Math 437 - Homework 4

Due 10:15am on Thursday, February 9, 2017

Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together in small groups, but please try the problems on your own first and write up your own solutions.

Problem 1. Let $p(x)=x^{3}+x+1 \in \mathbb{Z}_{2}[x]$, as in Example 4.2 from the book.
(a) Give a 3×7 matrix H (with entries in \mathbb{Z}_{2}) that satisfies

$$
\left(\begin{array}{lll}
1 & a & a^{2}
\end{array}\right) H=\left(\begin{array}{lllllll}
1 & a & a^{2} & a^{3} & a^{4} & a^{5} & a^{6}
\end{array}\right)
$$

in the field $\mathbb{Z}_{2}[a] /(p(a))$.
(b) Explain why H is a parity check matrix for the BCH code resulting from the first power of a in $\mathbb{Z}_{2}[a] /(p(a))$.
(c) Explain why the BCH code from part (b) is a Hamming code.

Problem 2. Let $p \in \mathbb{Z}_{2}[x]$ be a primitive polynomial of degree n and take $F=\mathbb{Z}_{2}[a] /(p(a))$. Show that every element of F^{*} is a root of the polynomial $f(x)=x^{N}-1$ where $N=2^{n}-1$. (This implies that the minimal polynomial of any element of F^{*} divides $x^{N}-1$.)

Problem 3. Consider the field $F=\mathbb{Z}_{2}[a] /(p(a))$ where $p(x)=x^{4}+x^{3}+1 \in \mathbb{Z}_{2}[x]$. We see that p is primitive by looking at the powers a^{k} in F :

a^{k}	rep. in F	a^{k}	rep. in F		a^{k}	rep. in F		a^{k}	rep. in F
a^{0}	1	a^{4}	$1+a^{3}$		a^{8}	$a+a^{2}+a^{3}$		a^{12}	$1+a$
a^{1}	a	a^{5}	$1+a+a^{3}$		a^{9}	$1+a^{2}$		a^{13}	$a+a^{2}$
a^{2}	a^{2}		a^{6}	$1+a+a^{2}+a^{3}$		a^{10}	$a+a^{3}$		a^{14}
a^{3}	a^{3}		a^{7}	$1+a+a^{2}$		a^{21}	$1+a^{2}$		
				$a^{3}+a^{3}$		a^{15}	1		

(a) Find the minimal polynomial of each element in F^{*}.
(Using that b and b^{2} have the same minimal polynomial will save on computations!)
(b) For each value of $2 t$, give the following data for the BCH code resulting from the first $2 t$ powers of a in F :

$2 t$	\# Correctable Errors	Degree of generator polynomial	Linear code parameters	\# Codewords
2				
4				
6				
8				
14				

