The Convex Hull of a Parametrized Curve

Cynthia Vinzant

Department of Mathematics University of California, Berkeley

SIAM - Convex Algebraic Geometry

July 15, 2010

→

Faces and Vertices of Convex Hulls

Let $\overline{\mathbf{f}}(t) = (f_1(t), \dots, f_n(t))$ where $f_j \in \mathbb{R}[t]$ and let $\mathcal{D} \subseteq \mathbb{R}$.

Our curve: $C = \{\overline{\mathbf{f}}(t) : t \in \mathcal{D}\}$

▲□ → ▲ 臣 → ▲ 臣 → ○ ● ○ ○ ○ ○

Faces and Vertices of Convex Hulls

Let $\overline{\mathbf{f}}(t) = (f_1(t), \dots, f_n(t))$ where $f_j \in \mathbb{R}[t]$ and let $\mathcal{D} \subseteq \mathbb{R}$.

Our curve: $C = \{\overline{\mathbf{f}}(t) : t \in \mathcal{D}\}$

Goal: Compute the set of $(a_1, \ldots, a_r) \in \mathcal{D}^r$ where $\overline{\mathbf{f}}(a_1), \ldots, \overline{\mathbf{f}}(a_r) \in \mathbb{R}^n$ are the **vertices of a face** of conv(*C*).

伺下 イヨト イヨト

Faces and Vertices of Convex Hulls

Let $\overline{\mathbf{f}}(t) = (f_1(t), \dots, f_n(t))$ where $f_j \in \mathbb{R}[t]$ and let $\mathcal{D} \subseteq \mathbb{R}$.

Our curve: $C = \{\overline{\mathbf{f}}(t) : t \in \mathcal{D}\}$

Goal: Compute the set of $(a_1, \ldots, a_r) \in \mathcal{D}^r$ where $\overline{\mathbf{f}}(a_1), \ldots, \overline{\mathbf{f}}(a_r) \in \mathbb{R}^n$ are the **vertices of a face** of conv(*C*).

Example:
$$C = \{(t, 4t^3 - 3t, 16t^5 - 20t^3 + 5t) : t \in [-1, 1]\}$$

Many ways to represent the convex hull of a curve

白 ト イヨト イヨト

æ

Zariski Closure of $\partial \operatorname{conv}(C)$

(Ranestad and Sturmfels, 2010):

- works on general varieties, hard to compute
- gives algebraic information

Many ways to represent the convex hull of a curve

Zariski Closure of $\partial \operatorname{conv}(C)$

(Ranestad and Sturmfels, 2010):

- works on general varieties, hard to compute
- gives algebraic information

Projection of a Spectrahedron (Henrion, 2010):

- easy to compute, easy optimization
- hard to recover algebra/faces of $\partial \operatorname{conv}(C)$

Many ways to represent the convex hull of a curve

Zariski Closure of $\partial \operatorname{conv}(C)$

(Ranestad and Sturmfels, 2010):

- works on general varieties, hard to compute
- gives algebraic information

Projection of a Spectrahedron (Henrion, 2010):

- easy to compute, easy optimization
- hard to recover algebra/faces of $\partial \operatorname{conv}(C)$

Face-vertex set (this talk):

- complete facial information of conv(C)
- invariant under change of coordinates
- medium-hard to compute

Affine Functions \longleftrightarrow Polynomials

Affine functions on $\mathbb{R}^n \leftrightarrow$ Polynomials in span $\{1, f_1, \ldots, f_n\}$

$$w_0 + w^t x \iff g(t) = w_0 + \sum_j w_j f_j(t)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Affine functions on $\mathbb{R}^n \leftrightarrow$ Polynomials in span $\{1, f_1, \ldots, f_n\}$

$$w_0 + w^t x \iff g(t) = w_0 + \sum_j w_j f_j(t)$$

Nonnegativity: The halfspace $\{w^T x \ge w_0\}$ contains the curve $C = \{\overline{\mathbf{f}}(t) : t \in \mathcal{D}\}$ if and only if the polynomial $g(t) \ge 0$ on \mathcal{D} .

Equality: The intersection of the curve C and the plane $\{w^T x = w_0\}$ is the set of points $\{\bar{\mathbf{f}}(a) : g(a) = 0\}$.

伺 とう ヨン うちょう

Affine functions on $\mathbb{R}^n \leftrightarrow$ Polynomials in span $\{1, f_1, \ldots, f_n\}$

$$w_0 + w^t x \quad \longleftrightarrow \quad g(t) = w_0 + \sum_j w_j f_j(t)$$

Nonnegativity: The halfspace $\{w^T x \ge w_0\}$ contains the curve $C = \{\bar{\mathbf{f}}(t) : t \in \mathcal{D}\}$ if and only if the polynomial $g(t) \ge 0$ on \mathcal{D} .

Equality: The intersection of the curve C and the plane $\{w^T x = w_0\}$ is the set of points $\{\bar{\mathbf{f}}(a) : g(a) = 0\}$.

Faces: The points $\{\overline{\mathbf{f}}(a_1), \dots, \overline{\mathbf{f}}(a_r)\}$ are the vertices of a face \Leftrightarrow there exists $g \in \operatorname{span}\{1, f_1, \dots, f_n\}$ with $g \ge 0$ on \mathcal{D} and $\{t \in \mathcal{D} : g(t) = 0\} = \{a_1, \dots, a_r\}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Side note: Dual Bodies

The dual cone of $\operatorname{conv}(C)$ is $\{g \in \operatorname{span}\{1, f_j\} : g \ge 0 \text{ on } \mathcal{D}\}.$

回 と く ヨ と く ヨ と …

æ

Side note: Dual Bodies

The dual cone of $\operatorname{conv}(C)$ is $\{g \in \operatorname{span}\{1, f_j\} : g \ge 0 \text{ on } \mathcal{D}\}.$

3

Example 1:

 $conv(1, t, t^2)$

Side note: Dual Bodies

The dual cone of $\operatorname{conv}(C)$ is $\{g \in \operatorname{span}\{1, f_j\} : g \ge 0 \text{ on } \mathcal{D}\}.$

ゆ く き と く き と

Prop. For $\{a_1, \ldots, a_s\} \subset int(\mathcal{D})$ and $\{a_{s+1}, \ldots, a_r\} \in \partial \mathcal{D}$, TFAE:

Let $V_r \subset \mathcal{D}^r$ be the set of (a_1, \ldots, a_r) satisfying these conditions.

Prop. For
$$\{a_1, \ldots, a_s\} \subset int(\mathcal{D})$$
 and $\{a_{s+1}, \ldots, a_r\} \in \partial \mathcal{D}$, TFAE:

1.
$$\exists g \in \operatorname{span}\{1, f_1 \dots, f_n\}$$
 with $g(a_j) = 0$
and $g'(a_j) = 0$ for $j = 1, \dots, s$

□ > ★ E > ★ E > _ E

Let $V_r \subset \mathcal{D}^r$ be the set of (a_1, \ldots, a_r) satisfying these conditions.

Prop. For
$$\{a_1, \ldots, a_s\} \subset int(\mathcal{D})$$
 and $\{a_{s+1}, \ldots, a_r\} \in \partial \mathcal{D}$, TFAE:

1.
$$\exists g \in \operatorname{span}\{1, f_1, \dots, f_n\}$$
 with $g(a_j) = 0$
and $g'(a_j) = 0$ for $j = 1, \dots, s$

2.
$$\{\overline{\mathbf{f}}(\mathbf{a}_j)\} \cup \{\overline{\mathbf{f}}(\mathbf{a}_j) + \overline{\mathbf{f}}'(\mathbf{a}_j) : \mathbf{a}_j \in \operatorname{int} \mathcal{D}\}$$

lie in a common hyperplane

伺 とう ヨン うちょう

2

Let $V_r \subset \mathcal{D}^r$ be the set of (a_1, \ldots, a_r) satisfying these conditions.

Prop. For
$$\{a_1, \ldots, a_s\} \subset int(\mathcal{D})$$
 and $\{a_{s+1}, \ldots, a_r\} \in \partial \mathcal{D}$, TFAE:

1.
$$\exists g \in \operatorname{span}\{1, f_1, \dots, f_n\}$$
 with $g(a_j) = 0$
and $g'(a_j) = 0$ for $j = 1, \dots, s$

2.
$$\{\overline{\mathbf{f}}(a_j)\} \cup \{\overline{\mathbf{f}}(a_j) + \overline{\mathbf{f}}'(a_j) : a_j \in \operatorname{int} \mathcal{D}\}$$

lie in a common hyperplane

伺 とう ヨン うちょう

2

3. rank
$$\left(\begin{bmatrix} 1 & \dots & 1 & 1 & \dots & 1 \\ \overline{\mathbf{f}}(\mathbf{a}_1) & \dots & \overline{\mathbf{f}}(\mathbf{a}_r) & \overline{\mathbf{f}}'(\mathbf{a}_1) & \dots & \overline{\mathbf{f}}'(\mathbf{a}_s) \end{bmatrix} \right) \leq n$$

Let $V_r \subset \mathcal{D}^r$ be the set of (a_1, \ldots, a_r) satisfying these conditions.

"Discriminant": $S := \pi(V_{r+1}) \cup \operatorname{sing}(V_r) \cup ...$ has codim-1 in V_r .

To test which points in $V_r \setminus S$ are the vertices of a face on conv(*C*) it suffices to test one point in each connected component of $V_r \setminus S$.

Example:
$$C = \{(t, 4t^3 - 3t, 16t^5 - 20t^3 + 5t) : t \in [-1, 1]\}$$

 V_2 (potential edges)

 $\pi(V_3)$ (potential edges of 2-faces)

"Discriminant": $S := \pi(V_{r+1}) \cup \operatorname{sing}(V_r) \cup ...$ has codim-1 in V_r .

To test which points in $V_r \setminus S$ are the vertices of a face on conv(C) it suffices to test one point in each connected component of $V_r \setminus S$.

For fixed $(a_j)_j \in V_r \setminus S$, this only involves testing whether a linear space in $\mathbb{R}[t]$ contains a polynomial $g \ge 0$ on \mathcal{D} . (an SDP!)

Example:
$$C = \{(t, 4t^3 - 3t, 16t^5 - 20t^3 + 5t) : t \in [-1, 1]\}$$

 $V_2 \setminus S$ (test points)

(4) (5) (4) (5) (4)

"Discriminant": $S := \pi(V_{r+1}) \cup \operatorname{sing}(V_r) \cup ...$ has codim-1 in V_r .

To test which points in $V_r \setminus S$ are the vertices of a face on conv(C) it suffices to test one point in each connected component of $V_r \setminus S$.

For fixed $(a_j)_j \in V_r \setminus S$, this only involves testing whether a linear space in $\mathbb{R}[t]$ contains a polynomial $g \ge 0$ on \mathcal{D} . (an SDP!)

Example:
$$C = \{(t, 4t^3 - 3t, 16t^5 - 20t^3 + 5t) : t \in [-1, 1]\}$$

 $\begin{array}{l} V_2 \qquad (\text{potential edges}) \\ \pi(V_3) \ (\text{potential edges} \\ \text{of 2-faces}) \end{array}$

 $V_2 \setminus S$ (test points)

(4) (5) (4) (5) (4)

"Discriminant": $S := \pi(V_{r+1}) \cup \operatorname{sing}(V_r) \cup ...$ has codim-1 in V_r .

To test which points in $V_r \setminus S$ are the vertices of a face on conv(C) it suffices to test one point in each connected component of $V_r \setminus S$.

For fixed $(a_j)_j \in V_r \setminus S$, this only involves testing whether a linear space in $\mathbb{R}[t]$ contains a polynomial $g \ge 0$ on \mathcal{D} . (an SDP!)

Example:
$$C = \{(t, 4t^3 - 3t, 16t^5 - 20t^3 + 5t) : t \in [-1, 1]\}$$

 $\begin{array}{l} V_2 & (\text{potential edges}) \\ \pi(V_3) & (\text{potential edges} \\ & \text{of 2-faces}) \end{array}$

 $V_2 \setminus S$ (test points)

向下 イヨト イヨト

Audience Challenge: Visualizing 4-dim'l convex bodies

Example:
$$C = \{(t, t^3, t^5, t^7) : t \in [-1, 1]\} \subset \mathbb{R}^4$$

For fixed \mathcal{D} , the face-vertex sets of conv(*C*) depend only on span $\{1, f_1(t), \ldots, f_n(t)\} \subset \mathbb{R}[t]$.

If deg $(f_j) \leq d$ then span $\{f_1, \ldots, f_n\}$ is a point in $Gr(n, \mathbb{R}[t]_{\leq d})$.

伺下 イヨト イヨト

For fixed \mathcal{D} , the face-vertex sets of conv(*C*) depend only on span $\{1, f_1(t), \ldots, f_n(t)\} \subset \mathbb{R}[t]$.

If deg $(f_j) \leq d$ then span $\{f_1, \ldots, f_n\}$ is a point in $Gr(n, \mathbb{R}[t]_{\leq d})$.

Example: $C = \{(f_1(t), f_2(t)) : t \in \mathbb{R}\}$ with deg $(f_j) \leq 4$.

For fixed \mathcal{D} , the face-vertex sets of conv(*C*) depend only on span{1, $f_1(t), \ldots, f_n(t)$ } $\subset \mathbb{R}[t]$.

If deg $(f_j) \leq d$ then span $\{f_1, \ldots, f_n\}$ is a point in $Gr(n, \mathbb{R}[t]_{\leq d})$.

Example: $C = \{(f_1(t), f_2(t)) : t \in \mathbb{R}\}$ with deg $(f_j) \leq 4$.

The set of planes in $\mathbb{R}[t]_{\leq 4}$ containing a polynomial $(t - a)^4$ form a hypersurface \mathcal{H} of in Gr(2, 4), given by

 $2p_{2,3}^3 - 12p_{1,3}p_{2,3}p_{2,4} + 27p_{1,2}p_{2,4}^2 + 32p_{1,3}^2p_{3,4} - 72p_{1,2}p_{1,4}p_{3,4} - 24p_{1,2}p_{2,3}p_{3,4}$

The **number of edges** of conv(C) is determined by what region of $Gr(2, 4) \setminus \mathcal{H}$ contains the plane $span\{f_1, f_2\}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Cynthia Vinzant The Convex Hull of a Parametrized Curve

□ > < ∃ >

- < ≣ →

æ

- Given n, d, what are possible dimensions and degrees for V_r ?
- What is the stratification of $Gr(n, \mathbb{R}[t]_{\leq d})$?

伺 とう ヨン うちょう

æ

- Given n, d, what are possible dimensions and degrees for V_r ?
- What is the stratification of $Gr(n, \mathbb{R}[t]_{\leq d})$?
- What can we *easily* recover about $\overline{\partial \operatorname{conv}(C)}$?

医下 不至下。

- Given n, d, what are possible dimensions and degrees for V_r ?
- What is the stratification of $Gr(n, \mathbb{R}[t]_{\leq d})$?
- What can we *easily* recover about $\overline{\partial \operatorname{conv}(C)}$?
- ► What does $\operatorname{conv}(\operatorname{in}_{\succeq} \overline{\mathbf{f}}(t) : t \in \mathbb{R})$ tell us about $\operatorname{conv}(\overline{\mathbf{f}}(t) : t \in \mathbb{R})$?

向下 イヨト イヨト

- Given n, d, what are possible dimensions and degrees for V_r ?
- What is the stratification of $Gr(n, \mathbb{R}[t]_{\leq d})$?
- What can we *easily* recover about $\overline{\partial \operatorname{conv}(C)}$?
- What does conv(in_≥ f(t) : t ∈ ℝ) tell us about conv(f(t) : t ∈ ℝ)? Relation to SAGBI bases?

(4) (3) (4) (3) (4)

- Given n, d, what are possible dimensions and degrees for V_r ?
- What is the stratification of $Gr(n, \mathbb{R}[t]_{\leq d})$?
- What can we *easily* recover about $\overline{\partial \operatorname{conv}(C)}$?
- What does conv(in_≥ f(t) : t ∈ ℝ) tell us about conv(f(t) : t ∈ ℝ)? Relation to SAGBI bases?

Thanks!

글 제 제 글 제