Numerical methods for computing real and complex tropical curves

Cynthia Vinzant

North Carolina State University

joint with Daniel Brake and Jonathan Hauenstein

Puiseux series, valuations, and tropical varieties

For $\mathbb{k} = \mathbb{R}, \mathbb{C}$, take the Puiseux series over \mathbb{k} : $\mathbb{k}\{\{t\}\} = \cup_{n \in \mathbb{N}} \mathbb{k}((t^{1/n})).$

伺 と く き と く き と

For $\mathbb{k} = \mathbb{R}, \mathbb{C}$, take the Puiseux series over \mathbb{k} : $\mathbb{k}\{\{t\}\} = \cup_{n \in \mathbb{N}} \mathbb{k}((t^{1/n})).$

This is an algebraically closed $(\Bbbk = \mathbb{C})$ or real closed $(\Bbbk = \mathbb{R})$ field with valuation val : $\Bbbk\{\{t\}\}^* \to \mathbb{Q}$:

$$\mathsf{val}\left(\sum c_q t^q\right) = \mathsf{min}\{q \mid c_q \neq 0\}.$$

This extends coordinate-wise to val : $\mathbb{k}\{\{t\}\}^n \to \mathbb{Q}^n$.

・吊り ・ヨン ・ヨン ・ヨ

For $\Bbbk = \mathbb{R}, \mathbb{C}$, take the Puiseux series over \Bbbk : $\Bbbk\{\{t\}\} = \cup_{n \in \mathbb{N}} \ \Bbbk((t^{1/n})).$

This is an algebraically closed $(\mathbb{k} = \mathbb{C})$ or real closed $(\mathbb{k} = \mathbb{R})$ field with valuation val : $\mathbb{k}\{\{t\}\}^* \to \mathbb{Q}$: val $\left(\sum c_q t^q\right) = \min\{q \mid c_q \neq 0\}.$

This extends coordinate-wise to val : $\mathbb{k}\{\{t\}\}^n \to \mathbb{Q}^n$.

E.g. val $(3t^2 + 17t^5 + \dots, 6t^{-1/3} + 5 + t^{1/3} + \dots) = (2, -1/3).$

For $\mathbb{k} = \mathbb{R}, \mathbb{C}$, take the Puiseux series over \mathbb{k} : $\mathbb{k}\{\{t\}\} = \cup_{n \in \mathbb{N}} \mathbb{k}((t^{1/n})).$

This is an algebraically closed $(\Bbbk = \mathbb{C})$ or real closed $(\Bbbk = \mathbb{R})$ field with valuation val : $\Bbbk\{\{t\}\}^* \to \mathbb{Q}$: val $\left(\sum c_q t^q\right) = \min\{q \mid c_q \neq 0\}.$

This extends coordinate-wise to val : $\mathbb{k}\{\{t\}\}^n \to \mathbb{Q}^n$.

E.g. val $(3t^2 + 17t^5 + \dots, 6t^{-1/3} + 5 + t^{1/3} + \dots) = (2, -1/3).$

We can take the variety of $I \subset \mathbb{k}[x_1, \dots, x_n]$ over $\mathbb{k}\{\{t\}\}$. The \mathbb{k} -tropical variety of I is $\operatorname{Trop}_{\mathbb{k}}(I) = -\overline{\operatorname{val}(\mathcal{V}_{\mathbb{k}\{\{t\}\}}I)} \subset \mathbb{R}^n$.

Logarithmic limit sets

For $t \in \mathbb{R}_+$ and $V \subset \mathbb{k}^n$, consider the image under $\log_t(|\cdot|)$:

 $\mathcal{A}_t(I) = \log_t(|V|)$ (taken coordinate-wise).

Logarithmic limit sets

For $t \in \mathbb{R}_+$ and $V \subset \mathbb{k}^n$, consider the image under $\log_t(|\cdot|)$:

 $A_t(I) = \log_t(|V|)$ (taken coordinate-wise).

The logarithmic limit set of $V \subset \mathbb{k}^n$ is the limit as $t \to \infty$:

$$\mathcal{A}_{\infty}(V) = \lim_{t \to \infty} \mathcal{A}_t(V)$$

Logarithmic limit sets

For $t \in \mathbb{R}_+$ and $V \subset \mathbb{k}^n$, consider the image under $\log_t(|\cdot|)$:

 $A_t(I) = \log_t(|V|)$ (taken coordinate-wise).

The logarithmic limit set of $V \subset \mathbb{k}^n$ is the limit as $t \to \infty$:

$$\mathcal{A}_{\infty}(V) = \lim_{t \to \infty} \mathcal{A}_t(V)$$

For both $\Bbbk = \mathbb{R}, \mathbb{C}$, $\mathcal{A}_{\infty}(\mathcal{V}_{\Bbbk}(I))$ equals $\operatorname{Trop}_{\Bbbk}(I)$.

伺 とう ヨン うちょう

One can define $\operatorname{Trop}_{\mathbb{C}}(I)$ in terms of initial ideals: $\operatorname{Trop}_{\mathbb{C}}(I) = \{ w \in \mathbb{R}^n : \mathcal{V}(\operatorname{in}_w(I)) \cap (\mathbb{C}^*)^n \neq \emptyset \}.$

(周) (ヨ) (ヨ) (ヨ)

One can define $\operatorname{Trop}_{\mathbb{C}}(I)$ in terms of initial ideals: $\operatorname{Trop}_{\mathbb{C}}(I) = \{ w \in \mathbb{R}^n : \mathcal{V}(\operatorname{in}_w(I)) \cap (\mathbb{C}^*)^n \neq \emptyset \}.$

Over \mathbb{R} , we only have that $\operatorname{Trop}_{\mathbb{R}}(I) \subseteq \{ w \in \mathbb{R}^n : \mathcal{V}(\operatorname{in}_w(I)) \cap (\mathbb{R}^*)^n \neq \emptyset \}.$

▲□ ▶ ▲ ∃ ▶ ▲ ∃ ▶ □ ■ ● ● ● ●

One can define $\operatorname{Trop}_{\mathbb{C}}(I)$ in terms of initial ideals: $\operatorname{Trop}_{\mathbb{C}}(I) = \{ w \in \mathbb{R}^n : \mathcal{V}(\operatorname{in}_w(I)) \cap (\mathbb{C}^*)^n \neq \emptyset \}.$

Over \mathbb{R} , we only have that $\operatorname{Trop}_{\mathbb{R}}(I) \subseteq \{ w \in \mathbb{R}^n : \mathcal{V}(\operatorname{in}_w(I)) \cap (\mathbb{R}^*)^n \neq \emptyset \}.$

E.g. For
$$I = \langle (x - y)^2 + 1 \rangle$$
, $\mathcal{V}_{\mathbb{R}}(I) = \emptyset$ and $\operatorname{Trop}_{\mathbb{R}}(I) = \emptyset$,
but $\mathcal{V}_{\mathbb{R}^*}(\operatorname{in}_{(1,1)}(I)) = \mathcal{V}_{\mathbb{R}^*}((x - y)^2) \neq \emptyset$.

▲□ ▶ ▲ ∃ ▶ ▲ ∃ ▶ □ ■ ● ● ● ●

Consider
$$I = \langle x^6 - x^3 + y^2 \rangle$$
.

(4日) (日)

- < ≣ →

Consider
$$I = \langle x^6 - x^3 + y^2 \rangle$$
. Some points in $\mathcal{V}_{\mathbb{C}\{\{t\}\}}(I)$ are ...
 $(x, y) = \left(t^2, t^3 - \frac{t^9}{2} - \frac{t^{15}}{8} + \ldots\right) \rightarrow -\operatorname{val}(x, y) = (-2, -3)$

(4日) (日)

- < ≣ →

Consider
$$I = \langle x^6 - x^3 + y^2 \rangle$$
. Some points in $\mathcal{V}_{\mathbb{C}\{\{t\}\}}(I)$ are ...
 $(x, y) = \left(t^2, t^3 - \frac{t^9}{2} - \frac{t^{15}}{8} + ...\right) \rightarrow -\operatorname{val}(x, y) = (-2, -3)$
 $(x, y) = \left(1 - \frac{t^2}{3} - \frac{4t^4}{9} + ..., t\right) \rightarrow -\operatorname{val}(x, y) = (0, -1)$

(4日) (日)

- < ≣ →

Consider
$$I = \langle x^6 - x^3 + y^2 \rangle$$
. Some points in $\mathcal{V}_{\mathbb{C}\{\{t\}\}}(I)$ are ...
 $(x, y) = \begin{pmatrix} t^2, t^3 - \frac{t^9}{2} - \frac{t^{15}}{8} + \dots \end{pmatrix} \rightarrow -\operatorname{val}(x, y) = (-2, -3)$
 $(x, y) = \begin{pmatrix} 1 - \frac{t^2}{3} - \frac{4t^4}{9} + \dots, t \end{pmatrix} \rightarrow -\operatorname{val}(x, y) = (0, -1)$
 $(x, y) = \begin{pmatrix} \frac{1}{t}, -\frac{i}{t^3} + \frac{i}{2} + \frac{it^3}{8} + \dots \end{pmatrix} \rightarrow -\operatorname{val}(x, y) = (1, 3)$

(4日) (日)

- < ≣ →

 $\mathcal{V}_{\mathbb{R}^*(I)}$

Consider
$$I = \langle x^6 - x^3 + y^2 \rangle$$
. Some points in $\mathcal{V}_{\mathbb{C}\{\{t\}\}}(I)$ are ...
 $(x, y) = (t^2, t^3 - \frac{t^9}{2} - \frac{t^{15}}{8} + ...) \rightarrow -\operatorname{val}(x, y) = (-2, -3)$
 $(x, y) = (1 - \frac{t^2}{3} - \frac{4t^4}{9} + ..., t) \rightarrow -\operatorname{val}(x, y) = (0, -1)$
 $(x, y) = (\frac{1}{t}, -\frac{i}{t^3} + \frac{i}{2} + \frac{it^3}{8} + ...) \rightarrow -\operatorname{val}(x, y) = (1, 3)$

 $\operatorname{Trop}_{\mathbb{C}}(I)$

 $\operatorname{Trop}_{\mathbb{R}}(I)$

(本部) (本語) (本語) (語)

Tropical varieties are polyhedral fans

Theorem (Fundamental Theorem of Tropical Geometry) For an irreducible ideal $I \subset \mathbb{C}[x_1, \ldots, x_n]$, $\operatorname{Trop}_{\mathbb{C}}(I)$ is a rational pure-dimensional polyhedral fan of dimensional $d = \dim(\mathcal{V}_{\mathbb{C}^*}(I))$. Counting cones with appropriate multiplicities, it is balanced.

Theorem (Fundamental Theorem of Tropical Geometry) For an irreducible ideal $I \subset \mathbb{C}[x_1, \ldots, x_n]$, $\operatorname{Trop}_{\mathbb{C}}(I)$ is a rational pure-dimensional polyhedral fan of dimensional $d = \dim(\mathcal{V}_{\mathbb{C}^*}(I))$. Counting cones with appropriate multiplicities, it is balanced.

Theorem (Alessandrini, 2013)

For an ideal $I \subset \mathbb{R}[x_1, ..., x_n]$, $\operatorname{Trop}_{\mathbb{R}}(I)$ is a rational polyhedral fan of dimensional $d \leq \dim(\mathcal{V}_{\mathbb{R}^*}(I))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Symbolic Algorithm: Gfan – developed by Jensen uses Gröbner bases to compute $\operatorname{Trop}_{\mathbb{C}}(I)$ for any $I \subset \mathbb{Q}[x_1, \ldots, x_n]$.

(4月) (4日) (4日) 日

Symbolic Algorithm: Gfan – developed by Jensen uses Gröbner bases to compute $\operatorname{Trop}_{\mathbb{C}}(I)$ for any $I \subset \mathbb{Q}[x_1, \ldots, x_n]$.

Numerical Algorithms:

- ► Trop_C of hypersurfaces (Hauenstein, Sottile, 2014)
- ► Trop_C of curves (Jensen, Leykin, Yu, 2015)
- Trop_{\mathbb{C}} and Trop_{\mathbb{R}} of curves (Brake, Hauenstein, V-)

(4月) (4日) (4日) 日

Symbolic Algorithm: Gfan – developed by Jensen uses Gröbner bases to compute $\operatorname{Trop}_{\mathbb{C}}(I)$ for any $I \subset \mathbb{Q}[x_1, \ldots, x_n]$.

Numerical Algorithms:

- ► Trop_C of hypersurfaces (Hauenstein, Sottile, 2014)
- ► Trop_C of curves (Jensen, Leykin, Yu, 2015)
- Trop_{\mathbb{C}} and Trop_{\mathbb{R}} of curves (Brake, Hauenstein, V-)

Numerical algorithms do not require defining equations.

Curves are tractable and are used in internal computations for $\mathsf{Trop}_\mathbb{C}$ of larger dimensional varieties.

Strategy for computing $\operatorname{Trop}_{\mathbb{k}}(I)$

Given an ideal $I \subset \Bbbk[x_1, \ldots, x_n]$ defining a curve $C = \mathcal{V}_{\Bbbk}(I) \ldots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Strategy for computing $\operatorname{Trop}_{\mathbb{k}}(I)$

Given an ideal $I \subset \Bbbk[x_1, \ldots, x_n]$ defining a curve $C = \mathcal{V}_{\Bbbk}(I) \ldots$

Find intersection points p of C with $\{x_j = 0\}_{j=1,...,n}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

Strategy for computing $\operatorname{Trop}_{\mathbb{k}}(I)$

Given an ideal $I \subset \Bbbk[x_1, \ldots, x_n]$ defining a curve $C = \mathcal{V}_{\Bbbk}(I) \ldots$

- Find intersection points p of C with $\{x_j = 0\}_{j=1,...,n}$.
- For each p, numerically find an analytic parametrization of the branches of C around p

- イボト イヨト - ヨ

Given an ideal $I \subset \Bbbk[x_1, \ldots, x_n]$ defining a curve $C = \mathcal{V}_{\Bbbk}(I) \ldots$

- Find intersection points p of C with $\{x_j = 0\}_{j=1,...,n}$.
- For each p, numerically find an analytic parametrization of the branches of C around p
- Calculate leading terms of the power series expansion of this parametrization using Cauchy integrals

Given an ideal $I \subset \Bbbk[x_1, \ldots, x_n]$ defining a curve $C = \mathcal{V}_{\Bbbk}(I) \ldots$

- Find intersection points p of C with $\{x_j = 0\}_{j=1,...,n}$.
- For each p, numerically find an analytic parametrization of the branches of C around p
- Calculate leading terms of the power series expansion of this parametrization using Cauchy integrals

Cauchy Integrals: If f(z) is analytic on $\{z \in \mathbb{C} : |z| \le \tau\}$, then

$$f^{(k)}(0) = \frac{k!}{2\pi} \int_0^{2\pi} \frac{f(\tau e^{i\theta})}{(\tau e^{i\theta})^{k+1}} d\theta,$$

and $f(z) = \sum_{k=0}^{\infty} f^{(k)}(0) \cdot \frac{1}{k!} \cdot z^k$ for $|z| \leq \tau$.

Suppose $\{P(s) : s \in [0, \tau]\} \subset C$ and $P_j(s) = s$.

Track the path $P(\tau e^{i\theta})$ for $\theta \in [0, 2\pi]$. The limit for $\theta = 2\pi$ lies in $C \cap \{x_j = \tau\}$.

Track the path $P(\tau e^{i\theta})$ for $\theta \in [0, 2\pi]$. The limit for $\theta = 2\pi$ lies in $C \cap \{x_j = \tau\}$.

The **cycle number** of the path is *c* if $P(\tau e^{i\theta})$ for $\theta \in [0, c \cdot 2\pi]$ tracks to P(0).

Suppose $\{P(s): s \in [0, \tau]\} \subset C$ and $P_j(s) = s$.

Track the path
$$P(\tau e^{i\theta})$$
 for $\theta \in [0, 2\pi]$.
The limit for $\theta = 2\pi$ lies in $C \cap \{x_j = \tau\}$.

The **cycle number** of the path is *c* if $P(\tau e^{i\theta})$ for $\theta \in [0, c \cdot 2\pi]$ tracks to P(0). After re-parametrizing by $s \mapsto s^c$, each coordinate $P_k(s)$ analytic in *s*.

Suppose $\{P(s) : s \in [0, \tau]\} \subset C$ and $P_j(s) = s$.

Track the path
$$P(\tau e^{i\theta})$$
 for $\theta \in [0, 2\pi]$.
The limit for $\theta = 2\pi$ lies in $C \cap \{x_j = \tau\}$.

The **cycle number** of the path is *c* if $P(\tau e^{i\theta})$ for $\theta \in [0, c \cdot 2\pi]$ tracks to P(0). After re-parametrizing by $s \mapsto s^c$, each coordinate $P_k(s)$ analytic in *s*.

Example: $C = \mathcal{V}_{\mathbb{C}}(x^3 - y^2)$, $P(s) = (s, s^{3/2})$. Cycle number = 2

伺 ト イヨト イヨト

Suppose $\{P(s) : s \in [0, \tau]\} \subset C$ and $P_j(s) = s$.

Track the path
$$P(\tau e^{i\theta})$$
 for $\theta \in [0, 2\pi]$.
The limit for $\theta = 2\pi$ lies in $C \cap \{x_j = \tau\}$.

The **cycle number** of the path is *c* if $P(\tau e^{i\theta})$ for $\theta \in [0, c \cdot 2\pi]$ tracks to P(0). After re-parametrizing by $s \mapsto s^c$, each coordinate $P_k(s)$ analytic in *s*.

Example: $C = \mathcal{V}_{\mathbb{C}}(x^3 - y^2)$, $P(s) = (s, s^{3/2})$. Cycle number = 2 Re-parametrize: $s \mapsto s^2$, $P(s) = (s^2, s^3)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let $C \subset \mathbb{C}^n$ be an irreducible curve.

▶ Take $\overline{C} \subset \mathbb{P}^n(\mathbb{C})$ and an affine slice $\widehat{C} = \{\ell = 1\} \cap \overline{C}$ containing all the points $\overline{C} \cap \mathcal{V}(x_0x_1 \cdot x_n)$.

Let $C \subset \mathbb{C}^n$ be an irreducible curve.

- Take C̄ ⊂ Pⁿ(C) and an affine slice C̄ = {ℓ = 1} ∩ C̄ containing all the points C̄ ∩ V(x₀x₁ · x_n).
- Compute $T^* = \min(|T|)$ such that $\{x_j T\}$ is tangent to \widehat{C} .

Let $C \subset \mathbb{C}^n$ be an irreducible curve.

- Take C̄ ⊂ Pⁿ(C) and an affine slice C̄ = {ℓ = 1} ∩ C̄ containing all the points C̄ ∩ V(x₀x₁ · x_n).
- Compute $T^* = \min(|T|)$ such that $\{x_j T\}$ is tangent to \widehat{C} .

• For
$$\tau < T^*$$
, slice \widehat{C} with $\{x_j - \tau\}$.

Let $C \subset \mathbb{C}^n$ be an irreducible curve.

- Take C̄ ⊂ Pⁿ(C) and an affine slice C̄ = {ℓ = 1} ∩ C̄ containing all the points C̄ ∩ V(x₀x₁ · x_n).
- Compute $T^* = \min(|T|)$ such that $\{x_j T\}$ is tangent to C.
- For $\tau < T^*$, slice \widehat{C} with $\{x_j \tau\}$.
- Track points to {x_j = 0} and compute valuations using re-parametrization and Cauchy integrals.

- - - E - M - -

Let $C \subset \mathbb{C}^n$ be an irreducible curve.

- Take C̄ ⊂ Pⁿ(C) and an affine slice C̄ = {ℓ = 1} ∩ C̄ containing all the points C̄ ∩ V(x₀x₁ · x_n).
- Compute $T^* = \min(|T|)$ such that $\{x_j T\}$ is tangent to \widehat{C} .
- For $\tau < T^*$, slice \widehat{C} with $\{x_j \tau\}$.
- Track points to {x_j = 0} and compute valuations using re-parametrization and Cauchy integrals.

< **₩** ► < **⇒** ►

Replace
$$C = \mathcal{V}(x_1^3 x_2 - x_1 x_2^3 + x_1^3 - x_2^2) \subset \mathbb{C}^2$$
 with
 $\widehat{C} = \mathcal{V}(x_1^3 x_2 - x_1 x_2^3 + x_0 x_1^3 - x_0^2 x_2^2, x_0 + x_1 + 2x_2 - 1) \subset \mathbb{C}^3.$

Cynthia Vinzant Numerical methods for computing real and complex tropical c

< ≣⇒

Replace
$$C = \mathcal{V}(x_1^3 x_2 - x_1 x_2^3 + x_1^3 - x_2^2) \subset \mathbb{C}^2$$
 with
 $\widehat{C} = \mathcal{V}(x_1^3 x_2 - x_1 x_2^3 + x_0 x_1^3 - x_0^2 x_2^2, x_0 + x_1 + 2x_2 - 1) \subset \mathbb{C}^3.$
 $\widehat{C} \cap \mathcal{V}(x_0 x_1 x_2) = \{(0, 1, 0), (0, 1/3, 1/3), (0, 0, 1/2), (0, -1, 1), (1, 0, 0)\}$

Cynthia Vinzant Numerical methods for computing real and complex tropical c

3

Replace
$$C = \mathcal{V}(x_1^3 x_2 - x_1 x_2^3 + x_1^3 - x_2^2) \subset \mathbb{C}^2$$
 with
 $\widehat{C} = \mathcal{V}(x_1^3 x_2 - x_1 x_2^3 + x_0 x_1^3 - x_0^2 x_2^2, x_0 + x_1 + 2x_2 - 1) \subset \mathbb{C}^3.$
 $\widehat{C} \cap \mathcal{V}(x_0 x_1 x_2) = \{(0, 1, 0), (0, 1/3, 1/3), (0, 0, 1/2), (0, -1, 1), (1, 0, 0)\}$
The point $p \approx (0.8293, 0.1, 0.0354) \subset \widehat{C} \cap \{x_1 = .1\}$ tracks to $(1, 0, 0).$

Cynthia Vinzant Numerical methods for computing real and complex tropical c

- < ≣ →

Replace
$$C = \mathcal{V}(x_1^3 x_2 - x_1 x_2^3 + x_1^3 - x_2^2) \subset \mathbb{C}^2$$
 with
 $\widehat{C} = \mathcal{V}(x_1^3 x_2 - x_1 x_2^3 + x_0 x_1^3 - x_0^2 x_2^2, x_0 + x_1 + 2x_2 - 1) \subset \mathbb{C}^3.$
 $\widehat{C} \cap \mathcal{V}(x_0 x_1 x_2) = \{(0, 1, 0), (0, 1/3, 1/3), (0, 0, 1/2), (0, -1, 1), (1, 0, 0)\}$
The point $p \approx (0.8293, 0.1, 0.0354) \subset \widehat{C} \cap \{x_1 = .1\}$ tracks to $(1, 0, 0).$

 $\mbox{Valuation of the path is (0,2,3)} \ \ \rightarrow \ \ (-2,-3) \in \mbox{Trop}_{\mathbb{C}}({\it C}).$

∃ >

Real Tropical Strategy

We can compute $\operatorname{Trop}_{\mathbb{R}}(C)$ similarly to $\operatorname{Trop}_{\mathbb{C}}(C)$.

This requires checking $\{x_j = \pm \tau\}$ for real points and only considering real paths converging to $\widehat{C} \cap \{x_j = 0\}$.

We can compute $\operatorname{Trop}_{\mathbb{R}}(C)$ similarly to $\operatorname{Trop}_{\mathbb{C}}(C)$.

This requires checking $\{x_j = \pm \tau\}$ for real points and only considering real paths converging to $\widehat{C} \cap \{x_j = 0\}$.

Keeping track of signs of the parametrized paths gives the signed real tropical variety.

A central curve defined by ...

$$\begin{bmatrix} x_1 s_1 - x_j s_j & \text{for } j = 2, \dots, 7 \\ -u_0 + t^2 - x_1 \\ -v_0 + t^4 - x_2 \\ u_1 - x_3 \\ v_1 - x_4 \\ t(u_0 + v_0) - v_1 - x_5 \\ t^2 u_0 - u_1 - x_6 \\ t^2 v_0 - u_1 - x_7 \\ t^2 x_2 + x_3 + x_7 - t^6 \\ t^2 x_1 + x_3 + x_6 - t^4 \\ tx_1 + tx_2 + x_4 + x_5 - t^3 - t^5 \\ s_1 - ts_5 - t^2 s_6 \\ s_2 - ts_5 - t^2 s_7 - 1 \\ s_3 - s_6 - s_7 \\ s_4 - s_5 \end{bmatrix}$$

Allamigeon, Benchimol, Gaubert, and Joswig use real tropical methods to construct a family of linear programs whose central curves have high total curvature. A central curve defined by ...

$$\begin{bmatrix} x_1 s_1 - x_j s_j & \text{for } j = 2, \dots, 7 \\ -u_0 + t^2 - x_1 \\ -v_0 + t^4 - x_2 \\ u_1 - x_3 \\ v_1 - x_4 \\ t(u_0 + v_0) - v_1 - x_5 \\ t^2 u_0 - u_1 - x_6 \\ t^2 v_0 - u_1 - x_7 \\ t^2 x_2 + x_3 + x_7 - t^6 \\ t^2 x_1 + x_3 + x_6 - t^4 \\ tx_1 + tx_2 + x_4 + x_5 - t^3 - t^5 \\ s_1 - ts_5 - t^2 s_6 \\ s_2 - ts_5 - t^2 s_7 - 1 \\ s_3 - s_6 - s_7 \\ s_4 - s_5 \end{bmatrix}$$

Allamigeon, Benchimol, Gaubert, and Joswig use real tropical methods to construct a family of linear programs whose central curves have high total curvature.

In this example, the polynomials define a reducible algebraic variety consisting of two 3-planes, five 2-planes, four lines, and a degree 10 central curve C.

向下 イヨト イヨト

A central curve defined by ...

$$\begin{bmatrix} x_1 s_1 - x_j s_j & \text{for } j = 2, \dots, 7 \\ -u_0 + t^2 - x_1 \\ -v_0 + t^4 - x_2 \\ u_1 - x_3 \\ v_1 - x_4 \\ t(u_0 + v_0) - v_1 - x_5 \\ t^2 u_0 - u_1 - x_6 \\ t^2 v_0 - u_1 - x_7 \\ t^2 x_2 + x_3 + x_7 - t^6 \\ t^2 x_1 + x_3 + x_6 - t^4 \\ tx_1 + tx_2 + x_4 + x_5 - t^3 - t^5 \\ s_1 - ts_5 - t^2 s_6 \\ s_2 - ts_5 - t^2 s_7 - 1 \\ s_3 - s_6 - s_7 \\ s_4 - s_5 \end{bmatrix}$$

Allamigeon, Benchimol, Gaubert, and Joswig use real tropical methods to construct a family of linear programs whose central curves have high total curvature.

In this example, the polynomials define a reducible algebraic variety consisting of two 3-planes, five 2-planes, four lines, and a degree 10 central curve C.

Our algorithm find that the tropical variety $\operatorname{Trop}_{\mathbb{C}}(C) = \operatorname{Trop}_{\mathbb{R}}(C)$ consists of 10 rays with multiplicites 6, 4, 3, 2, 2, 1, 1, 1, 1, 1.

個 と く ヨ と く ヨ と …

Looking beyond

Numerical methods can be used to extract combinatorial data from complex and real algebraic varieties, including *tropicalizations*.

Looking beyond

Numerical methods can be used to extract combinatorial data from complex and real algebraic varieties, including *tropicalizations*.

We would like to develop these methods for varieties of dimension ≥ 1 , like *surfaces*, over both \mathbb{C} and \mathbb{R} .

Tropicalizations of varieties higher dimension can also be used to compute tropical varieties of ideals in $\mathbb{R}\{\{t\}\} [x_1, \dots, x_n]$, which are used in many applications (like central curves).

向下 イヨト イヨト

Looking beyond

Thank you!

Numerical methods can be used to extract combinatorial data from complex and real algebraic varieties, including *tropicalizations*.

We would like to develop these methods for varieties of dimension ≥ 1 , like *surfaces*, over both \mathbb{C} and \mathbb{R} .

Tropicalizations of varieties higher dimension can also be used to compute tropical varieties of ideals in $\mathbb{R}\{\{t\}\}[x_1, \ldots, x_n]$, which are used in many applications (like central curves).

向下 イヨト イヨト