Math 437 - Homework 3

Due 10:15am on Thursday, February 2, 2017
Please indicate any sources you used for a given problem on the solution to that problem. For example, if you worked with another student to get the solution to a problem, please indicate who. You are welcome to work together in small groups, but please try the problems on your own first.

Problem 1. Let $a=x^{6}+x^{2}+1$ and $b=x^{4}+x^{3}+x^{2}+x+1$ in $\mathbb{Z}_{2}[x]$.
(a) Find the greatest common divisor of a and b.
(b) Find polynomials $c, d \in \mathbb{Z}_{2}[x]$ so that $a c+b d=\operatorname{gcd}(a, b)$.

Problem 2.

(a) Let F be a field and $f(x) \in F[x]$ be a polynomial of degree 2 or 3 . Show that f is irreducible if and only if $f(x)$ does not have any roots in F
(b) Find all irreducible polynomials of degree 1,2 , and 3 in $\mathbb{Z}_{2}[x]$.
(c) Give an example of a reducible polynomial of degree 4 in $\mathbb{Z}_{2}[x]$ with no roots in \mathbb{Z}_{2}.

Problem 3. Let F be the field $\mathbb{Z}_{2}[x] /(f)$ where $f=x^{3}+x^{2}+1$.
(a) How many elements are in F and F^{*} ?
(b) For each $1 \leq k \leq 7$, find a polynomial of degree ≤ 2 in $\mathbb{Z}_{2}[x]$ that equals $x^{k} \bmod (f)$. Is f primitive?
(c) Find a multiplicative inverse for $x^{2}+x+1$ in F.

