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Puiseux series, valuations, and tropical varieties

For k = R, C, take the Puiseux series over k:

k{{t}} = Unen K((£"/7)).
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Puiseux series, valuations, and tropical varieties

For k = R, C, take the Puiseux series over k:
k{t}} = Unen k((t¥/")).

This is an algebraically closed (k = C) or real closed (k = R) field
with valuation val : k{{t}}* — Q:

val (Z cqtq) =min{q | cq # 0}.

This extends coordinate-wise to val : k{{t}}" — Q".
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Puiseux series, valuations, and tropical varieties

For k = R, C, take the Puiseux series over k:
k{t}} = Unen k((t¥/")).

This is an algebraically closed (k = C) or real closed (k = R) field
with valuation val : k{{t}}* — Q:

val (Z cqtq) =min{q | cq # 0}.
This extends coordinate-wise to val : k{{t}}" — Q".

Eg val(3t2 +17t> + ..., 6t Y3 45+ t1/3 1 ) = (2,-1/3).
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Puiseux series, valuations, and tropical varieties

For k = R, C, take the Puiseux series over k:
k{t}} = Unen k((t¥/")).

This is an algebraically closed (k = C) or real closed (k = R) field
with valuation val : k{{t}}* — Q:

val (Z cqtq> =min{q | cq # 0}.
This extends coordinate-wise to val : k{{t}}" — Q".
Eg val(3t2 +17t> + ..., 6t Y3 45+ t1/3 1 ) = (2,-1/3).

We can take the variety of | C Kk[xi, ..., x,] over k{{t}}.

The k-tropical variety of / is Tropy (/) = —val(Vigep!) C R
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Logarithmic limit sets

For t € Ry and V C k", consider the image under log,(| - |):

A1) =log.(|V]) (taken coordinate-wise).
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Logarithmic limit sets

For t € Ry and V C k", consider the image under log,(| - |):
A1) =log.(|V]) (taken coordinate-wise).
The logarithmic limit set of V C k" is the limit as t — oo:

As(V) = lim A(V)
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Logarithmic limit sets

For t € Ry and V C k", consider the image under log,(| - |):
A1) =log.(|V]) (taken coordinate-wise).
The logarithmic limit set of V C k" is the limit as t — oo:

As(V) = lim A(V)

For both k = R, C, A (Vk(/)) equals Tropy (/).
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Connections with initial ideals

For w e R, f =3 cax®, define in, (f) = > c 4 CaX®, where A
is the set of a maximizing w - . Then iny, (/) = (iny(f) : f € ).
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Connections with initial ideals

For w e R, f =3 cax®, define in, (f) = > c 4 CaX®, where A
is the set of a maximizing w - . Then iny, (/) = (iny(f) : f € ).

One can define Tropc(/) in terms of initial ideals:
Tropc(l) = {w € R" : V(iny,(l))N(C*)" #£0}.
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Connections with initial ideals

For w e R, f =3 cax®, define in, (f) = > c 4 CaX®, where A
is the set of a maximizing w - . Then iny, (/) = (iny(f) : f € ).

One can define Tropc(/) in terms of initial ideals:
Tropc(l) = {w € R" : V(iny,(l))N(C*)" #£0}.

Over R, we only have that
Tropr(/) € {w e R" : V(iny(l)) N (R*)" #0}.
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Connections with initial ideals

For w e R, f =3 cax®, define in, (f) = > c 4 CaX®, where A
is the set of a maximizing w - . Then iny, (/) = (iny(f) : f € ).

One can define Tropc(/) in terms of initial ideals:
Tropc(l) = {w € R" : V(iny,(l))N(C*)" #£0}.

Over R, we only have that
Tropr(/) € {w e R" : V(iny(l)) N (R*)" #0}.

E.g. For I = ((x —y)?>+1), Vr(/) = 0 and Tropg(/) =0,
but Ve- (in(1,1)(1)) = Ve ((x — y)?) # 0.
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Example: sextic plane curve

Consider | = (x® — x3 + y?).
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Example: sextic plane curve

Consider | = (x® — x3 + y?). Some points in Vg (/) are ...

(x,y) = (t2, 3 — g _ fsj -+ .. ) — —val(x,y) — (_2,_3)
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Example: sextic plane curve

Consider | = (x® — x3 + y?). Some points in Vg (/) are ...

(x,y): t2, t3_§—?+..-> — —val(x,y):(—Q,_3)
(X:y): 1—%—%1‘44', t) — —va|(X7y):(O’_1)
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Example: sextic plane curve

Consider | = (x® — x3 + y?). Some points in Vg (/) are ...
(x,y) = (t? 23— %_t;—i—...) - —val(x,y) =(-2,-3)

£t t) —  —val(x,y) =(0,-1)

, ft%Jr +%+...) —  —val(x,y) =(1,3)
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Example: sextic plane curve

Consider | = (x® — x3 + y?). Some points in Vg (/) are ...

(x,y): t2, t3_%_f8j+...> — —val(x,y):(—Q,_3)
(x,}/): 1—%-%1‘44', t) — —va|(X7y):(O’_1)
(x,y) = (1, ,%+£+§+m) - —val(x,y) = (1,3)

(1,3)

Vr=(1) Tropc(/) Tropr(/)
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Tropical varieties are polyhedral fans

Theorem (Fundamental Theorem of Tropical Geometry)

For an irreducible ideal | C C[xy, ..., xn], Tropc(!) is a rational
pure-dimensional polyhedral fan of dimensional d = dim(Vc+(1)).
Counting cones with appropriate multiplicities, it is balanced.
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Tropical varieties are polyhedral fans

Theorem (Fundamental Theorem of Tropical Geometry)

For an irreducible ideal | C C[xy, ..., xn], Tropc(!) is a rational
pure-dimensional polyhedral fan of dimensional d = dim(Vc+(1)).
Counting cones with appropriate multiplicities, it is balanced.

Theorem (Alessandrini, 2013)

For an ideal | C R[x1,...,xp], Tropr(!) is a rational polyhedral fan
of dimensional d < dim(Vg+(1)).
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Computing Tropical Varieties

Symbolic Algorithm: Gfan — developed by Jensen
uses Grobner bases to compute Tropc(/) for any | C Q[x1, ..., xn].
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Computing Tropical Varieties

Symbolic Algorithm: Gfan — developed by Jensen
uses Grobner bases to compute Tropc(/) for any | C Q[x1, ..., xn].

Numerical Algorithms:

» Tropc of hypersurfaces (Hauenstein, Sottile, 2014)
» Tropc of curves (Jensen, Leykin, Yu, 2015)

» Tropc and Tropgr of curves (Brake, Hauenstein, V-)
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Computing Tropical Varieties

Symbolic Algorithm: Gfan — developed by Jensen
uses Grobner bases to compute Tropc(/) for any | C Q[x1, ..., xn].

Numerical Algorithms:

» Tropc of hypersurfaces (Hauenstein, Sottile, 2014)
» Tropc of curves (Jensen, Leykin, Yu, 2015)

» Tropc and Tropgr of curves (Brake, Hauenstein, V-)

Numerical algorithms do not require defining equations.

Curves are tractable and are used in internal computations for
Tropc of larger dimensional varieties.
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Strategy for computing Trop; (/)

Given an ideal | C k[x,...,xp] defining a curve C = Vi (/) ...
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Strategy for computing Trop; (/)

Given an ideal | C k[x,...,xp] defining a curve C = Vi (/) ...

» Find intersection points p of C with {x; = 0}j=1 __p.
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Strategy for computing Trop; (/)

Given an ideal | C k[x,...,xp] defining a curve C = Vi (/) ...

» Find intersection points p of C with {x; = 0}j=1 __p.

» For each p, numerically find an analytic parametrization of the
branches of C around p
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Strategy for computing Trop; (/)

Given an ideal | C k[x,...,xp] defining a curve C = Vi (/) ...

» Find intersection points p of C with {x; = 0}j=1 __p.

» For each p, numerically find an analytic parametrization of the
branches of C around p

» Calculate leading terms of the power series expansion of this
parametrization using Cauchy integrals
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Strategy for computing Trop; (/)

Given an ideal | C k[x,...,xp] defining a curve C = Vi (/) ...

» Find intersection points p of C with {x; = 0}j=1 __p.

» For each p, numerically find an analytic parametrization of the
branches of C around p

» Calculate leading terms of the power series expansion of this
parametrization using Cauchy integrals

Cauchy Integrals: If f(z) is analytic on {z € C: |z| < 7}, then

KU (27 f(re)
k
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Finding an analytic parametrization: monodromy

Suppose {P(s) : s € [0,7]} C C and Pj(s) = s.
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Finding an analytic parametrization: monodromy

Suppose {P(s) : s € [0,7]} C C and Pj(s) = s.

Track the path P(re) for 6 € [0, 27].
The limit for § = 27 lies in CN {x; = 7}.
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Finding an analytic parametrization: monodromy

Suppose {P(s) : s € [0,7]} C C and Pj(s) = s.

Track the path P(re) for 6 € [0, 27].
The limit for § = 27 lies in CN {x; = 7}.

The cycle number of the path is c if P(re’)
for 0 € [0, ¢ - 27] tracks to P(0).
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Finding an analytic parametrization: monodromy

Suppose {P(s) : s € [0,7]} C C and Pj(s) = s.

Track the path P(re) for 6 € [0, 27].
The limit for § = 27 lies in CN {x; = 7}.

P(s) The cycle number of the path is c if P(re’)
for 0 € [0, ¢ - 27] tracks to P(0).

After re-parametrizing by s — s€,

each coordinate Py(s) analytic in s.
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Finding an analytic parametrization: monodromy

Suppose {P(s) : s € [0,7]} C C and Pj(s) = s.

Track the path P(re) for 6 € [0, 27].
The limit for § = 27 lies in CN {x; = 7}.

P(s) The cycle number of the path is c if P(re’)
for 0 € [0, ¢ - 27] tracks to P(0).

After re-parametrizing by s — s€,
each coordinate Py(s) analytic in s.

Example: C = Ve(x3 — y?), P(s) = (s,5%?).
Cycle number = 2

Cynthia Vinzant Numerical methods for computing real and complex tropical c



Finding an analytic parametrization: monodromy

Suppose {P(s) : s € [0,7]} C C and Pj(s) = s.

Track the path P(re) for 6 € [0, 27].
The limit for § = 27 lies in CN {x; = 7}.

The cycle number of the path is c if P(re’)
for 0 € [0, ¢ - 27] tracks to P(0).

After re-parametrizing by s — s€,
each coordinate Py(s) analytic in s.

Example: C = Ve(x3 — y?), P(s) = (s,5%?).
Cycle number = 2

Re-parametrize: s — s, P(s) = (s2,s%)
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Sketch of Algorithm

Let C C C" be an irreducible curve.
> Take C C P"(C) and an affine slice C={t=1}n¢C
containing all the points C N V(xox1 - Xp).
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Sketch of Algorithm

Let C C C" be an irreducible curve.
> Take C C P"(C) and an affine slice C={t=1}n¢C
containing all the points C N V(xox1 - Xp).
» Compute T* = min(|T|) such that {x; — T} is tangent to C.
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Sketch of Algorithm

Let C C C" be an irreducible curve.
» Take C C P"(C) and an affine slice C= {t=13ncC
containing all the points C N V(xox1 - Xp).

» Compute T* = min(|T|) such that {x; — T} is tangent to C.
> For 7 < T*, slice C with {xi —7}.
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Sketch of Algorithm

Let C C C" be an irreducible curve.

» Take C C P"(C) and an affine slice C= {t=13ncC
containing all the points C N V(xox1 - Xp).

» Compute T* = min(|T|) such that {x; — T} is tangent to C.
> For 7 < T*, slice C with {xi —7}.

» Track points to {x; = 0} and compute valuations using
re-parametrization and Cauchy integrals.
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Sketch of Algorithm

Let C C C" be an irreducible curve.
» Take C C P"(C) and an affine slice C= {t=13ncC
containing all the points C N V(xox1 - Xp).
» Compute T* = min(|T|) such that {x; — T} is tangent to C.
> For 7 < T*, slice C with {xi —7}.

» Track points to {x; = 0} and compute valuations using
re-parametrization and Cauchy integrals.

Cynthia Vinzant Numerical methods for computing real and complex tropical c



Example: quartic plane curve

Replace C = V(x¢x2 — x1x3 + 53 — x3) C C? with

C=V(3x — x1x3 + xox3 — x2x2, Xo+x1+ 2 —1) C C3.
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Example: quartic plane curve

Replace C = V(x¢x2 — x1x3 + 53 — x3) C C? with

C=V(3x — x1x3 + xox3 — x2x2, Xo+x1+ 2 —1) C C3.

C NV (xoxxe) = {(0,1,0),(0,1/3,1/3),(0,0,1/2), (0, —1,1), (1,0,0)}
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Example: quartic plane curve

Replace C = V(x¢x2 — x1x3 + 53 — x3) C C? with

C=V(3x — x1x3 + xox3 — x2x2, Xo+x1+ 2 —1) C C3.
€N V(xoxx) = {(0,1,0),(0,1/3,1/3),(0,0,1/2), (0, —1,1), (1,0,0)}

The point p ~ (0.8293,0.1,0.0354) C cn {xy = .1} tracks to (1,0,0).
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Example: quartic plane curve

Replace C = V(x¢x2 — x1x3 + 53 — x3) C C? with

C=V(3x — x1x3 + xox3 — x2x2, Xo+x1+ 2 —1) C C3.
€N V(xoxx) = {(0,1,0),(0,1/3,1/3),(0,0,1/2), (0, —1,1), (1,0,0)}

The point p ~ (0.8293,0.1,0.0354) C cn {xy = .1} tracks to (1,0,0).

Valuation of the path is (0,2,3) — (—2,-3) € Tropc(C).
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Real Tropical Strategy

We can compute Tropr(C) similarly to Tropc(C).

This requires checking {x; = =7} for real points and only
considering real paths converging to C N {x; = 0}.
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Real Tropical Strategy

We can compute Tropr(C) similarly to Tropc(C).
This requires checking {x; = =7} for real points and only

considering real paths converging to C N {xj = 0}.

Keeping track of signs of the parametrized paths gives
the signed real tropical variety.
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Computing curves in large spaces

A central curve defined by ...

[ X151 — X;Sj for J = 2, ..
—u + 2 — X1
—v + tt— X2
up — X3
Vi — Xa
t(uo 4+ vo) —vi — X5
tzuo — Ui — Xe
t2V0 —u; — X7)
t2X2 + x3 + x7 — t6
t2x1 + X3+ X6 — t4

s1 — tss — t2sg
Sy — tss — t2577 1
S3 — S — S7
L S4 — S5

L7

ta+ o+ X+ x5 —t—t°

Allamigeon, Benchimol, Gaubert, and
Joswig use real tropical methods to con-
struct a family of linear programs whose
central curves have high total curvature.
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Computing curves in large spaces

A central curve defined by ...

[ X151 — XjSj for j:2,...,7
—u + t? — X1
—v + t* — X2
up — X3
Vi — Xa
t(uo 4+ vo) —vi — X5
t2uo — Ui — Xe
t2V0 —u —X7)
t2X2 + x3 + x7 — t6
t2x1 + X3+ X6 — t4
txq + o 4+ xa + x5 — t2 — t°
s1 — tss — t2sg
Sy — tss — t2577 1
53 — S — 57
S4 — S5

Allamigeon, Benchimol, Gaubert, and
Joswig use real tropical methods to con-
struct a family of linear programs whose
central curves have high total curvature.

In this example, the polynomials define a
reducible algebraic variety consisting of two
3-planes, five 2-planes, four lines, and a de-
gree 10 central curve C.
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Computing curves in large spaces

A central curve defined by ...

Allamigeon, Benchimol, Gaubert, and
Joswig use real tropical methods to con-
struct a family of linear programs whose
central curves have high total curvature.

_X151—Xij for j:2,...,7_
—UQ+t2—X1
—Vo+t4—X2

up — X3
Vi — Xa
t(uwo +v0) —vi — x5 In this example, the polynomials define a

t2uo — Ui — Xe
t2V0 —u; — X7)
t2X2 + x3 + x7 — t6
t2x1 + X3+ X6 — t4
txi + txo + x4+ x5 — 5 — t°
s1 — tss — t2sg
Sy — tss — t257 -1
S3— Se — S7
S4 — S5

reducible algebraic variety consisting of two
3-planes, five 2-planes, four lines, and a de-
gree 10 central curve C.

Our algorithm find that the tropical variety
Tropc(C) = Tropr(C) consists of 10 rays
with multiplicites 6,4,3,2,2,1,1,1,1,1.
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Looking beyond

Numerical methods can be used to extract
combinatorial data from complex and real
algebraic varieties, including tropicalizations.

|
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Looking beyond

Numerical methods can be used to extract
combinatorial data from complex and real
algebraic varieties, including tropicalizations.

|

We would like to develop these methods for
varieties of dimension > 1, like surfaces,
over both C and R.

Tropicalizations of varieties higher dimension
can also be used to compute tropical varieties
of ideals in k{{t}}[x1, - .., xn], which are used
in many applications (like central curves).
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Looking beyond

Numerical methods can be used to extract
combinatorial data from complex and real
algebraic varieties, including tropicalizations.

|

We would like to develop these methods for
varieties of dimension > 1, like surfaces,
over both C and R.

Tropicalizations of varieties higher dimension
can also be used to compute tropical varieties

Thank you! of ideals in k{{t}}[x1, ..., xn], which are used
in many applications (like central curves).
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