Parametric Sequence Alignment

Cynthia Vinzant

University of California, Berkeley

September 19, 2008

イロン イヨン イヨン イヨン

Introduction

Sequence Alignment

An Upper Bound

lpha-eta plane proof \sqrt{n} conjecture

A Lower Bound

Construction Example for q = 4

イロト イヨト イヨト イヨト

Sequence Alignment

Sequence Alignment

We have two sequences (representing species) and would like some measure their similarity.

イロト イヨト イヨト イヨト

Sequence Alignment

Sequence Alignment

We have two sequences (representing species) and would like some measure their similarity.

To align, you insert spaces, to form new sequences.

イロト イヨト イヨト イヨト

Sequence Alignment

Sequence Alignment

We have two sequences (representing species) and would like some measure their similarity.

To align, you insert spaces, to form new sequences.

Example: One alignment of ACTAG and CAGAA is

$$-$$
 A $-$ C A T G C A G A $-$ A

イロト イヨト イヨト イヨト

Sequence Alignment

Alignment Graphs

One way of representing an alignment of sequences of length n is as a path through a $n \times n$ grid.

イロン イヨン イヨン イヨン

Sequence Alignment

Alignment Summaries

Every alignment has an *alignment summary*, (w, x, y), where

- ▶ w = # of matches
- x = # of mismatches
- y = # of spaces

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Sequence Alignment

Alignment Summaries

Every alignment has an *alignment summary*, (w, x, y), where

- ▶ w = # of matches
- ► x = # of mismatches
- ► y = # of spaces

Example:

$$\begin{array}{ccc} - & A & - & C & A & T & G \\ C & A & G & A & - & - & A \end{array} \qquad \longrightarrow \qquad (1,2,2)$$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Sequence Alignment

Alignment Summaries

Every alignment has an *alignment summary*, (w, x, y), where

- ▶ w = # of matches
- ► x = # of mismatches
- ► y = # of spaces

Example:

$$\begin{array}{ccc} - & A & - & C & A & T & G \\ C & A & G & A & - & - & A \end{array} \quad \longrightarrow \quad (1,2,2)$$

******NOTE: w + x + y = n (= length of sequences)

イロン イ部ン イヨン イヨン 三日

Sequence Alignment

Optimal Alignments of ACATG, CAGAA

Alignments		Alignment Summaries
Γ ₁ :	CAGAA ACATG	(0,5,0)
Γ ₂ :	-CAGAA ACATG-	(2,2,1)
Γ ₃ :	-CA-GAA ACATG	(3,0,2)
Γ4:	CAGAA ACATG	(0,0,5)

・ロン ・回と ・ヨン・

Э

lpha - eta plane proof \sqrt{n} conjecture

How many optimal alignment summaries are there?

Theorem (Gusfield, 1994) For any alphabet Σ , $f_{\Sigma}(n) = O(n^{2/3})$, that is, there is a constant *c* s.t.

$$f_{\Sigma}(n) \leq c \cdot n^{2/3}$$

イロト イポト イヨト イヨト

lpha - eta plane proof \sqrt{n} conjecture

How many optimal alignment summaries are there?

Theorem (Gusfield, 1994) For any alphabet Σ , $f_{\Sigma}(n) = O(n^{2/3})$, that is, there is a constant c s.t.

$$f_{\Sigma}(n) \leq c \cdot n^{2/3}$$

Theorem (Fernández-Baca et. al., 2002)

$$f_{\Sigma}(n) \leq \frac{3}{(2\pi)^{2/3}} n^{2/3} + O(n^{1/3} \log n)$$

イロト イポト イヨト イヨト

 $\begin{array}{l} \alpha - \beta \text{ plane} \\ \text{proof} \\ \sqrt{n} \text{ conjecture} \end{array}$

Observations

1) Boundary lines are of the form

$$\{(\alpha,\beta): score_{\alpha,\beta}(\Gamma_1) = score_{\alpha,\beta}(\Gamma_2)\}.$$

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Observations

1) Boundary lines are of the form

$$\{(\alpha,\beta): \operatorname{score}_{\alpha,\beta}(\Gamma_1) = \operatorname{score}_{\alpha,\beta}(\Gamma_2)\}.$$

2) All boundary lines pass through the point (-1, -1).

・ロト ・回ト ・ヨト ・ヨト

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Observations

1) Boundary lines are of the form

$$\{(\alpha,\beta): score_{\alpha,\beta}(\Gamma_1) = score_{\alpha,\beta}(\Gamma_2)\}.$$

- 2) All boundary lines pass through the point (-1, -1).
- 3) No boundary lines intersect the ray $\beta = 0$, $\alpha > 0$.

・ロト ・回ト ・ヨト ・ヨト

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Observations

1) Boundary lines are of the form

$$\{(\alpha,\beta): \operatorname{score}_{\alpha,\beta}(\Gamma_1) = \operatorname{score}_{\alpha,\beta}(\Gamma_2)\}.$$

- 2) All boundary lines pass through the point (-1, -1).
- 3) No boundary lines intersect the ray $\beta = 0$, $\alpha > 0$.

Conclusion: All boundary lines must (uniquely) intersect the non-negative β -axis.

・ロト ・回ト ・ヨト ・ヨト

2

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Simplification

Now we only need to know how many optimality regions there are on the non-negative $\beta\text{-axis.}$

・ロン ・回と ・ヨン・

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Simplification

Now we only need to know how many optimality regions there are on the non-negative β -axis.

Boundary lines (now just points) look like

$$\{\beta : \text{score}_{(0,\beta)}(\Gamma_1) = \text{score}_{(0,\beta)}(\Gamma_2)\},\$$

イロト イヨト イヨト イヨト

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Simplification

Now we only need to know how many optimality regions there are on the non-negative β -axis.

Boundary lines (now just points) look like

$$\{\beta : \operatorname{score}_{(0,\beta)}(\Gamma_1) = \operatorname{score}_{(0,\beta)}(\Gamma_2)\},\$$

meaning

$$w_1 - \beta y_1 = w_2 - \beta y_2 \quad \Rightarrow \quad \beta = \frac{w_2 - w_1}{y_2 - y_1}$$

イロト イヨト イヨト イヨト

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Constraints

We only need to look at (w, y)-plane.

 Suppose we have vertices (w₁, y₁), (w₂, y₂),..., (w_m, y_m) of an alignment polytope for sequences of length n. (Want to know: How big can m be in terms of n?)

イロン イヨン イヨン イヨン

2

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Constraints

We only need to look at (w, y)-plane.

- Suppose we have vertices (w₁, y₁), (w₂, y₂),..., (w_m, y_m) of an alignment polytope for sequences of length n. (Want to know: How big can m be in terms of n?)
- Note:

$$\sum_{i=1}^m \Delta w_i \le n$$
 and $\sum_{i=1}^m \Delta y_i \le n$

イロン イヨン イヨン イヨン

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Constraints

We only need to look at (w, y)-plane.

- Suppose we have vertices (w₁, y₁), (w₂, y₂),..., (w_m, y_m) of an alignment polytope for sequences of length n. (Want to know: How big can m be in terms of n?)
- Note:

$$\sum_{i=1}^m \Delta w_i \le n$$
 and $\sum_{i=1}^m \Delta y_i \le n$

► To maximize *m*, we need the most distinct $\frac{\Delta w_i}{\Delta y_i}$, with $\Delta w_i + \Delta y_i$ small.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Define $F_r = \{\frac{a}{b} \text{ s.t. } a + b = r \text{ and } a, b \text{ relatively prime}\}$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Define $F_r = \{ \frac{a}{b} \text{ s.t. } a + b = r \text{ and } a, b \text{ relatively prime} \}$

Taking our
$$\frac{\Delta w_i}{\Delta y_i}$$
 from $\bigcup_{r=1}^q F_r$ gives us

$$m = \sum_{r=1}^{q} |F_r|$$
 and $n = \sum_{r=1}^{q} r \cdot |F_r|$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

Define $F_r = \{ \frac{a}{b} \text{ s.t. } a + b = r \text{ and } a, b \text{ relatively prime} \}$

Taking our
$$\frac{\Delta w_i}{\Delta y_i}$$
 from $\bigcup_{r=1}^q F_r$ gives us

$$m = \sum_{r=1}^{q} |F_r|$$
 and $n = \sum_{r=1}^{q} r \cdot |F_r|$

 \Rightarrow

 $m pprox q^2$ and $n pprox q^3$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\begin{array}{l} \alpha \,-\, \beta \, \, {\rm plane} \ {
m proof} \ \sqrt{n} \, \, {
m conjecture} \end{array}$

Can the bound be improved for finite alphabets?

Fernández-Baca et. al. (2002) showed

- c · n^{2/3} ≤ f_Σ(n) for Σ infinite (by constructing sequences that attained n^{2/3} optimal alignments).
- $\triangleright c \cdot \sqrt{n} \leq f_{\{0,1\}}(n).$
- $E(g(\sigma_1, \sigma_2) \approx \sqrt{n}.$

イロン イヨン イヨン イヨン

3

 $\alpha - \beta$ plane proof \sqrt{n} conjecture

Can the bound be improved for finite alphabets?

Fernández-Baca et. al. (2002) showed

- c · n^{2/3} ≤ f_Σ(n) for Σ infinite (by constructing sequences that attained n^{2/3} optimal alignments).
- $\triangleright c \cdot \sqrt{n} \leq f_{\{0,1\}}(n).$
- $E(g(\sigma_1, \sigma_2) \approx \sqrt{n}.$

Conjecture: $f_{\{0,1\}}(n) = \Theta(\sqrt{n})$. That is, there are constants, c, C so that

$$c \cdot \sqrt{n} \leq f_{\{0,1\}}(n) = C \cdot \sqrt{n}$$

イロン イ部ン イヨン イヨン 三日

Construction Example for q = 4

The bound is tight!

Claim:
$$f_{\{0,1\}}(n) = \Theta(n^{2/3})$$
.

So our goal is to construct two sequences σ_1, σ_2 that have $n^{2/3}$ optimal alignments.

イロン イヨン イヨン イヨン

Construction Example for q = 4

Define

$$\overline{F}_r = \{\frac{a}{b} \leq 1 \text{ s.t. } a, b \text{ relatively prime, and } a + b = r\},$$

and let $\{\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_m}{b_m}\}$ be the elements of $\bigcup_{r=1}^q \overline{F}_r$.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

 Outline

 Introduction
 Construction

 An Upper Bound
 Example for q = 4

 A Lower Bound
 Example for q = 4

Define

$$\overline{F}_r = \{ \frac{a}{b} \leq 1 \text{ s.t. } a, b \text{ relatively prime, and } a+b=r \},$$

and let
$$\{\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_m}{b_m}\}$$
 be the elements of $\bigcup_{r=1}^q \overline{F}_r$.

First sequence, $\sigma_1 =$

 $0^{b_1+a_1}1^{b_1-a_1}0^{b_2+a_2}\dots 0^{b_m+a_m}1^{b_m-a_m} \ 0^{b_m-a_m}1^{b_m+a_m}\dots 0^{b_1-a_1}1^{b_1+a_1}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 Outline

 Introduction
 Construction

 An Upper Bound
 Example for q = 4

 A Lower Bound
 Example for q = 4

Define

$$\overline{F}_r = \{\frac{a}{b} \leq 1 \text{ s.t. } a, b \text{ relatively prime, and } a+b=r\},$$

and let
$$\{\frac{a_1}{b_1}, \frac{a_2}{b_2}, \dots, \frac{a_m}{b_m}\}$$
 be the elements of $\bigcup_{r=1}^q \overline{F}_r$.

First sequence, $\sigma_1 =$

 $0^{b_1+a_1}1^{b_1-a_1}0^{b_2+a_2}\dots 0^{b_m+a_m}1^{b_m-a_m} \ 0^{b_m-a_m}1^{b_m+a_m}\dots 0^{b_1-a_1}1^{b_1+a_1}$

Second sequence, $\sigma_2 = 1^{(\Sigma 2b_i)} 0^{(\Sigma 2b_i)}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Construction Example for q = 4

Construction Example for q = 4

Some open questions:

1) What is $E(g(\sigma_1, \sigma_2))$? $\Theta(\sqrt{n})$?

2) Pachter and Sturmfels (year) showed that for *d*-parameter models, $f_{\Sigma}(n) = O(n^{d(d-1)/(d+1)})$. Is this also tight?

イロト イヨト イヨト イヨト

3