ideals in polynomial rings were introduced by B. Buchberger
in his PhD thesis BUCHBERGER (1965) and named by him in honor of W. Gröbner
(1899–1980), Buchberger’s thesis adviser. The closely related concept of “standard
bases” for ideals in power series rings was discovered independently by H. Hiron-
aka in HIRONAKA (1964). As we will see later in this chapter, Buchberger also
developed the fundamental algorithms for working with Gröbner bases. Sometimes
one sees the alternate spelling “Groebner bases,” since this is how the command is
spelled in some computer algebra systems.

We conclude this section with two applications of the Hilbert Basis Theorem.
The first is an algebraic statement about the ideals in k[x1, . . . , xn]. An ascending
chain of ideals is a nested increasing sequence:

I1 ⊆ I2 ⊆ I3 ⊆ · · · .

For example, the sequence

(1) ⟨x1⟩ ⊆ ⟨x1, x2⟩ ⊆ · · · ⊆ ⟨x1, . . . , xn⟩

forms a (finite) ascending chain of ideals. If we try to extend this chain by including
an ideal with further generator(s), one of two alternatives will occur. Consider the
ideal ⟨x1, . . . , xn, f ⟩ where f ∈ k[x1, . . . , xn]. If f ∈ ⟨x1, . . . , xn⟩, then we obtain
⟨x1, . . . , xn⟩ again and nothing has changed. If, on the other hand, f /∈ ⟨x1, . . . , xn⟩,
then we claim ⟨x1, . . . , xn, f ⟩ = k[x1, . . . , xn]. We leave the proof of this claim to
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the reader (Exercise 11 of this section). As a result, the ascending chain (1) can
be continued in only two ways, either by repeating the last ideal ad infinitum or
by appending k[x1, . . . , xn] and then repeating it ad infinitum. In either case, the
ascending chain will have “stabilized” after a finite number of steps, in the sense
that all the ideals after that point in the chain will be equal. Our next result shows
that the same phenomenon occurs in every ascending chain of ideals in k[x1, . . . , xn].

Theorem 7 (The Ascending Chain Condition). Let

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

be an ascending chain of ideals in k[x1, . . . , xn]. Then there exists an N ≥ 1 such
that

IN = IN+1 = IN+2 = · · · .

Proof. Given the ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · · , consider the set I =
⋃∞

i=1 Ii.
We begin by showing that I is also an ideal in k[x1, . . . , xn]. First, 0 ∈ I since 0 ∈ Ii
for every i. Next, if f , g ∈ I, then, by definition, f ∈ Ii, and g ∈ Ij for some i
and j (possibly different). However, since the ideals Ii form an ascending chain, if
we relabel so that i ≤ j, then both f and g are in Ij. Since Ij is an ideal, the sum
f + g ∈ Ij, hence, ∈ I. Similarly, if f ∈ I and r ∈ k[x1, . . . , xn], then f ∈ Ii for some
i, and r · f ∈ Ii ⊆ I. Hence, I is an ideal.

By the Hilbert Basis Theorem, the ideal I must have a finite generating set: I =
⟨ f1, . . . , fs⟩. But each of the generators is contained in some one of the Ij, say fi ∈ Iji
for some ji, i = 1, . . . , s. We take N to be the maximum of the ji. Then by the
definition of an ascending chain fi ∈ IN for all i. Hence we have

I = ⟨ f1, . . . , fs⟩ ⊆ IN ⊆ IN+1 ⊆ · · · ⊆ I.

As a result the ascending chain stabilizes with IN . All the subsequent ideals in the
chain are equal. !

The statement that every ascending chain of ideals in k[x1, . . . , xn] stabilizes is
often called the ascending chain condition, or ACC for short. In Exercise 12 of
this section, you will show that if we assume the ACC as hypothesis, then it follows
that every ideal is finitely generated. Thus, the ACC is actually equivalent to the
conclusion of the Hilbert Basis Theorem. We will use the ACC in a crucial way in
§7, when we give Buchberger’s algorithm for constructing Gröbner bases. We will
also use the ACC in Chapter 4 to study the structure of affine varieties.

Our second consequence of the Hilbert Basis Theorem will be geometric. Up to
this point, we have considered affine varieties as the sets of solutions of specific
finite sets of polynomial equations:

V( f1, . . . , fs) = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0 for all i}.

The Hilbert Basis Theorem shows that, in fact, it also makes sense to speak of the
affine variety defined by an ideal I ⊆ k[x1, . . . , xn].
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Definition 8. Let I ⊆ k[x1, . . . , xn] be an ideal. We will denote by V(I) the set

V(I) = {(a1, . . . , an) ∈ kn | f (a1, . . . , an) = 0 for all f ∈ I}.

Even though a nonzero ideal I always contains infinitely many different polyno-
mials, the set V(I) can still be defined by a finite set of polynomial equations.

Proposition 9. V(I) is an affine variety. In particular, if I = ⟨ f1, . . . , fs⟩, then
V(I) = V( f1, . . . , fs).

Proof. By the Hilbert Basis Theorem, I = ⟨ f1, . . . , fs⟩ for some finite generating
set. We claim that V(I) = V( f1, . . . , fs). First, since the fi ∈ I, if f (a1, . . . , an) = 0
for all f ∈ I, then fi(a1, . . . , an) = 0, so V(I) ⊆ V( f1, . . . , fs). On the other hand,
let (a1, . . . , an) ∈ V( f1, . . . , fs) and let f ∈ I. Since I = ⟨ f1, . . . , fs⟩, we can write

f =
s∑

i=1

hi fi

for some hi ∈ k[x1, . . . , xn]. But then

f (a1, . . . , an) =
s∑

i=1

hi(a1, . . . , an) fi(a1, . . . , an)

=
s∑

i=1

hi(a1, . . . , an) · 0 = 0.

Thus, V( f1, . . . , fs) ⊆ V(I) and, hence, they are equal. !
The most important consequence of this proposition is that varieties are de-

termined by ideals. For example, in Chapter 1, we proved that V( f1, . . . , fs) =
V(g1, . . . , gt) whenever ⟨ f1, . . . , fs⟩ = ⟨g1, . . . , gt⟩ (see Proposition 4 of Chapter 1,
§4). This proposition is an immediate corollary of Proposition 9. The relation be-
tween ideals and varieties will be explored in more detail in Chapter 4.

In the exercises, we will exploit Proposition 9 by showing that by using the right
generating set for an ideal I, we can gain a better understanding of the variety V(I).

EXERCISES FOR §5

1. Let I = ⟨g1, g2, g3⟩ ⊆ R[x, y, z], where g1 = xy2 − xz + y, g2 = xy − z2 and
g3 = x − yz4. Using the lex order, give an example of g ∈ I such that LT(g) /∈
⟨LT(g1), LT(g2), LT(g3)⟩.

2. For the ideals and generators given in Exercises 5, 6, and 7 of §3, show that LT(I) is
strictly bigger than ⟨LT( f1), . . . , LT( fs)⟩. Hint: This should follow directly from what
you did in those exercises.

3. To generalize the situation of Exercises 1 and 2, suppose that I = ⟨ f1, . . . , fs⟩ is an ideal
such that ⟨LT( f1), . . . , LT( fs)⟩ is strictly smaller than ⟨LT(I)⟩.
a. Prove that there is some f ∈ I whose remainder on division by f1, . . . , fs is nonzero.

Hint: First show that LT( f ) /∈ ⟨LT( f1), . . . , LT( fs)⟩ for some f ∈ I. Then use
Lemma 2 of §4.
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b. What does part (a) say about the ideal membership problem?
c. How does part (a) relate to the conjecture you were asked to make in Exercise 8 of

§3?
4. If I ⊆ k[x1, . . . , xn] is an ideal, prove that ⟨LT(g) | g ∈ I\{0}⟩ = ⟨LM(g) | g ∈ I\{0}⟩.
5. Let I be an ideal of k[x1, . . . , xn]. Show that G = {g1, . . . , gt} ⊆ I is a Gröbner basis of

I if and only if the leading term of any element of I is divisible by one of the LT(gi).
6. Corollary 6 asserts that a Gröbner basis is a basis, i.e., if G = {g1, . . . , gt} ⊆ I satisfies

⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩, then I = ⟨g1, . . . , gt⟩. We gave one proof of this in the
proof of Theorem 4. Complete the following sketch to give a second proof. If f ∈ I, then
divide f by (g1, . . . , gt). At each step of the division algorithm, the leading term of the
polynomial under the division will be in ⟨LT(I)⟩ and, hence, will be divisible by one of
the LT(gi). Hence, terms are never added to the remainder, so that f =

∑t
i=1 ai gi when

the algorithm terminates.
7. If we use grlex order with x > y > z, is {x4y2 − z5, x3y3 − 1, x2y4 − 2z} a Gröbner basis

for the ideal generated by these polynomials? Why or why not?
8. Repeat Exercise 7 for I = ⟨x− z2, y− z3⟩ using the lex order. Hint: The difficult part of

this exercise is to determine exactly which polynomials are in ⟨LT(I)⟩.
9. Let A = (aij) be an m × n matrix with real entries in row echelon form and let J ⊆

R[x1, . . . , xn] be an ideal generated by the linear polynomials
∑n

j=1 aijxj for 1 ≤ i ≤ m.
Show that the given generators form a Gröbner basis for J with respect to a suitable
lexicographic order. Hint: Order the variables corresponding to the leading 1’s before
the other variables.

10. Let I ⊆ k[x1, . . . , xn] be a principal ideal (that is, I is generated by a single f ∈ I—
see §5 of Chapter 1). Show that any finite subset of I containing a generator for I is a
Gröbner basis for I.

11. Let f ∈ k[x1, . . . , xn]. If f /∈ ⟨x1, . . . , xn⟩, then show ⟨x1, . . . , xn, f ⟩ = k[x1, . . . , xn].
12. Show that if we take as hypothesis that every ascending chain of ideals in k[x1, . . . , xn]

stabilizes, then the conclusion of the Hilbert Basis Theorem is a consequence. Hint: Ar-
gue by contradiction, assuming that some ideal I ⊆ k[x1, . . . , xn] has no finite generating
set. The arguments you gave in Exercise 12 should not make any special use of proper-
ties of polynomials. Indeed, it is true that in any commutative ring R, the following two
statements are equivalent:
(i) Every ideal I ⊆ R is finitely generated.
(ii) Every ascending chain of ideals of R stabilizes.

13. Let
V1 ⊇ V2 ⊇ V3 ⊇ · · ·

be a descending chain of affine varieties. Show that there is some N ≥ 1 such that
VN = VN+1 = VN+2 = · · · . Hint: Use the ACC and Exercise 14 of Chapter 1, §4.

14. Let f1, f2, . . . ∈ k[x1, . . . , xn] be an infinite collection of polynomials. Prove that there is
an integer N such that fi ∈ ⟨ f1, . . . , fN⟩ for all i ≥ N + 1. Hint: Use f1, f2, . . . to create
an ascending chain of ideals.

15. Given polynomials f1, f2, . . . ∈ k[x1, . . . , xn], let V( f1, f2, . . .) ⊆ kn be the solutions of
the infinite system of equations f1 = f2 = · · · = 0. Show that there is some N such that
V( f1, f2, . . .) = V( f1, . . . , fN).

16. In Chapter 1, §4, we defined the ideal I(V) of a variety V ⊆ kn. In this section, we
defined the variety of any ideal (see Definition 8). In particular, this means that V(I(V))
is a variety. Prove that V(I(V)) = V . Hint: See the proof of Lemma 7 of Chapter 1, §4.

17. Consider the variety V = V(x2 − y, y + x2 − 4) ⊆ C2. Note that V = V(I), where
I = ⟨x2 − y, y+ x2 − 4⟩.
a. Prove that I = ⟨x2 − y, x2 − 2⟩.
b. Using the basis from part (a), prove that V(I) = {(±

√
2, 2)}.
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One reason why the second basis made V easier to understand was that x2 − 2 could
be factored. This implied that V “split” into two pieces. See Exercise 18 for a general
statement.

18. When an ideal has a basis where some of the elements can be factored, we can use the
factorization to help understand the variety.
a. Show that if g ∈ k[x1, . . . , xn] factors as g = g1g2, then for any f , we have V( f , g) =

V( f , g1) ∪ V( f , g2).
b. Show that in R3,V(y− x2, xz− y2) = V(y− x2, xz− x4).
c. Use part (a) to describe and/or sketch the variety from part (b).

§6 Properties of Gröbner Bases

As shown in §5, every nonzero ideal I ⊆ k[x1, . . . , xn] has a Gröbner basis. In this
section, we will study the properties of Gröbner bases and learn how to detect when
a given basis is a Gröbner basis. We begin by showing that the undesirable behavior
of the division algorithm in k[x1, . . . , xn] noted in §3 does not occur when we divide
by the elements of a Gröbner basis.

Let us first prove that the remainder is uniquely determined when we divide by a
Gröbner basis.

Proposition 1. Let I ⊆ k[x1, . . . , xn] be an ideal and let G = {g1, . . . , gt} be a
Gröbner basis for I. Then given f ∈ k[x1, . . . , xn], there is a unique r ∈ k[x1, . . . , xn]
with the following two properties:
(i) No term of r is divisible by any of LT(g1), . . . , LT(gt).
(ii) There is g ∈ I such that f = g+ r.
In particular, r is the remainder on division of f by G no matter how the elements of
G are listed when using the division algorithm.

Proof. The division algorithm gives f = q1g1 + · · · + qtgt + r, where r satisfies
(i). We can also satisfy (ii) by setting g = q1g1 + · · · + qtgt ∈ I. This proves the
existence of r.

To prove uniqueness, suppose f = g+r = g′+r′ satisfy (i) and (ii). Then r−r′ =
g′ − g ∈ I, so that if r ̸= r′, then LT(r − r′) ∈ ⟨LT(I)⟩ = ⟨LT(g1), . . . , LT(gt)⟩.
By Lemma 2 of §4, it follows that LT(r − r′) is divisible by some LT(gi). This is
impossible since no term of r, r′ is divisible by one of LT(g1), . . . , LT(gt). Thus r−r′

must be zero, and uniqueness is proved.
The final part of the proposition follows from the uniqueness of r. !
The remainder r is sometimes called the normal form of f , and its uniqueness

properties will be explored in Exercises 1 and 4. In fact, Gröbner bases can be char-
acterized by the uniqueness of the remainder—see Theorem 5.35 of BECKER and
WEISPFENNING (1993).

Although the remainder r is unique, even for a Gröbner basis, the “quotients” qi
produced by the division algorithm f = q1g1 + · · ·+ qtgt + r can change if we list
the generators in a different order. See Exercise 2 for an example.

As a corollary of Proposition 1, we get the following criterion for when a given
polynomial lies in an ideal.
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Corollary 2. Let G = {g1, . . . , gt} be a Gröbner basis for an ideal I ⊆ k[x1, . . . , xn]
and let f ∈ k[x1, . . . , xn]. Then f ∈ I if and only if the remainder on division of f by
G is zero.

Proof. If the remainder is zero, then we have already observed that f ∈ I. Con-
versely, given f ∈ I, then f = f + 0 satisfies the two conditions of Proposition 1. It
follows that 0 is the remainder of f on division by G. !

The property given in Corollary 2 is sometimes taken as the definition of a Gröb-
ner basis, since one can show that it is true if and only if ⟨LT(g1), . . . , LT(gt)⟩ =
⟨LT(I)⟩ (see Exercise 3). For this and similar conditions equivalent to being a Gröb-
ner basis, see Proposition 5.38 of BECKER and WEISPFENNING (1993).

Using Corollary 2, we get an algorithm for solving the ideal membership problem
from §1, provided that we know a Gröbner basis G for the ideal in question—we
only need to compute a remainder with respect to G to determine whether f ∈ I. In
§7, we will learn how to find Gröbner bases, and we will give a complete solution
of the ideal membership problem in §8.

We will use the following notation for the remainder.

Definition 3. We will write f F for the remainder on division of f by the ordered
s-tuple F = ( f1, . . . , fs). If F is a Gröbner basis for ⟨ f1, . . . , fs⟩, then we can regard
F as a set (without any particular order) by Proposition 1.

For instance, with F = (x2y − y2, x4y2 − y2) ⊆ k[x, y], using the lex order, we
have

x5y
F
= xy3

since the division algorithm yields

x5y = (x3 + xy)(x2y− y2) + 0 · (x4y2 − y2) + xy3.

We will next discuss how to tell whether a given generating set of an ideal is
a Gröbner basis. As we have indicated, the “obstruction” to { f1, . . . , fs} being a
Gröbner basis is the possible occurrence of polynomial combinations of the fi whose
leading terms are not in the ideal generated by the LT( fi). One way this can occur is
if the leading terms in a suitable combination

axα fi − bxβ fj

cancel, leaving only smaller terms. On the other hand, axα fi − bxβ fj ∈ I, so its
leading term is in ⟨LT(I)⟩. You should check that this is what happened in Example 2
of §5. To study this cancellation phenomenon, we introduce the following special
combinations.

Definition 4. Let f , g ∈ k[x1, . . . , xn] be nonzero polynomials.
(i) If multideg( f ) = α and multideg(g) = β, then let γ = (γ1, . . . , γn), where

γi = max(αi,βi) for each i. We call xγ the least common multiple of LM( f )
and LM(g), written xγ = lcm(LM( f ), LM(g)).
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(ii) The S-polynomial of f and g is the combination

S( f , g) =
xγ

LT( f )
· f − xγ

LT(g)
· g.

(Note that we are inverting the leading coefficients here as well.)

For example, let f = x3y2 − x2y3 + x and g = 3x4y+ y2 in R[x, y] with the grlex
order. Then γ = (4, 2) and

S( f , g) =
x4y2

x3y2
· f − x4y2

3x4y
· g

= x · f − (1/3) · y · g
= −x3y3 + x2 − (1/3)y3.

An S-polynomial S( f , g) is “designed” to produce cancellation of leading terms.
See Exercise 7 for a precise description of the cancellation that occurs.

The following lemma shows that every cancellation of leading terms among
polynomials of the same multidegree comes from the cancellation that occurs for
S-polynomials.

Lemma 5. Suppose we have a sum
∑s

i=1 pi, where multideg(pi) = δ ∈ Zn
≥0 for

all i. If multideg(
∑s

i=1 pi) < δ, then
∑s

i=1 pi is a linear combination, with coef-
ficients in k, of the S-polynomials S(pj, pl) for 1 ≤ j, l ≤ s. Furthermore, each
S(pj, pl) has multidegree< δ.

Proof. Let di = LC(pi), so that dixδ is the leading term of pi. Since the sum
∑s

i=1 pi
has strictly smaller multidegree, it follows easily that

∑s
i=1 di = 0.

Next observe that since pi and pj have the same leading monomial, their
S-polynomial reduces to

(1) S(pi, pj) =
1
di
pi −

1
dj
pj.

It follows that

(2)

s−1∑

i=1

diS(pi, ps) = d1
( 1
d1

p1 −
1
ds
ps
)
+ d2

( 1
d2

p2 −
1
ds
ps
)
+ · · ·

= p1 + p2 + · · ·+ ps−1 −
1
ds
(d1 + · · ·+ ds−1)ps.

However,
∑s

i=1 di = 0 implies d1 + · · ·+ ds−1 = −ds, so that (2) reduces to

s−1∑

i=1

diS(pi, ps) = p1 + · · ·+ ps−1 + ps.
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Thus,
∑s

i=1 pi is a sum of S-polynomials of the desired form, and equation (1) makes
it easy to see that S(pi, pj) has multidegree< δ. The lemma is proved. !

When p1, . . . , ps satisfy the hypothesis of Lemma 5, we get an equation of the
form

s∑

i=1

pi =
∑

j,l

cjlS(pj, pl).

Let us consider where the cancellation occurs. In the sum on the left, every summand
pi has multidegree δ, so the cancellation occurs only after adding them up. However,
in the sum on the right, each summand cjlS(pj, pl) has multidegree < δ, so that the
cancellation has already occurred. Intuitively, this means that all cancellation can be
accounted for by S-polynomials.

Using S-polynomials and Lemma 5, we can now prove the following criterion of
Buchberger for when a basis of an ideal is a Gröbner basis.

Theorem 6 (Buchberger’s Criterion). Let I be a polynomial ideal. Then a basis
G = {g1, . . . , gt} of I is a Gröbner basis of I if and only if for all pairs i ̸= j, the
remainder on division of S(gi, gj) by G (listed in some order) is zero.

Proof. ⇒: IfG is a Gröbner basis, then since S(gi, gj) ∈ I, the remainder on division
by G is zero by Corollary 2.

⇐: Let f ∈ I be nonzero. We will show that LT( f ) ∈ ⟨LT(g1), . . . , LT(gt)⟩ as
follows. Write

f =
t∑

i=1

higi, hi ∈ k[x1, . . . , xn].

From Lemma 8 of §2, it follows that

(3) multideg( f ) ≤ max(multideg(higi) | higi ̸= 0).

The strategy of the proof is to pick the most efficient representation of f , meaning
that among all expressions f =

∑t
i=1 higi, we pick one for which

δ = max(multideg(higi) | higi ̸= 0)

is minimal. The minimal δ exists by the well-ordering property of our monomial
ordering. By (3), it follows that multideg( f ) ≤ δ.

If equality occurs, then multideg( f ) = multideg(higi) for some i. This easily
implies that LT( f ) is divisible by LT(gi). Then LT( f ) ∈ ⟨LT(g1), . . . , LT(gt)⟩, which
is what we want to prove.

It remains to consider the case when the minimal δ satisfies multideg( f ) < δ.
We will use S(gi, gj)

G
= 0 for i ̸= j to find a new expression for f that decreases δ.

This will contradict the minimality of δ and complete the proof.
Given an expression f =

∑t
i=1 higi with minimal δ, we begin by isolating the

part of the sum where multidegree δ occurs:
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(4)

f =
∑

multideg(higi)=δ

higi +
∑

multideg(higi)<δ

higi

=
∑

multideg(higi)=δ

LT(hi)gi +
∑

multideg(higi)=δ

(hi − LT(hi))gi +
∑

multideg(higi)<δ

higi.

The monomials appearing in the second and third sums on the second line all have
multidegree< δ. Then multideg( f ) < δ means that the first sum on the second line
also has multidegree< δ.

The key to decreasing δ is to rewrite the first sum in two stages: use Lemma 5
to rewrite the first sum in terms of S-polynomials, and then use S(gi, gj)

G
= 0 to

rewrite the S-polynomials without cancellation.
To express the first sum on the second line of (4) using S-polynomials, note that

(5)
∑

multideg(higi)=δ

LT(hi)gi

satisfies the hypothesis of Lemma 5 since each pi = LT(hi)gi has multidegree δ
and the sum has multidegree< δ. Hence, the first sum is a linear combination with
coefficients in k of the S-polynomials S(pi, pj). In Exercise 8, you will verify that

S(pi, pj) = xδ−γij S(gi, gj),

where xγij = lcm(LM(gi), LM(gj)). It follows that the first sum (5) is a linear com-
bination of xδ−γijS(gi, gj) for certain pairs (i, j).

Consider one of these S-polynomials S(gi, gj). Since S(gi, gj)
G
= 0, the division

algorithm (Theorem 3 of §3) gives an expression

(6) S(gi, gj) =
t∑

l=1

Algl,

where Al ∈ k[x1, . . . , xn] and

(7) multideg(Algl) ≤ multideg(S(gi, gj))

when Algl ̸= 0. Now multiply each side of (6) by xδ−γij to obtain

(8) xδ−γij S(gi, gj) =
t∑

l=1

Blgl,

where Bl = xδ−γijAl. Then (7) implies that when Blgl ̸= 0, we have

(9) multideg(Blgl) ≤ multideg(xδ−γij S(gi, gj)) < δ

since LT(S(gi, gj)) < lcm(LM(gi), LM(gj)) = xγij by Exercise 7.



88 Chapter 2 Gröbner Bases

It follows that the first sum (5) is a linear combination of certain xδ−γij S(gi, gj),
each of which satisfies (8) and (9). Hence we can write the first sum as

(10)
∑

multideg(higi)=δ

LT(hi)gi =
t∑

l=1

B̃lgl

with the property that when B̃lgl ̸= 0, we have

(11) multideg(B̃lgl) < δ.

Substituting (10) into the second line of (4) gives an expression for f as a polynomial
combination of the gi’s where all terms have multidegree< δ. This contradicts the
minimality of δ and completes the proof of the theorem. !

The Buchberger criterion given in Theorem 6 is one of the key results about
Gröbner bases. We have seen that Gröbner bases have many nice properties, but, so
far, it has been difficult to determine if a basis of an ideal is a Gröbner basis (the
examples we gave in §5 were rather trivial). Using the Buchberger criterion, also
called the S-pair criterion, it is easy to show whether a given basis is a Gröbner
basis. Furthermore, in §7, we will see that the S-pair criterion also leads naturally to
an algorithm for computing Gröbner bases.

As an example of how to use Theorem 6, consider the ideal I = ⟨y− x2, z− x3⟩
of the twisted cubic in R3. We claim that G = {y − x2, z − x3} is a Gröbner basis
for lex order with y > z > x. To prove this, consider the S-polynomial

S(y− x2, z− x3) =
yz
y
(y− x2)− yz

z
(z− x3) = −zx2 + yx3.

Using the division algorithm, one finds that

−zx2 + yx3 = x3 · (y− x2) + (−x2) · (z− x3) + 0,

so that S(y− x2, z− x3)
G

= 0. Thus, by Theorem 6, G is a Gröbner basis for I.
You can also check that G is not a Gröbner basis for lex order with x > y > z (see
Exercise 9).

EXERCISES FOR §6

1. Show that Proposition 1 can be strengthened slightly as follows. Fix a monomial order-
ing and let I ⊆ k[x1, . . . , xn] be an ideal. Suppose that f ∈ k[x1, . . . , xn].
a. Show that f can be written in the form f = g + r, where g ∈ I and no term of r is

divisible by any element of LT(I).
b. Given two expressions f = g+ r = g′ + r′ as in part (a), prove that r = r′. Thus, r

and g are uniquely determined.
This result shows once a monomial order is fixed, we can define a unique “remainder of
f on division by I.” We will exploit this idea in Chapter 5.

2. In §5, we showed that G = {x + z, y − z} is a Gröbner basis for lex order. Let us use
this basis to study the uniqueness of the division algorithm.
a. Divide xy by x+ z, y− z.
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b. Now interchange the two polynomials and divide xy by y− z, x+ z.
You should get the same remainder (as predicted by Proposition 1), but the “quotients”
should be different for the two divisions. This shows that the uniqueness of the remainder
is the best one can hope for.

3. In Corollary 2, we showed that if I = ⟨g1, . . . , gt⟩ and if G = {g1, . . . , gt} is a Gröbner
basis for I, then f G = 0 for all f ∈ I. Prove the converse of this statement. Namely, show
that if G is a basis for I with the property that f G = 0 for all f ∈ I, then G is a Gröbner
basis for I.

4. Let G and G′ be Gröbner bases for an ideal I with respect to the same monomial order
in k[x1, . . . , xn]. Show that f G = f G

′
for all f ∈ k[x1, . . . , xn]. Hence, the remainder on

division by a Gröbner basis is even independent of which Gröbner basis we use, as long
as we use one particular monomial order. Hint: See Exercise 1.

5. Compute S( f , g) using the lex order.
a. f = 4x2z− 7y2, g = xyz2 + 3xz4.
b. f = x4y− z2, g = 3xz2 − y.
c. f = x7y2z+ 2ixyz, g = 2x7y2z + 4.
d. f = xy+ z3, g = z2 − 3z.

6. Does S( f , g) depend on which monomial order is used? Illustrate your assertion with
examples.

7. Prove that multideg(S( f , g)) < γ, where xγ = lcm(LM( f ), LM(g)). Explain why this
inequality is a precise version of the claim that S-polynomials are designed to produce
cancellation.

8. As in the proof of Theorem 6, suppose that cixα(i)gi and cjxα(j)gj have multidegree δ.
Prove that

S(xα(i)gi, x
α(j)gj) = xδ−γij S(gi, gj),

where xγij = lcm(LM(gi), LM(gj)).
9. Show that {y− x2, z− x3} is not a Gröbner basis for lex order with x > y > z.
10. Using Theorem 6, determine whether the following sets G are Gröbner bases for the

ideal they generate. You may want to use a computer algebra system to compute the
S-polynomials and remainders.
a. G = {x2 − y, x3 − z} for grlex order.
b. G = {x2 − y, x3 − z} for invlex order (see Exercise 6 of §2).
c. G = {xy2 − xz+ y, xy− z2, x− yz4} for lex order.

11. Let f , g ∈ k[x1, . . . , xn] be polynomials such that LM( f ) and LM(g) are relatively prime
monomials and LC( f ) = LC(g) = 1. Assume that f or g has at least two terms.
a. Show that S( f , g) = −(g− LT(g))f + ( f − LT( f ))g.
b. Deduce that S( f , g) ̸= 0 and that the leading monomial of S( f , g) is a multiple of

either LM( f ) or LM(g) in this case.
12. Let f , g ∈ k[x1, . . . , xn] be nonzero and xα, xβ be monomials. Verify that

S(xαf , xβg) = xγS( f , g)

where

xγ =
lcm(xαLM( f ), xβLM(g))

lcm(LM( f ), LM(g))
.

Be sure to prove that xγ is a monomial. Also explain how this relates to Exercise 8.
13. Let I ⊆ k[x1, . . . , xn] be an ideal, and let G be a Gröbner basis of I.

a. Show that f G = gG if and only if f − g ∈ I. Hint: See Exercise 1.
b. Use Exercise 1 to show that

f + gG = f G + gG.
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c. Deduce that
fgG = f G · gG

G
.

We will return to an interesting consequence of these facts in Chapter 5.

§7 Buchberger’s Algorithm

In Corollary 6 of §5, we saw that every ideal in k[x1, . . . , xn] has a Gröbner basis.
Unfortunately, the proof given was nonconstructive in the sense that it did not tell
us how to produce the Gröbner basis. So we now turn to the question: given an ideal
I ⊆ k[x1, . . . , xn], how can we actually construct a Gröbner basis for I? To see the
main ideas behind the method we will use, we return to the ideal of Example 2 from
§5 and proceed as follows.

Example 1. Consider the ring Q[x, y] with grlex order, and let I = ⟨ f1, f2⟩ =
⟨x3 − 2xy, x2y − 2y2 + x⟩. Recall that { f1, f2} is not a Gröbner basis for I since
LT(S( f1, f2)) = −x2 /∈ ⟨LT( f1), LT( f2)⟩.

To produce a Gröbner basis, one natural idea is to try first to extend the original
generating set to a Gröbner basis by adding more polynomials in I. In one sense,
this adds nothing new, and even introduces an element of redundancy. However, the
extra information we get from a Gröbner basis more than makes up for this.

What new generators should we add? By what we have said about the
S-polynomials in §6, the following should come as no surprise. We have S( f1, f2) =
−x2 ∈ I, and its remainder on division by F = ( f1, f2) is −x2, which is nonzero.
Hence, we should include that remainder in our generating set, as a new generator
f3 = −x2. If we set F = ( f1, f2, f3), we can use Theorem 6 of §6 to test if this new
set is a Gröbner basis for I. We compute

S( f1, f2) = f3, so

S( f1, f2)
F
= 0,

S( f1, f3) = (x3 − 2xy)− (−x)(−x2) = −2xy, but

S( f1, f3)
F
= −2xy ̸= 0.

Thus, we must add f4 = −2xy to our generating set. If we let F = ( f1, f2, f3, f4),
then by Exercise 12 we have

S( f1, f2)
F
= S( f1, f3)

F
= 0,

S( f1, f4) = y(x3 − 2xy)− (−1/2)x2(−2xy) = −2xy2 = yf4, so

S( f1, f4)
F
= 0,

S( f2, f3) = (x2y− 2y2 + x)− (−y)(−x2) = −2y2 + x, but

S( f2, f3)
F
= −2y2 + x ̸= 0.
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Hence, we must also add f5 = −2y2 + x to our generating set. Setting F =
( f1, f2, f3, f4, f5), one can compute that

S( fi, fj)
F
= 0 for all 1 ≤ i < j ≤ 5.

By Theorem 6 of §6, it follows that a grlex Gröbner basis for I is given by

{ f1, f2, f3, f4, f5} = {x3 − 2xy, x2y− 2y2 + x,−x2,−2xy,−2y2 + x}.

The above example suggests that in general, one should try to extend a basis F to
a Gröbner basis by successively adding nonzero remainders S( fi, fj)

F
to F. This idea

is a natural consequence of the S-pair criterion from §6 and leads to the following
algorithm due to Buchberger for computing a Gröbner basis.

Theorem 2 (Buchberger’s Algorithm). Let I = ⟨ f1, . . . , fs⟩ ̸= {0} be a polyno-
mial ideal. Then a Gröbner basis for I can be constructed in a finite number of steps
by the following algorithm:

Input : F = ( f1, . . . , fs)

Output : a Gröbner basis G = (g1, . . . , gt) for I, with F ⊆ G

G := F

REPEAT

G′ := G

FOR each pair {p, q}, p ̸= q in G′ DO

r := S(p, q)
G′

IF r ̸= 0 THEN G := G ∪ {r}
UNTIL G = G′

RETURN G

Proof. We begin with some frequently used notation. IfG = {g1, . . . , gt}, then ⟨G⟩
and ⟨LT(G)⟩ will denote the following ideals:

⟨G⟩ = ⟨g1, . . . , gt⟩,
⟨LT(G)⟩ = ⟨LT(g1), . . . , LT(gt)⟩.

Turning to the proof of the theorem, we first show thatG ⊆ I holds at every stage of
the algorithm. This is true initially, and whenever we enlargeG, we do so by adding

the remainder r = S(p, q)
G′

for p, q ∈ G′ ⊆ G. Thus, if G ⊆ I, then p, q and, hence,
S(p, q) are in I, and since we are dividing by G′ ⊆ I, we get G ∪ {r} ⊆ I. We also
note that G contains the given basis F of I, so that G is actually a basis of I.

The algorithm terminates when G = G′, which means that r = S(p, q)
G′

= 0 for
all p, q ∈ G. Hence G is a Gröbner basis of ⟨G⟩ = I by Theorem 6 of §6.
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It remains to prove that the algorithm terminates.We need to consider what hap-
pens after each pass through the main loop. The set G consists of G′ (the old G)
together with the nonzero remainders of S-polynomials of elements of G′. Then

(1) ⟨LT(G′)⟩ ⊆ ⟨LT(G)⟩

since G′ ⊆ G. Furthermore, if G′ ̸= G, we claim that ⟨LT(G′)⟩ is strictly smaller
than ⟨LT(G)⟩. To see this, suppose that a nonzero remainder r of an S-polynomial has
been adjoined to G. Since r is a remainder on division by G′, LT(r) is not divisible
by the leading terms of elements of G′, and thus LT(r) /∈ ⟨LT(G′)⟩ by Lemma 2
of §4. Yet LT(r) ∈ ⟨LT(G)⟩, which proves our claim.

By (1), the ideals ⟨LT(G′)⟩ from successive iterations of the loop form an ascend-
ing chain of ideals in k[x1, . . . , xn]. Thus, the ACC (Theorem 7 of §5) implies that af-
ter a finite number of iterations the chain will stabilize, so that ⟨LT(G′)⟩ = ⟨LT(G)⟩
must happen eventually. By the previous paragraph, this implies that G′ = G, so
that the algorithm must terminate after a finite number of steps. !

Taken together, the Buchberger criterion (Theorem 6 of §6) and the Buchberger
algorithm (Theorem 2 above) provide an algorithmic basis for the theory of Gröbner
bases. These contributions of Buchberger are central to the development of the sub-
ject. In §8, we will get our first hints of what can be done with these methods, and a
large part of the rest of the book will be devoted to exploring their ramifications.

We should also point out the algorithm presented in Theorem 2 is only a rudi-
mentary version of the Buchberger algorithm. It was chosen for what we hope will
be its clarity for the reader, but it is not a very practical way to do the computation.

Note (as a first improvement) that once a remainder S(p, q)
G′

= 0, that remainder
will stay zero even if we adjoin further elements to the generating setG′. Thus, there
is no reason to recompute those remainders on subsequent passes through the main
loop. Indeed, if we add our new generators fj one at a time, the only remainders that

need to be checked are S( fi, fj)
G′

, where i ≤ j − 1. It is a good exercise to revise
the algorithm to take this observation into account. Other improvements of a deeper
nature can also be made, but we will postpone considering them until §10.

Gröbner bases computed using the algorithm of Theorem 2 are often bigger than
necessary. We can eliminate some unneeded generators by using the following fact.

Lemma 3. Let G be a Gröbner basis of I ⊆ k[x1, . . . , xn]. Let p ∈ G be a polynomial
such that LT(p) ∈ ⟨LT(G \ {p})⟩. Then G \ {p} is also a Gröbner basis for I.

Proof. We know that ⟨LT(G)⟩ = ⟨LT(I)⟩. If LT(p) ∈ ⟨LT(G \ {p})⟩, then we have
⟨LT(G \ {p})⟩ = ⟨LT(G)⟩. By definition, it follows that G \ {p} is also a Gröbner
basis for I. !

By adjusting constants to make all leading coefficients equal to 1 and removing
any p with LT(p) ∈ ⟨LT(G \ {p})⟩ from G, we arrive at what we will call a minimal
Gröbner basis. We can construct a minimal Gröbner basis for a given nonzero ideal
by applying the algorithm of Theorem 2 and then using Lemma 3 to eliminate any
unneeded generators that might have been included.
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To illustrate this procedure, we return to the ideal I studied in Example 1. Using
grlex order, we found the Gröbner basis

f1 = x3 − 2xy,

f2 = x2y− 2y2 + x,

f3 = −x2,

f4 = −2xy,

f5 = −2y2 + x.

Since some of the leading coefficients are different from 1, the first step is to
multiply the generators by suitable constants to make this true. Then note that
LT( f1) = x3 = −x · LT( f3). By Lemma 3, we can dispense with f1 in the mini-
mal Gröbner basis. Similarly, since LT( f2) = x2y = −(1/2)x · LT( f4), we can also
eliminate f2. There are no further cases where the leading term of a generator divides
the leading term of another generator. Hence,

f̃3 = x2, f̃4 = xy, f̃5 = y2 − (1/2)x

is a minimal Gröbner basis for I.
When G is a minimal Gröbner basis, the leading terms LT(p), p ∈ G, form the

unique minimal basis of ⟨LT(I)⟩ by Proposition 7 of §4 (see Exercise 6). Unfortu-
nately, the original ideal I may have many minimal Gröbner bases. For example, in
the ideal I considered above, it is easy to check that

(2) f̂3 = x2 + axy, f̃4 = xy, f̃5 = y2 − (1/2)x

is also a minimal Gröbner basis, where a ∈ Q is any constant. Thus, we can produce
infinitely many minimal Gröbner bases. Fortunately, we can single out one minimal
basis that is better than the others. The definition is as follows.

Definition 4. A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis
G for I such that:
(i) LC(p) = 1 for all p ∈ G.
(ii) For all p ∈ G, no monomial of p lies in ⟨LT(G \ {p})⟩.

Note that for the Gröbner bases given in (2), only the one with a = 0 is reduced.
In general, reduced Gröbner bases have the following nice property.

Theorem 5. Let I ̸= {0} be a polynomial ideal. Then, for a given monomial order-
ing, I has a reduced Gröbner basis, and the reduced Gröbner basis is unique.

Proof. As noted above, all minimal Gröbner bases for I have the same leading
terms. Now let G be a minimal Gröbner basis for I. We say that g ∈ G is fully
reduced for G provided that no monomial of g is in ⟨LT(G \ {p})⟩. Observe that g is
fully reduced for any other minimal Gröbner basis G′ of I that contains g since G′

and G have the same leading terms.
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Next, given g ∈ G, let g′ = gG\{g} and set G′ = (G \ {g})∪ {g′}. We claim that
G′ is a minimal Gröbner basis for I. To see this, first note that LT(g′) = LT(g), for
when we divide g by G \ {g}, LT(g) goes to the remainder since it is not divisible
by any element of LT(G \ {g}). This shows that ⟨LT(G′)⟩ = ⟨LT(G)⟩. Since G′ is
clearly contained in I, we see that G′ is a Gröbner basis, and minimality follows.
Finally, note that g′ is fully reduced for G′ by construction.

Now, take the elements of G and apply the above process until they are all fully
reduced. The Gröbner basis may change each time we do the process, but our earlier
observation shows that once an element is fully reduced, it stays fully reduced since
we never change the leading terms. Thus, we end up with a reduced Gröbner basis.

Finally, to prove uniqueness, suppose that G and G̃ are reduced Gröbner bases
for I. Then in particular, G and G̃ are minimal Gröbner bases, and hence have the
same leading terms, i.e., LT(G) = LT(G̃). Thus, given g ∈ G, there is g̃ ∈ G̃ such
that LT(g) = LT(g̃). If we can show that g = g̃, it will follow that G = G̃, and
uniqueness will be proved.

To show g = g̃, consider g − g̃. This is in I, and since G is a Gröbner basis,
it follows that g− g̃G = 0. But we also know LT(g) = LT(g̃). Hence, these terms
cancel in g − g̃, and the remaining terms are divisible by none of LT(G) = LT(G̃)
since G and G̃ are reduced. This shows that g− g̃G = g − g̃, and then g − g̃ = 0
follows. This completes the proof. !

Many computer algebra systems implement a version of Buchberger’s algo-
rithm for computing Gröbner bases. These systems always compute a Gröbner basis
whose elements are constant multiples of the elements in a reduced Gröbner basis.
This means that they will give essentially the same answers for a given problem.
Thus, answers can be easily checked from one system to the next.

Another consequence of the uniqueness in Proposition 5 is that we have an
ideal equality algorithm for seeing when two sets of polynomials { f1, . . . , fs} and
{g1, . . . , gt} generate the same ideal: simply fix a monomial order and compute a
reduced Gröbner basis for ⟨ f1, . . . , fs⟩ and ⟨g1, . . . , gt⟩. Then the ideals are equal if
and only if the Gröbner bases are the same.

To conclude this section, we will indicate briefly some of the connections be-
tween Buchberger’s algorithm and the row-reduction (Gaussian elimination) al-
gorithm for systems of linear equations. The interesting fact here is that the row-
reduction algorithm is essentially a special case of the general algorithm we have
described. For concreteness, we will discuss the special case corresponding to the
system of linear equations

3x − 6y − 2z = 0,
2x − 4y + 4w = 0,
x − 2y − z − w = 0.

If we use row operations on the coefficient matrix to put it in row echelon form
(which means that the leading 1’s have been identified), then we get the matrix
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(3)

⎛

⎝
1 −2 −1 −1
0 0 1 3
0 0 0 0

⎞

⎠ .

To get a reduced row echelon matrix, we need to make sure that each leading 1 is
the only nonzero entry in its column. This leads to the matrix

(4)

⎛

⎝
1 −2 0 2
0 0 1 3
0 0 0 0

⎞

⎠ .

To translate these computations into algebra, let I be the ideal

I = ⟨3x− 6y− 2z, 2x− 4y+ 4w, x− 2y− z− w⟩ ⊆ k[x, y, z,w]

corresponding to the original system of equations.We will use lex order with x >
y > z > w. Then, in the exercises, you will verify that the linear forms determined
by the row echelon matrix (3) give a minimal Gröbner basis

I = ⟨x− 2y− z− w, z+ 3w⟩,

and you will also check that the reduced row echelon matrix (4) gives the reduced
Gröbner basis

I = ⟨x− 2y+ 2w, z+ 3w⟩.

Recall from linear algebra that every matrix can be put in reduced row echelon form
in a unique way. This can be viewed as a special case of the uniqueness of reduced
Gröbner bases.

In the exercises, you will examine the relation between Buchberger’s algorithm
and the Euclidean Algorithm for finding the generator for the ideal ⟨ f , g⟩ ⊆ k[x].

EXERCISES FOR §7

1. Check that S( fi, fj)
F
= 0 for all pairs 1 ≤ i < j ≤ 5 in Example 1.

2. Use the algorithm given in Theorem 2 to find a Gröbner basis for each of the following
ideals. You may wish to use a computer algebra system to compute the S-polynomials
and remainders. Use the lex, then the grlex order in each case, and then compare your
results.
a. I = ⟨x2y− 1, xy2 − x⟩.
b. I = ⟨x2 + y, x4 + 2x2y+ y2 + 3⟩. [What does your result indicate about the variety

V(I)?]
c. I = ⟨x− z4, y− z5⟩.

3. Find reduced Gröbner bases for the ideals in Exercise 2 with respect to lex and grlex.
4. Use the result of Exercise 7 of §4 to give an alternate proof that Buchberger’s algorithm

will always terminate after a finite number of steps.
5. Let G be a Gröbner basis of an ideal I with the property that LC(g) = 1 for all g ∈ G.

Prove that G is a minimal Gröbner basis if and only if no proper subset of G is a Gröbner
basis of I.
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6. The minimal basis of a monomial ideal was introduced in Proposition 7 of §4. Show that
a Gröbner basis G of I is minimal if and only if LC(g) = 1 for all g ∈ G and LT(G) is
the minimal basis of the monomial ideal ⟨LT(I)⟩.

7. Fix a monomial order, and let G and G̃ be minimal Gröbner bases for the ideal I.
a. Prove that LT(G) = LT(G̃).
b. Conclude that G and G̃ have the same number of elements.

8. Develop an algorithm that produces a reduced Gröbner basis (see Definition 4) for an
ideal I, given as input an arbitrary Gröbner basis for I. Prove that your algorithm works.

9. Consider the ideal

I = ⟨3x− 6y− 2z, 2x− 4y+ 4w, x− 2y− z− w⟩ ⊆ k[x, y, z,w]

mentioned in the text. We will use lex order with x > y > z > w.
a. Show that the linear polynomials determined by the row echelon matrix (3) give a

minimal Gröbner basis I = ⟨x− 2y− z− w, z+ 3w⟩. Hint: Use Theorem 6 of §6.
b. Show that the linear polynomials from the reduced row echelon matrix (4) give the

reduced Gröbner basis I = ⟨x− 2y+ 2w, z+ 3w⟩.
10. Let A = (aij) be an n×m matrix with entries in k and let fi = ai1x1 + · · ·+ aimxm be the

linear polynomials in k[x1, . . . , xm] determined by the rows of A. Then we get the ideal
I = ⟨ f1, . . . , fn⟩. We will use lex order with x1 > · · · > xm. Now let B = (bij) be the
reduced row echelon matrix determined by A and let g1, . . . , gt be the linear polynomials
coming from the nonzero rows of B (so that t ≤ n). We want to prove that g1, . . . , gt
form the reduced Gröbner basis of I.
a. Show that I = ⟨g1, . . . , gt⟩. Hint: Show that the result of applying a row operation to

A gives a matrix whose rows generate the same ideal.
b. Use Theorem 6 of §6 to show that g1, . . . , gt form a Gröbner basis of I. Hint: If the

leading 1 in the ith row of B is in the sth column, we can write gi = xs +C, where C
is a linear polynomial involving none of the variables corresponding to leading 1’s.
If gj = xt + D is written similarly, then you need to divide S(gi, gj) = xtC − xsD by
g1, . . . , gt. Note that you will use only gi and gj in the division.

c. Explain why g1, . . . , gt form the reduced Gröbner basis of I.
11. Show that the result of applying the Euclidean Algorithm in k[x] to any pair of polyno-

mials f , g is a reduced Gröbner basis for ⟨ f , g⟩ (after dividing by a constant to make the
leading coefficient equal to 1). Explain how the steps of the Euclidean Algorithm can be
seen as special cases of the operations used in Buchberger’s algorithm.

12. Fix F = { f1, . . . , fs} and let r = f F . Since dividing f by F gives r as remainder, adding
r to the polynomials we divide by should reduce the remainder to zero. In other words,
we should have f F∪{r} = 0 when r comes last. Prove this as follows.
a. When you divide f by F∪{r}, consider the first place in the division algorithm where

the intermediate dividend p is not divisible by any LT( fi). Explain why LT(p) =
LT(r) and why the next intermediate dividend is p− r.

b. From here on in the division algorithm, explain why the leading term of the inter-
mediate dividend is always divisible by one of the LT( fi). Hint: If this were false,
consider the first time it fails. Remember that the terms of r are not divisible by any
LT( fi).

c. Conclude that the remainder is zero, as desired.
d. (For readers who did Exercise 11 of §3.) Give an alternate proof of f F∪{r} = 0 using

Exercise 11 of §3.

13. In the discussion following the proof of Theorem 2, we commented that if S( f , g)
G′

= 0,
then remainder stays zero when we enlarge G′. More generally, if f F = 0 and F′ is
obtained from F by adding elements at the end, then f F

′
= 0. Prove this.
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14. Suppose we have n points V = {(a1, b1), . . . , (an, bn)} ⊆ k2 where a1, . . . , an are
distinct. This exercise will study the Lagrange interpolation polynomial defined by

h(x) =
n∑

i=1

bi
∏

j ̸=i

xj − aj
ai − aj

∈ k[x].

We will also explain how h(x) relates to the reduced Gröbner basis of I(V) ⊆ k[x, y].
a. Show that h(ai) = bi for i = 1, . . . , n and explain why h has degree ≤ n− 1.
b. Prove that h(x) is the unique polynomial of degree ≤ n− 1 satisfying h(ai) = bi for

i = 1, . . . , n.
c. Prove that I(V) = ⟨ f (x), y − h(x)⟩, where f (x) =

∏n
i=1(x − ai). Hint: Divide

g ∈ I(V) by f (x), y− h(x) using lex order with y > x.
d. Prove that { f (x), y − h(x)} is the reduced Gröbner basis for I(V) ⊆ k[x, y] for lex

order with y > x.

§8 First Applications of Gröbner Bases

In §1, we posed four problems concerning ideals and varieties. The first was the
ideal description problem, which was solved by the Hilbert Basis Theorem in §5.
Let us now consider the three remaining problems and see to what extent we can
solve them using Gröbner bases.

The Ideal Membership Problem

If we combine Gröbner bases with the division algorithm, we get the following ideal
membership algorithm: given an ideal I = ⟨ f1, . . . , fs⟩, we can decide whether a
given polynomial f lies in I as follows. First, using a Gröbner basis algorithm (for
instance, the one in Theorem 2 of §7), find a Gröbner basis G = {g1, . . . , gt} for I.
Then Corollary 2 of §6 implies that

f ∈ I if and only if f G = 0.

Example 1. Let I = ⟨ f1, f2⟩ = ⟨xz−y2, x3−z2⟩ ∈ C[x, y, z], and use the grlex order.
Let f = −4x2y2z2 + y6 + 3z5. We want to know if f ∈ I.

The generating set given is not a Gröbner basis of I because LT(I) also contains
polynomials such as LT(S( f1, f2)) = LT(−x2y2 + z3) = −x2y2 that are not in the
ideal ⟨LT( f1), LT( f2)⟩ = ⟨xz, x3⟩. Hence, we begin by computing a Gröbner basis
for I. Using a computer algebra system, we find a Gröbner basis

G = { f1, f2, f3, f4, f5} = {xz− y2, x3 − z2, x2y2 − z3, xy4 − z4, y6 − z5}.

Note that this is a reduced Gröbner basis.
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We may now test polynomials for membership in I. For example, dividing f
above by G, we find

f = (−4xy2z− 4y4) · f1 + 0 · f2 + 0 · f3 + 0 · f4 + (−3) · f5 + 0.

Since the remainder is zero, we have f ∈ I.
For another example, consider f = xy − 5z2 + x. Even without completely

computing the remainder on division by G, we can see from the form of the ele-
ments in G that f /∈ I. The reason is that LT( f ) = xy is clearly not in the ideal
⟨LT(G)⟩ = ⟨xz, x3, x2y2, xy4, y6⟩. Hence, f G ̸= 0, so that f /∈ I.

This last observation illustrates the way the properties of an ideal are revealed by
the form of the elements of a Gröbner basis.

The Problem of Solving Polynomial Equations

Next, we will investigate how the Gröbner basis technique can be applied to solve
systems of polynomial equations in several variables. Let us begin by looking at
some specific examples.

Example 2. Consider the equations

x2 + y2 + z2 = 1,

x2 + z2 = y,(1)

x = z

inC3. These equations determine I = ⟨x2+y2+z2−1, x2+z2−y, x−z⟩ ⊆ C[x, y, z],
and we want to find all points in V(I). Proposition 9 of §5 implies that we can
compute V(I) using any basis of I. So let us see what happens when we use a
Gröbner basis.

Though we have no compelling reason as of yet to do so, we will compute a
reduced Gröbner basis on I with respect to the lex order. The basis is

g1 = x− z,

g2 = y− 2z2,

g3 = z4 + (1/2)z2 − 1/4.

If we examine these polynomials closely, we find something remarkable. First, the
polynomial g3 depends on z alone. To find its roots, we solve for z2 by the quadratic
formula and take square roots. This gives four values of z:

z = ±1
2

√
±
√
5− 1.

Next, when these values of z are substituted into the equations g2 = 0 and g1 = 0,
those two equations can be solved uniquely for y and x, respectively. Thus, there are
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four solutions altogether of g1 = g2 = g3 = 0, two real and two complex. Since
V(I) = V(g1, g2, g3) by Proposition 9 of §5, we have found all solutions of the
original equations (1).

Example 3. Next, we will consider the system of polynomial equations (2) from
Chapter 1, §2, obtained by applying Lagrange multipliers to find the minimum and
maximum values of x3 + 2xyz− z2 subject to the constraint x2 + y2 + z2 = 1:

3x2 + 2yz− 2xλ = 0,
2xz− 2yλ = 0,

2xy− 2z− 2zλ = 0,
x2 + y2 + z2 − 1 = 0.

Again, we follow our general hunch and begin by computing a Gröbner basis for
the ideal in R[x, y, z,λ] generated by the left-hand sides of the four equations, using
the lex order with λ > x > y > z. We find a Gröbner basis:

(2)

λ− 3
2
x− 3

2
yz− 167616

3835
z6 +

36717
590

z4 − 134419
7670

z2,

x2 + y2 + z2 − 1,

xy− 19584
3835

z5 +
1999
295

z3 − 6403
3835

z,

xz+ yz2 − 1152
3835

z5 − 108
295

z3 +
2556
3835

z,

y3 + yz2 − y− 9216
3835

z5 +
906
295

z3 − 2562
3835

z,

y2z− 6912
3835

z5 +
827
295

z3 − 3839
3835

z,

yz3 − yz− 576
59

z6 +
1605
118

z4 − 453
118

z2,

z7 − 1763
1152

z5 +
655
1152

z3 − 11
288

z.

At first glance, this collection of polynomials looks horrendous. (The coefficients
of the elements of Gröbner basis can be significantly messier than the coefficients of
the original generating set.) However, on further observation, we see that once again
the last polynomial depends only on the variable z. We have “eliminated” the other
variables in the process of finding the Gröbner basis. (Miraculously) the equation
obtained by setting this polynomial equal to zero has the roots

z = 0, ±1, ±2/3, ±
√
11/8

√
2.

If we set z equal to each of these values in turn, the remaining equations can then be
solved for y, x (and λ, though its values are essentially irrelevant for our purposes).
We obtain the following solutions:
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z = 0; y = 0; x = ±1,
z = 0; y = ±1; x = 0,
z = ±1; y = 0; x = 0,
z = 2/3; y = 1/3; x = −2/3,
z = −2/3; y = −1/3; x = −2/3,
z =

√
11/8

√
2; y = −3

√
11/8

√
2; x = −3/8,

z = −
√
11/8

√
2; y = 3

√
11/8

√
2; x = −3/8.

From here, it is easy to determine the minimum and maximum values.

Examples 2 and 3 indicate that finding a Gröbner basis for an ideal with respect
to the lex order simplifies the form of the equations considerably. In particular, we
seem to get equations where the variables are eliminated successively. Also, note
that the order of elimination seems to correspond to the ordering of the variables.
For instance, in Example 3, we had variables λ > x > y > z, and if you look back
at the Gröbner basis (2), you will see that λ is eliminated first, x second, and so on.

A system of equations in this form is easy to solve, especially when the last
equation contains only one variable.We can apply one-variable techniques to try and
find its roots, then substitute back into the other equations in the system and solve
for the other variables, using a procedure similar to the above examples. The reader
should note the analogy between this procedure for solving polynomial systems and
the method of “back-substitution” used to solve a linear system in triangular form.

We will study the process of elimination of variables from systems of polynomial
equations intensively in Chapter 3. In particular, we will see why lex order gives a
Gröbner basis that successively eliminates the variables.

The Implicitization Problem

Suppose that the parametric equations

(3)
x1 = f1(t1, . . . , tm),

...
xn = fn(t1, . . . , tm),

define a subset of an algebraic variety V in kn. For instance, this will always be
the case if the fi are rational functions in t1, . . . , tm, as we will show in Chapter 3.
How can we find polynomial equations in the xi that define V? This problem can be
solved using Gröbner bases, though a complete proof that this is the case will come
only with the results of Chapter 3.

For simplicity, we will restrict our attention to the case where the fi are actually
polynomials. We begin with the affine variety in km+n defined by (3), namely

x1 − f1(t1, . . . , tm) = 0,
...

xn − fn(t1, . . . , tm) = 0.
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The basic idea is to eliminate the variables t1, . . . , tm from these equations. This
should give us the equations for V .

Given what we saw in Examples 2 and 3, it makes sense to use a Gröbner basis
to eliminate variables. We will take the lex order in k[t1, . . . , tm, x1, . . . , xn] defined
by the variable ordering

t1 > · · · > tm > x1 > · · · > xn.

Now suppose we have a Gröbner basis of the ideal Ĩ = ⟨x1 − f1, . . . , xn − fn⟩.
Since we are using lex order, we expect the Gröbner basis to have polynomials that
eliminate variables, and t1, . . . , tm should be eliminated first since they are biggest
in our monomial order. Thus, the Gröbner basis for Ĩ should contain polynomials
that only involve x1, . . . , xn. These are our candidates for the equations of V .

The ideas just described will be explored in detail when we study elimination
theory in Chapter 3. For now, we will content ourselves with some examples to see
how this process works.

Example 4. Consider the parametric curve V:

x = t4,

y = t3,

z = t2

in C3. We compute a Gröbner basis G of I = ⟨x − t4, y− t3, z− t2⟩ with respect to
the lex order in C[t, x, y, z], and we find

G = {t2 − z, ty− z2, tz− y, x− z2, y2 − z3}.

The last two polynomials depend only on x, y, z, so they define an affine variety
of C3 containing our curve V . By the intuition on dimensions that we developed
in Chapter 1, we would guess that two equations in C3 would define a curve (a 1-
dimensional variety). The remaining question to answer is whether V is the entire
intersection of the two surfaces

x− z2 = 0, y2 − z3 = 0.

Might there be other curves (or even surfaces) in the intersection?We will be able to
show that the answer is no when we have established the general results in Chapter 3.

Example 5. Now consider the tangent surface of the twisted cubic in R3, which we
studied in Chapter 1. This surface is parametrized by

x = t + u,

y = t2 + 2tu,

z = t3 + 3t2u.
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We compute a Gröbner basis G for this ideal relative to the lex order defined by
t > u > x > y > z, and we find that G has 6 elements altogether. If you make the
calculation, you will see that only one contains only x, y, z terms:

(4) x3z− (3/4)x2y2 − (3/2)xyz+ y3 + (1/4)z2 = 0.

The variety defined by this equation is a surface containing the tangent surface to
the twisted cubic. However, it is possible that the surface given by (4) is strictly
bigger than the tangent surface: there may be solutions of (4) that do not correspond
to points on the tangent surface. We will return to this example in Chapter 3.

To summarize our findings in this section, we have seen that Gröbner bases and
the division algorithm give a complete solution of the ideal membership problem.
Furthermore, we have seen ways to produce solutions of systems of polynomial
equations and to produce equations of parametrically given subsets of affine space.
Our success in the examples given earlier depended on the fact that Gröbner bases,
when computed using lex order, seem to eliminate variables in a very nice fashion.
In Chapter 3, we will prove that this is always the case, and we will explore other
aspects of what is called elimination theory.

EXERCISES FOR §8

In the following exercises, a computer algebra system should be used to perform the necessary
calculations. (Most of the calculations would be very arduous if carried out by hand.)

1. Determine whether f = xy3 − z2 + y5 − z3 is in the ideal I = ⟨−x3 + y, x2y− z⟩.
2. Repeat Exercise 1 for f = x3z− 2y2 and I = ⟨xz − y, xy+ 2z2, y− z⟩.
3. By the method of Examples 2 and 3, find the points in C3 on the variety

V(x2 + y2 + z2 − 1, x2 + y2 + z2 − 2x, 2x− 3y− z).

4. Repeat Exercise 3 for V(x2y− z3, 2xy− 4z − 1, z− y2, x3 − 4zy).
5. Recall from calculus that a critical point of a differentiable function f (x, y) is a point

where the partial derivatives ∂f
∂x and ∂f

∂y vanish simultaneously. When f ∈ R[x, y], it
follows that the critical points can be found by applying our techniques to the system of
polynomial equations

∂f
∂x

=
∂f
∂y

= 0.

To see how this works, consider the function

f (x, y) = (x2 + y2 − 4)(x2 + y2 − 1) + (x− 3/2)2 + (y− 3/2)2.

a. Find all critical points of f (x, y).
b. Classify your critical points as local maxima, local minima, or saddle points. Hint:

Use the second derivative test.
6. Fill in the details of Example 5. In particular, compute the required Gröbner basis, and

verify that this gives us (up to a constant multiple) the polynomial appearing on the
left-hand side of equation (4).
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7. Let the surface S in R3 be formed by taking the union of the straight lines joining pairs
of points on the lines ⎧

⎨

⎩

x = t
y = 0
z = 1

⎫
⎬

⎭ ,

⎧
⎨

⎩

x = 0
y = 1
z = t

⎫
⎬

⎭

with the same parameter value (i.e., the same t). (This is a special example of a class of
surfaces called ruled surfaces.)
a. Show that the surface S can be given parametrically as

x = ut,
y = 1− u,
z = t + u(1− t).

b. Using the method of Examples 4 and 5, find an (implicit) equation of a variety V
containing the surface S.

c. Show V = S (that is, show that every point of the variety V can be obtained by
substituting some values for t, u in the equations of part (a). Hint: Try to “solve” the
implicit equation of V for one variable as a function of the other two.

8. Some parametric curves and surfaces are algebraic varieties even when the given
parametrizations involve transcendental functions such as sin and cos. In this problem,
we will see that the parametric surface T ,

x = (2+ cos(t)) cos(u),
y = (2+ cos(t)) sin(u),
z = sin(t),

lies on an affine variety in R3.
a. Draw a picture of T . Hint: Use cylindrical coordinates.
b. Let a = cos(t), b = sin(t), c = cos(u), d = sin(u), and rewrite the above equations

as polynomial equations in a, b, c, d, x, y, z.
c. The pairs a, b and c, d in part (b) are not independent since there are additional poly-

nomial identities
a2 + b2 − 1 = 0, c2 + d2 − 1 = 0

stemming from the basic trigonometric identity. Form a system of five equations by
adjoining the above equations to those from part (b) and compute a Gröbner basis for
the corresponding ideal. Use the lex monomial ordering and the variable order

a > b > c > d > x > y > z.

There should be exactly one polynomial in your basis that depends only on x, y, z.
This is the equation of a variety containing T .

9. Consider the parametric curve K ⊆ R3 given by

x = (2+ cos(2s))cos(3s),
y = (2+ cos(2s))sin(3s),
z = sin(2s).

a. Express the equations of K as polynomial equations in x, y, z, a = cos(s), b = sin(s).
Hint: Trig identities.

b. By computing a Gröbner basis for the ideal generated by the equations from part (a)
and a2+b2−1 as in Exercise 8, show that K is (a subset of) an affine algebraic curve.
Find implicit equations for a curve containing K.
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c. Show that the equation of the surface from Exercise 8 is contained in the ideal gener-
ated by the equations from part (b). What does this result mean geometrically? (You
can actually reach the same conclusion by comparing the parametrizations of T and
K, without calculations.)

10. Use the method of Lagrange multipliers to find the point(s) on the surface defined by
x4 + y2 + z2 − 1 = 0 that are closest to the point (1, 1, 1) in R3. Hint: Proceed as in
Example 3. (You may need to “fall back” on a numerical method to solve the equations
you get.)

11. Suppose we have numbers a, b, c which satisfy the equations

a+ b+ c = 3,

a2 + b2 + c2 = 5,

a3 + b3 + c3 = 7.

a. Prove that a4 + b4 + c4 = 9. Hint: Regard a, b, c as variables and show carefully that
a4 + b4 + c4 − 9 ∈ ⟨a+ b+ c− 3, a2 + b2 + c2 − 5, a3 + b3 + c3 − 7⟩.

b. Show that a5 + b5 + c5 ̸= 11.
c. What are a5 + b5 + c5 and a6 + b6 + c6? Hint: Compute remainders.

§9 Refinements of the Buchberger Criterion

The Buchberger criterion (Theorem 6 of §6) states that a basis G = {g1, . . . , gt} of
a polynomial ideal is a Gröbner basis provided that S(gi, gj)

G
= 0 for all gi, gj ∈ G.

In other words, if each of these S-polynomials has a representation

S(gi, gj) =
t∑

l=1

qlgl + 0

produced by the division algorithm, then G is a Gröbner basis of the ideal it gener-
ates. The goal of this section is to give two versions of the Buchberger criterion that
allow more flexibility in how the S-polynomials are represented.

Standard Representations

We first give a more general view of what it means to have zero remainder. The
definition is as follows.

Definition 1. Fix a monomial order and let G = {g1, . . . , gt} ⊆ k[x1, . . . , xn]. Given
f ∈ k[x1, . . . , xn], we say that f reduces to zero modulo G, written

f →G 0,

if f has a standard representation

f = A1g1 + · · ·+ Atgt, Ai ∈ k[x1, . . . , xn],
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which means that whenever Aigi ̸= 0, we have

multideg( f ) ≥ multideg(Aigi).

To understand the relation between Definition 1 and the division algorithm, we
have the following lemma.

Lemma 2. Let G = (g1, . . . , gt) be an ordered set of elements of k[x1, . . . , xn] and
fix f ∈ k[x1, . . . , xn]. Then f G = 0 implies f →G 0, though the converse is false in
general.

Proof. If f G = 0, then the division algorithm implies

f = q1g1 + · · ·+ qtgt + 0,

and by Theorem 3 of §3, whenever qigi ̸= 0, we have

multideg( f ) ≥ multideg(qigi).

This shows that f →G 0. To see that the converse may fail, consider Example 5 from
§3. If we divide f = xy2 − x by G = (xy+ 1, y2 − 1), the division algorithm gives

xy2 − x = y · (xy+ 1) + 0 · (y2 − 1) + (−x− y),

so that f G = −x− y ̸= 0. Yet we can also write

xy2 − x = 0 · (xy+ 1) + x · (y2 − 1),

and since
multideg(xy2 − x) ≥ multideg(x · (y2 − 1))

(in fact, they are equal), it follows that f →G 0. !

As an example of howDefinition 1 can be used, let us state a more general version
of the Gröbner basis criterion from §6.

Theorem 3. A basis G = {g1, . . . , gt} for an ideal I is a Gröbner basis if and only
if S(gi, gj) →G 0 for all i ̸= j.

Proof. If G is a Gröbner basis, then S(gi, gj) ∈ I has zero remainder on division by
G, hence S(gi, gj) →G 0 by Lemma 2. For the converse, Theorem 6 of §6 implies
that G is a Gröbner basis when S(gi, gj)

G
= 0 for all i ̸= j. But if you examine the

proof, you will see that all we used was

S(gi, gj) =
t∑

l=1

Algl,
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where
multideg(Algl) ≤ multideg(S(gi, gj))

when Algl ̸= 0 (see (6) and (7) from §6). This is exactly what S(gi, gj) →G 0 means,
and the theorem follows. !

By Lemma 2, notice that Theorem 6 of §6 is a special case of Theorem 3. Using
the notion of “standard representation” from Definition 1, Theorem 3 says that a
basis for an ideal I is a Gröbner basis if and only if all of its S-polynomials have
standard representations.

There are some situations where an S-polynomial is guaranteed to have a standard
representation.

Proposition 4. Given a finite set G ⊆ k[x1, . . . , xn], suppose that we have f , g ∈ G
such that the leading monomials of f and g are relatively prime. Then S( f , g) →G 0.

Proof. For simplicity, we assume that f , g have been multiplied by appropriate con-
stants to make LC( f ) = LC(g) = 1. Write f = LM( f ) + p, g = LM(g) + q.
Since LM( f ) and LM(g) are relatively prime, we know that lcm(LM( f ), LM(g)) =
LM( f ) · LM(g). Hence, the S-polynomial S( f , g) can be written

(1)

S( f , g) = LM(g) · f − LM( f ) · g
= (g − q) · f − ( f − p) · g
= g · f − q · f − f · g+ p · g
= p · g− q · f .

We claim that

(2) multideg(S( f , g)) = max(multideg(p · g),multideg(q · f )).

Note that (1) and (2) imply S( f , g) →G 0 since f , g ∈ G. To prove (2), observe that
in the last polynomial of (1), the leading monomials of p ·g and q · f are distinct and,
hence, cannot cancel. For if the leading monomials were the same, we would have

LM(p) · LM(g) = LM(q) · LM( f ).

However this is impossible if LM( f ), LM(g) are relatively prime: from the last equa-
tion, LM(g) would have to divide LM(q), which is absurd since LM(g) > LM(q). !

For an example of how this proposition works, let G = (yz + y, x3 + y, z4) and
use grlex order on k[x, y, z]. Since x3 and z4 are relatively prime, we have

S(x3 + y, z4) →G 0

by Proposition 4. However, using the division algorithm, it is easy to check that

S(x3 + y, z4) = yz4 = (z3 − z2 + z− 1)(yz+ y) + 0 · (x3 + y) + 0 · z4 + y.
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so that
S(x3 + y, z4)

G
= y ̸= 0.

This explains why we need Definition 1: Proposition 4 is false if we use the notion
of zero remainder coming from the division algorithm.

Another example of Proposition 4 is given by the ideal I = ⟨y − x2, z − x3⟩. It
is easy to check that the given generators f = y− x2 and g = z − x3 do not form a
Gröbner basis for lex order with x > y > z. But if we switch to lex with z > y > x,
then the leading monomials are LM( f ) = y and LM(g) = z. Setting G = { f , g},
Proposition 4 implies S( f , g) →G 0, so thatG is a Gröbner basis of I by Theorem 3.
In §10, we see that Proposition 4 is part of a more efficient version of the Buchberger
algorithm.

LCM Representations

Our second version of the Buchberger criterion allows a yet more general way of
presenting S-polynomials. Recall from Exercise 7 of §6 that an S-polynomialS( f , g)
has leading term that is guaranteed to be strictly less than lcm(LM( f ), LM(g)).

Definition 5. Given nonzero polynomials F = ( f1, . . . , fs), we say that

S( fi, fj) =
s∑

l=1

Al fl

is an lcm representation provided that

lcm(LM( fi), LM( fj)) > LT(Al fl) whenever Al fl ̸= 0.

To understand how lcm representations relate to standard representations, write
S( fi, fj) =

∑s
l=1 Al fl and take l with Al fl ̸= 0. Then consider the inequalities

lcm(LM( fi), LM( fj)) > LT(S( fi, fj)),(3)

lcm(LM( fi), LM( fj)) > LT(Al fl).(4)

Note that (3) is true by the definition of S-polynomial. In a standard representation,
we have (3) ⇒ (4) since LT(S( fi, fj)) ≥ LT(Al fl). In an lcm representation, on the
other hand, we have (4), but we make no assumption about how LT(S( fi, fj)) and
LT(Al fl) relate to each other.

The above discussion shows that every standard representation is also an lcm
representation. For an example of how the converse may fail, let f1 = xz + 1, f2 =
yz+ 1, f3 = xz+ y− z+ 1. Using lex order with x > y > z, one can write

S( f1, f2) = (−1) · f1 + 0 · f2 + 1 · f3.

In Exercise 1, you will check that this is an lcm representation but not a standard
representation.
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Here is a version of the Buchberger criterion that uses lcm representations.

Theorem 6. A basis G = (g1, . . . , gt) for an ideal I is a Gröbner basis if and only
if for every i ̸= j, the S-polynomial S(gi, gj) has an lcm representation.

Proof. If G is a Gröbner basis, then every S-polynomial has a standard representa-
tion, hence an lcm representation. For the converse, we will look closely at the proof
of Theorem 6 of §6, just as we did for Theorem 3.

We are assuming that S(gi, gj) has an lcm representation

S(gi, gj) =
t∑

l=1

Algl

with xγij > LT(Algl) when Algl ̸= 0. Here, xγij = lcm(LM(gj), LM(gl)). If we set
Bl = xδ−γijAl, then

xδ−γij S(gi, gj) =
t∑

l=1

Blgl,

where

multideg(Blgl) = multideg(xδ−γij) +multideg(Algl) < (δ − γij) + γij = δ.

This gives the same inequality as (9) in the proof of Theorem 6 of §6. From here,
the rest of the proof is identical to what we did in §6, and the theorem follows. !

We noted above any standard representation of S(gi, gj) is an lcm representation.
Thus Theorem 6 of §6 and Theorem 3 of this section follow from Theorem 6, since
S(gi, gj) has an lcm representation whenever it satisfies either S(gi, gj)

G
= 0 or

S(gi, gj) →G 0. We will consider a further generalization of the Buchberger criterion
in §10.

The ideas of this section are useful in elimination theory, which we will study
in Chapter 3. Two of the central results are the Extension Theorem and the Closure
Theorem. Standard representations appear in the proof of the Extension Theorem
given in Chapter 3, §5, and lcm representations are used in the proof of the Closure
Theorem given in Chapter 4, §7. We will also use Theorem 6 in the proof of the
Nullstellensatz given in Chapter 4, §1.

EXERCISES FOR §9

1. Let f1 = xz+ 1, f2 = yz+ 1, and f3 = xz+ y− z+ 1. For lex order with x > y > z, show
that

S( f1, f2) = (−1) · f1 + 0 · f2 + 1 · f3.
Also show that this is an lcm representation but not a standard representation.

2. Consider the ideal I = ⟨x2 + y+ z− 1, x+ y2 + z− 1, x+ y+ z2 − 1⟩ ⊆ Q[x, y, z].
a. Show that the generators of I fail to be Gröbner basis for any lex order.
b. Find a monomial order for which the leading terms of the generators are relatively

prime.
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c. Explain why the generators automatically form a Gröbner basis for the monomial order
you found in part (b).

3. The result of the previous exercise can be generalized as follows. Suppose that I =
⟨ f1, . . . , fs⟩ where LM( fi) and LM( fj) are relatively prime for all indices i ̸= j. Prove
that { f1, . . . , fs} is a Gröbner basis of I.

§10 Improvements on Buchberger’s Algorithm

In designing useful mathematical software, attention must be paid not only to the
correctness of the algorithms employed, but also to their efficiency. In this section,
we will discuss two improvements on the basic Buchberger algorithm for com-
puting Gröbner bases that can greatly speed up the calculations. Some version of
these improvements has been built into most of the computer algebra systems that
use Gröbner basis methods. The section will conclude with a brief discussion of
the complexity of computing Gröbner bases. This is still an active area of research
though, and there are as yet no definitive results in this direction.

The Buchberger algorithm presented in §7 computes remainders S( f , g)
G
and

adds them to G when they are nonzero. As you learned from doing examples by
hand, these polynomial divisions are the most computationally intensive part of
Buchberger’s algorithm. Hence, one way to improve the efficiency of the algorithm
would be to show that fewer S-polynomials S( f , g) need to be considered. Any re-
duction of the number of divisions that need to be performed is all to the good.

Theorem 3 of §9 tells us that when checking for a Gröbner basis, we can replace
S( f , g)

G
= 0 with S( f , g) →G 0. Thus, if we can predict in advance that certain

S-polynomials are guaranteed to reduce to zero, then we can ignore them in the
Buchberger algorithm.

We have already seen one examplewhere reduction to zero is guaranteed, namely
Proposition 4 of §9. This proposition is sufficiently important that we restate it here.

Proposition 1. Given a finite set G ⊆ k[x1, . . . , xn], suppose that we have f , g ∈ G
such that

lcm(LM( f ), LM(g)) = LM( f ) · LM(g).

This means that the leading monomials of f and g are relatively prime. Then
S( f , g) →G 0.

Note that Proposition 1 gives a more efficient version of Theorem 3 of §9: to
test for a Gröbner basis, we need only have S(gi, gj) →G 0 for those i < j where
LM(gi) and LM(gj) are not relatively prime. But before we apply this to improving
Buchberger’s algorithm, let us explore a second way to improve Theorem 3 of §9.

The basic idea is to better understand the role played by S-polynomials in the
proof of Theorem 6 of §6. Since S-polynomials were constructed to cancel leading
terms, this means we should study cancellation in greater generality. Hence, we will
introduce the notion of a syzygy on the leading terms of F = ( f1, . . . , fs). This word
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is used in astronomy to indicate an alignment of three planets or other heavenly bod-
ies. The root is a Greek word meaning “yoke.” In an astronomical syzygy, planets
are “yoked together”; in a mathematical syzygy, it is polynomials that are “yoked.”

Definition 2. Let F = ( f1, . . . , fs). A syzygy on the leading terms LT( f1), . . . , LT( fs)
of F is an s-tuple of polynomials S = (h1, . . . , hs) ∈ (k[x1, . . . , xn])s such that

s∑

i=1

hi · LT( fi) = 0.

We let S(F) be the subset of (k[x1, . . . , xn])s consisting of all syzygies on the leading
terms of F.

For an example of a syzygy, consider F = (x, x2 + z, y + z). Then using the lex
order, S = (−x+ y, 1,−x) ∈ (k[x, y, z])3 defines a syzygy in S(F) since

(−x+ y) · LT(x) + 1 · LT(x2 + z) + (−x) · LT(y+ z) = 0.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ (k[x1, . . . , xn])s, where the 1 is in the ith place.
Then a syzygy S ∈ S(F) can be written as S =

∑s
i=1 hiei. For an example of how

to use this notation, consider the syzygies that come from S-polynomials. Namely,
given a pair {fi, fj} ⊆ F where i < j, let xγ = lcm(LM( fi), LM( fj)). Then

(1) Sij =
xγ

LT( fi)
ei −

xγ

LT( fj)
ej

gives a syzygy on the leading terms of F. In fact, the name S-polynomial is actually
an abbreviation for “syzygy polynomial.”

It is straightforward to check that the set of syzygies is closed under coordinate-
wise sums, and under coordinate-wise multiplication by polynomials (see Exer-
cise 1). An especially nice fact about S(F) is that it has a finite basis—there is a
finite collection of syzygies such that every other syzygy is a linear combination
with polynomial coefficients of the basis syzygies.

However, before we can prove this, we need to learn a bit more about the structure
of S(F). We first define the notion of a homogeneous syzygy.

Definition 3. An element S ∈ S(F) is homogeneous of multidegree α, where α ∈
Zn
≥0, provided that

S = (c1xα(1), . . . , csxα(s)),

where ci ∈ k and α(i) +multideg( fi) = α whenever ci ̸= 0.

You should check that the syzygy Sij given in (1) is homogeneous of multidegree
γ (see Exercise 4). We can decompose syzygies into homogeneous ones as follows.

Lemma 4. Every element of S(F) can be written uniquely as a sum of homogeneous
elements of S(F).
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Proof. Let S = (h1, . . . , hs) ∈ S(F). Fix an exponent α ∈ Zn
≥0, and let hiα

be the term of hi (if any) such that hiα fi has multidegree α. Then we must have∑s
i=1 hiαLT( fi) = 0 since the hiαLT( fi) are the terms of multidegree α in the sum∑s
i=1 hiLT( fi) = 0. Then Sα = (h1α, . . . , hsα) is a homogeneous element of S(F)

of degree α and S =
∑

α Sα.
The proof of uniqueness will be left to the reader (see Exercise 5). !

We can now prove that the Sij’s form a basis of all syzygies on the leading terms.

Proposition 5. Given F = ( f1, . . . , fs), every syzygy S ∈ S(F) can be written as

S =
∑

i<j

uij Sij,

where uij ∈ k[x1, . . . , xn] and the syzygy Sij is defined as in (1).

Proof. By Lemma 4, we can assume that S is homogeneous of multidegree α. Then
S must have at least two nonzero components, say cixα(i) and cjxα(j), where i < j.
Then α(i) + multideg( fi) = α(j) + multideg( fj) = α, which implies that xγ =
lcm(LM( fi), LM( fj)) divides xα. Since

Sij =
xγ

LT( fi)
ei −

xγ

LT( fj)
ej,

an easy calculation shows that the ith component of

S − ciLC( fi)xα−γSij

must be zero, and the only other component affected is the jth. Hence we have
produced a homogeneous syzygy with fewer nonzero components. Since a nonzero
syzygy must have at least two nonzero components, continuing in this way will
eventually enable us to write S as a combination of the Sij’s, and we are done. !

This proposition explains our observation in §6 that S-polynomials account for
all possible cancellation of leading terms.

We are now ready to state a more refined version of our algorithmic criterion for
Gröbner bases.

Theorem 6. A basis G = (g1, . . . , gt) for an ideal I is a Gröbner basis if and only if
for every element S = (H1, . . . ,Ht) in a homogeneous basis for the syzygies S(G),
S · G =

∑t
i=1 Higi can be written

(2) S · G =
t∑

i=1

Aigi,

where the multidegree α of S satisfies

(3) α > multideg(Aigi) whenever Aigi ̸= 0.
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Proof. First assume that G is a Gröbner basis. Since S is a syzygy, it satisfies
α > multideg(S · G), and then any standard representation S · G =

∑t
i=1 Aigi

has the desired property. For the converse, we will use the strategy (and nota-
tion) of the proof of Theorem 6 of §6. We start with f =

∑t
i=1 higi, where

δ = max(multideg(higi)) is minimal among all ways of writing f in terms of G.
As before, we need to show that multideg( f ) < δ leads to a contradiction.

By (4) in §6, multideg( f ) < δ implies that
∑

multideg(higi)=δ LT(hi)gi has strictly
smaller multidegree. This therefore means that

∑
multideg(higi)=δ LT(hi)LT(gi) = 0,

so that
S =

∑

multideg(higi)=δ

LT(hi)ei

is a syzygy in S(G). Note also that S is homogeneous of multidegree δ. Our hypoth-
esis then gives us a homogeneous basis S1, . . . , Sm of S(G) with the nice property
that Sj · G satisfies (2) and (3) for all j. We can write S in the form

(4) S = u1S1 + · · ·+ umSm.

By writing the uj’s as sums of terms and expanding, we see that (4) expresses S as a
sum of homogeneous syzygies. Since S is homogeneous of multidegree δ, it follows
from the uniqueness of Lemma 4 that we can discard all syzygies not of multidegree
δ. Thus, in (4), we can assume that, for each j, either

uj = 0, or ujSj is homogeneous of multidegree δ.

Suppose that Sj has multidegree γj. If uj ̸= 0, then it follows that uj can be written
in the form uj = cjxδ−γj for some cj ∈ k. Thus, (4) can be written

S =
∑

j

cjxδ−γj Sj,

where the sum is over those j’s with uj ̸= 0. If we take the dot product of each side
with G, we obtain

(5)
∑

multideg(higi)=δ

LT(hi)gi = S · G =
∑

j

cjxδ−γj Sj · G.

Since Sj has multidegree γj, our hypothesis implies that Sj · G =
∑t

i=1 Aijgi, where

multideg(Aijgi) < γj when Aijgi ̸= 0.

It follows that if we set Bij = xδ−γjAij, then we have

xδ−γj Sj · G =
t∑

i=1

Bijgi
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where multideg(Bijgi) < δ when Bijgi ̸= 0. Using this and (5), we can write the sum∑
multideg(higi)=δ LT(hi)gi as

∑

multideg(higi)=δ

LT(hi)gi =
t∑

l=1

B̃lgl,

where multideg(B̃lgl) < δ when B̃lgl ̸= 0. This is exactly what we proved in (10)
and (11) from §6. From here, the remainder of the proof is identical to what we did
in §6. The theorem is proved. !

Note that Theorem 3 of §9 is a special case of this result. Namely, if we use
the basis {Sij} for the syzygies S(G), then the polynomials Sij · G to be tested are
precisely the S-polynomials S(gi, gj).

A homogeneous syzygy S with the property that S · G →G 0 is easily seen to
satisfy (2) and (3) (Exercise 6). This gives the following corollary of Theorem 6.

Corollary 7. A basis G = (g1, . . . , gt) for an ideal I is a Gröbner basis if and only
if for every element S = (H1, . . . ,Ht) in a homogeneous basis for the syzygies S(G),
S · G →G 0.

To exploit the power of Theorem 6 and Corollary 7, we need to learn how to make
small bases of S(G). For an example of how a basis can be smaller than expected,
consider G = (x2y2 + z, xy2 − y, x2y + yz) and use lex order in k[x, y, z]. The basis
formed by the three syzygies corresponding to the S-polynomials consists of

S12 = (1,−x, 0),

S13 = (1, 0,−y),

S23 = (0, x,−y).

However, we see that S23 = S13 − S12. Thus S23 is redundant in the sense that
it can be obtained from S12, S13 by a linear combination. (Here, the coefficients are
constants; in general, relations between syzygies may have polynomial coefficients.)
It follows that {S12, S13} is a smaller basis of S(G).

We will show next that starting with the basis {Sij | i < j}, there is a systematic
way to predict when elements can be omitted.

Proposition 8. Given G = (g1, . . . , gt), suppose that S ⊆ {Sij | 1 ≤ i < j ≤ t} is
a basis of S(G). In addition, suppose we have distinct elements gi, gj, gl ∈ G such
that

LT(gl) divides lcm(LT(gi), LT(gj)).

If Sil, Sjl ∈ S, then S \ {Sij} is also a basis of S(G). (Note: If i > j, we set Sij = Sji.)

Proof. For simplicity, assume that i < j < l. Set xγij = lcm(LM(gi), LM(gj)) and let
xγil and xγjl be defined similarly. Then our hypothesis implies that xγil and xγjl both
divide xγij . In Exercise 7, you will verify that
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Sij =
xγij

xγil
Sil −

xγij

xγjl
Sjl,

and the proposition is proved. !
To incorporate this proposition into an algorithm for creating Gröbner bases, we

will use the ordered pairs (i, j) with i < j to keep track of which syzygies we want.
Since we sometimes will have an i ̸= j where we do not know which is larger, we
will use the following notation: given i ̸= j, define

[i, j] =

{
(i, j) if i < j
(j, i) if i > j.

We can now state an improved version of Buchberger’s algorithm that takes into
account the results proved so far.

Theorem 9. Let I = ⟨ f1, . . . , fs⟩ be a polynomial ideal. Then a Gröbner basis of I
can be constructed in a finite number of steps by the following algorithm:

Input : F = ( f1, . . . , fs)

Output : a Gröbner basis G for I = ⟨ f1, . . . , fs⟩

B := {(i, j) | 1 ≤ i < j ≤ s}
G := F

t := s

WHILE B ̸= ∅ DO
Select (i, j) ∈ B

IF lcm(LT( fi), LT( fj)) ̸= LT( fi)LT( fj) AND

Criterion( fi, fj,B) = false THEN

r := S( fi, fj)
G

IF r ̸= 0 THEN

t := t + 1; ft := r

G := G ∪ { ft}
B := B ∪ {(i, t) | 1 ≤ i ≤ t − 1}

B := B \ {(i, j)}
RETURN G

Here, Criterion( fi, fj,B) is true provided that there is some l /∈ {i, j} for which the
pairs [i, l] and [ j, l] are not in B and LT( fl) divides lcm(LT( fi), LT( fj)). (Note that
this criterion is based on Proposition 8.)

Proof. The basic idea of the algorithm is that B records the pairs (i, j) that remain to
be considered. Furthermore, we only compute the remainder of those S-polynomials
S(gi, gj) for which neither Proposition 1 nor Proposition 8 applies.
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To prove that the algorithm works, we first observe that at every stage of the
algorithm, B has the property that if 1 ≤ i < j ≤ t and (i, j) /∈ B, then

(6) S( fi, fj) →G 0 or Criterion( fi, fj, B) holds.

Initially, this is true since B starts off as the set of all possible pairs. We must show
that if (6) holds for some intermediate value of B, then it continues to hold when B
changes, say to B′.

To prove this, assume that (i, j) /∈ B′. If (i, j) ∈ B, then an examination of the
algorithm shows that B′ = B \ {(i, j)}. Now look at the step before we remove (i, j)
from B. If lcm(LT( fi)), LT( fj)) = LT( fi)LT( fj), then S( fi, fj) →G 0 by Proposi-
tion 1, and (6) holds. Also if Criterion( fi, fj,B) is true, then (6) clearly holds. Now
suppose that both of these fail. In this case, the algorithm computes the remainder
r = S( fi, fj)

G
. If r = 0, then S( fi, fj) →G 0 by Lemma 2, as desired. Finally, if

r ̸= 0, then we enlargeG to be G′ = G∪ {r}, and we leave it as an exercise to show
that S( fi, fj) →G′ 0.

It remains to study the case when (i, j) /∈ B. Here, (6) holds for B, and in Exer-
cise 9, you will show that this implies that (6) also holds for B′.

Next, we need to show that G is a Gröbner basis when B = ∅. To prove this, let
t be the length of G, and consider the set I consisting of all pairs (i, j) for 1 ≤ i <
j ≤ t where Criterion( fi, fj, B) was false when (i, j) was selected in the algorithm.
We claim that S = {Sij | (i, j) ∈ I} is a basis of S(G) with the property that
Sij ·G = S( fi, fj) →G 0 for all Sij ∈ S. This claim and Corollary 7 will prove that G
is a Gröbner basis.

To prove our claim, note that B = ∅ implies that (6) holds for all pairs (i, j) for
1 ≤ i < j ≤ t. It follows that S( fi, fj) →G 0 for all (i, j) ∈ I. It remains to show
that S is a basis of S(G). To prove this, first notice that we can order the pairs (i, j)
according to when they were removed from B in the algorithm (see Exercise 10
for the details of this ordering). Now go through the pairs in reverse order, starting
with the last removed, and delete the pairs (i, j) for which Criterion( fi, fj,B) was
true at that point in the algorithm. After going through all pairs, those that remain
are precisely the elements of I. Let us show that at every stage of this process, the
syzygies corresponding to the pairs (i, j) not yet deleted form a basis of S(G). This is
true initially because we started with all of the Sij’s, which we know to be a basis.
Further, if at some point we delete (i, j), then the definition of Criterion( fi, fj,B)
implies that there is some l where LT( fl) satisfies the lcm condition and [i, l], [ j, l] /∈
B. Thus, [i, l] and [ j, l] were removed earlier from B, and hence Sil and Sjl are still
in the set we are creating because we are going in reverse order. If follows from
Proposition 8 that we still have a basis even after deleting Sij.

Finally, we need to show that the algorithm terminates. As in the proof of the
original algorithm (Theorem 2 of §7), G is always a basis of our ideal, and each
time we enlarge G, the monomial ideal ⟨LT(G)⟩ gets strictly larger. By the ACC,
it follows that at some point, G must stop growing, and thus, we eventually stop
adding elements to B. Since every pass through the WHILE. . .DO loop removes an
element of B, we must eventually get B = ∅, and the algorithm comes to an end. !
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The algorithm given above is still not optimal, and several strategies have been
found to improve its efficiency further. For example, in the division algorithm (Theo-
rem 3 of §3), we allowed the divisors f1, . . . , fs to be listed in any order. In practice,
some effort could be saved on average if we arranged the fi so that their leading
terms are listed in increasing order with respect to the chosen monomial ordering.
Since the smaller LT( fi) are more likely to be used during the division algorithm,
listing them earlier means that fewer comparisons will be required. A second strat-
egy concerns the step where we choose (i, j) ∈ B in the algorithm of Theorem 9.
BUCHBERGER (1985) suggests that there will often be some savings if we pick
(i, j) ∈ B such that lcm(LM( fi), LM( fj)) is as small as possible. The corresponding
S-polynomials will tend to yield any nonzero remainders (and new elements of the
Gröbner basis) sooner in the process, so there will be more of a chance that subse-
quent remainders S( fi, fj)

G
will be zero. This normal selection strategy is discussed

in more detail in BECKER and WEISPFENNING (1993), BUCHBERGER (1985) and
GEBAUER and MÖLLER (1988). Finally, there is the idea of sugar, which is a re-
finement of the normal selection strategy. Sugar and its variant double sugar can be
found in GIOVINI, MORA, NIESI, ROBBIANO and TRAVERSO (1991).

In another direction, one can also modify the algorithm so that it will automati-
cally produce a reduced Gröbner basis (as defined in §7). The basic idea is to sys-
tematically reduce G each time it is enlarged. Incorporating this idea also generally
lessens the number of S-polynomials that must be divided in the course of the algo-
rithm. For a further discussion of this idea, consult BUCHBERGER (1985).

We will discuss further ideas for computing Gröbner bases in Chapter 10.

Complexity Issues

We will end this section with a short discussion of the complexity of computing
Gröbner bases. Even with the best currently known versions of the algorithm, it is
still easy to generate examples of ideals for which the computation of a Gröbner
basis takes a tremendously long time and/or consumes a huge amount of storage
space. There are several reasons for this:
• The total degrees of intermediate polynomials that must be generated as the al-

gorithm proceeds can be quite large.
• The coefficients of the elements of a Gröbner basis can be quite complicated

rational numbers, even when the coefficients of the original ideal generators were
small integers. See Example 3 of §8 or Exercise 13 of this section for some
instances of this phenomenon.

For these reasons, a large amount of theoretical work has been done to try to es-
tablish uniform upper bounds on the degrees of the intermediate polynomials in
Gröbner basis calculations when the degrees of the original generators are given. For
some specific results in this area, see DUBÉ (1990) and MÖLLER and MORA (1984).
The idea is to measure to what extent the Gröbner basis method will continue to be
tractable as larger and larger problems are attacked.
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The bounds on the degrees of the generators in a Gröbner basis are quite large,
and it has been shown that large bounds are necessary. For instance, MAYR and
MEYER (1982) give examples where the construction of a Gröbner basis for an
ideal generated by polynomials of degree less than or equal to some d can involve
polynomials of degree proportional to 22

d
. As d → ∞, 22

d
grows very rapidly. Even

when grevlex order is used (which often gives the smallest Gröbner bases—see
below), the degrees can be quite large. For example, consider the polynomials

xn+1 − yzn−1w, xyn−1 − zn, xnz− ynw.

If we use grevlex order with x > y > z > w, then Mora [see LAZARD (1983)]
showed that the reduced Gröbner basis contains the polynomial

zn
2+1 − yn

2
w.

The results led for a time to some pessimism concerning the ultimate practicality
of the Gröbner basis method as a whole. Further work has shown, however, that
for ideals in two and three variables, much more reasonable upper degree bounds
are available [see, for example, LAZARD (1983) and WINKLER (1984)]. Further-
more, in any case the running time and storage space required by the algorithm
seem to be much more manageable “on average” (and this tends to include most
cases of geometric interest) than in the worst cases. There is also a growing real-
ization that computing “algebraic” information (such as the primary decomposition
of an ideal—see Chapter 4) should have greater complexity than computing “geo-
metric” information (such as the dimension of a variety—see Chapter 9). A good
reference for this is GIUSTI and HEINTZ (1993), and a discussion of a wide variety
of complexity issues related to Gröbner bases can be found in BAYER and MUM-
FORD (1993). See also pages 616–619 of VON ZUR GATHEN and GERHARD (2013)
for further discussion and references.

Finally, experimentation with changes of variables and varying the ordering of
the variables often can reduce the difficulty of the computation drastically. BAYER

and STILLMAN (1987a) have shown that in most cases, the grevlex order should
produce a Gröbner basis with polynomials of the smallest total degree. In a different
direction, it is tempting to consider changing the monomial ordering as the algo-
rithm progresses in order to produce a Gröbner basis more efficiently. This idea was
introduced in GRITZMANN and STURMFELS (1993) and has been taken up again in
CABOARA and PERRY (2014).

EXERCISES FOR §10

1. Let S = (c1, . . . , cs) and T = (d1, . . . , ds) ∈ (k[x1, . . . , xn])s be syzygies on the leading
terms of F = ( f1, . . . , fs).
a. Show that S+ T = (c1 + d1, . . . , cs + ds) is also a syzygy.
b. Show that if g ∈ k[x1, . . . , xn], then g · S = (gc1, . . . , gcs) is also a syzygy.

2. Given any G = (g1, . . . , gs) ∈ (k[x1, . . . , xn])s , we can define a syzygy on G to be an s-
tuple S = (h1, . . . , hs) ∈ (k[x1, . . . , xn])s such that

∑
i higi = 0. [Note that the syzygies

we studied in the text are syzygies on LT(G) = (LT(g1), . . . , LT(gs)).]
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a. Show that if G = (x2 − y, xy− z, y2 − xz), then (z,−y, x) defines a syzygy on G.
b. Find another syzygy on G from part (a).
c. Show that if S, T are syzygies on G, and g ∈ k[x1, . . . , xn], then S+T and gS are also

syzygies on G.
3. LetM be an m× (m+ 1) matrix of polynomials in k[x1, . . . , xn]. Let I be the ideal gen-

erated by the determinants of all the m× m submatrices of M (such ideals are examples
of determinantal ideals).
a. Find a 2×3 matrixM such that the associated determinantal ideal of 2×2 submatrices

is the ideal with generators G as in part (a) of Exercise 2.
b. Explain the syzygy given in part (a) of Exercise 2 in terms of your matrix.
c. Give a general way to produce syzygies on the generators of a determinantal ideal.

Hint: Find ways to produce (m+ 1)× (m+ 1) matrices containing M, whose deter-
minants are automatically zero.

4. Prove that the syzygy Sij defined in (1) is homogeneous of multidegree γ.
5. Complete the proof of Lemma 4 by showing that the decomposition into homogeneous

components is unique. Hint: First show that if S =
∑

α S′α, where S
′
α has multidegree

α, then, for a fixed i, the ith components of the S′α are either 0 or have multidegree equal
to α−multideg( fi) and, hence, give distinct terms as α varies.

6. Suppose that S is a homogeneous syzygy of multidegree α in S(G).
a. Prove that S · G has multidegree < α.
b. Use part (a) to show that Corollary 7 follows from Theorem 6.

7. Complete the proof of Proposition 8 by proving the formula expressing Sij in terms of
Sil and Sjl.

8. Let G be a finite subset of k[x1, . . . , xn] and let f ∈ ⟨G⟩. If f G = r ̸= 0, then show that
f →G′ 0, where G′ = G ∪ {r}. This fact is used in the proof of Theorem 9.

9. In the proof of Theorem 9, we claimed that for every value of B, if 1 ≤ i < j ≤ t and
(i, j) /∈ B, then condition (6) was true. To prove this, we needed to show that if the
claim held for B, then it held when B changed to some B′. The case when (i, j) /∈ B′ but
(i, j) ∈ B was covered in the text. It remains to consider when (i, j) /∈ B′ ∪ B. In this
case, prove that (6) holds for B′. Hint: Note that (6) holds for B. There are two cases
to consider, depending on whether B′ is bigger or smaller than B. In the latter situation,
B′ = B \ {(l,m)} for some (l,m) ̸= (i, j).

10. In this exercise, we will study the ordering on the set {(i, j) | 1 ≤ i < j ≤ t} described
in the proof of Theorem 9. Assume that B = ∅, and recall that t is the length of G when
the algorithm stops.
a. Show that any pair (i, j) with 1 ≤ i < j ≤ t was a member of B at some point during

the algorithm.
b. Use part (a) and B = ∅ to explain how we can order the set of all pairs according to

when a pair was removed from B.
11. Consider f1 = x3−2xy and f2 = x2y−2y2+x and use grlex order on k[x, y]. These poly-

nomials are taken from Example 1 of §7, where we followed Buchberger’s algorithm
to show how a Gröbner basis was produced. Redo this example using the algorithm of
Theorem 9 and, in particular, keep track of how many times you have to use the division
algorithm.

12. Consider the polynomials

xn+1 − yzn−1w, xyn−1 − zn, xnz − ynw,

and use grevlex order with x > y > z > w. Mora [see LAZARD (1983)] showed that the
reduced Gröbner basis contains the polynomial

zn
2+1 − yn

2
w.

Prove that this is true when n is 3, 4, or 5. How big are the Gröbner bases?
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13. In this exercise, we will look at some examples of how the term order can affect the
length of a Gröbner basis computation and the complexity of the answer.
a. Compute a Gröbner basis for I = ⟨x5 + y4 + z3 − 1, x3 + y2 + z2 − 1⟩ using lex and

grevlex orders with x > y > z. You will see that the Gröbner basis is much simpler
when using grevlex.

b. Compute a Gröbner basis for I = ⟨x5 + y4 + z3 − 1, x3 + y3 + z2 − 1⟩ using lex
and grevlex orders with x > y > z. This differs from the previous example by a
single exponent, but the Gröbner basis for lex order is significantly nastier (one of its
polynomials has 282 terms, total degree 25, and a largest coefficient of 170255391).

c. Let I = ⟨x4 − yz2w, xy2 − z3, x3z − y3w⟩ be the ideal generated by the polynomials
of Exercise 12 with n = 3. Using lex and grevlex orders with x > y > z > w, show
that the resulting Gröbner bases are the same. So grevlex is not always better than
lex, but in practice, it is usually a good idea to use grevlex whenever possible.


