Low-rank sums-of-squares representations

Cynthia Vinzant, North Carolina State University

joint work with Greg Blekherman, Daniel Plaumann, and Rainer Sinn

JMM 2017

Sums of squares and nonnegative polynomials

A representation of a element $f \in R$ as a sum of squares over a ring R (usually $\mathbb{R}[x_0, \ldots, x_n]$ or a quotient) is an expression

$$f=h_1^2+\ldots+h_r^2$$
 where $h_j\in R.$

• • = • • = •

Sums of squares and nonnegative polynomials

A representation of a element $f \in R$ as a sum of squares over a ring R (usually $\mathbb{R}[x_0, \ldots, x_n]$ or a quotient) is an expression

$$f = h_1^2 + \ldots + h_r^2$$
 where $h_j \in R$.

Over $R = \mathbb{R}[x_0, \dots, x_n]$, this certifies the nonnegativity of f on \mathbb{R}^{n+1} . e.g. $x^4 - 4x^3y + 5x^2y^2 - 2xy^3 + y^4$

Sums of squares and nonnegative polynomials

A representation of a element $f \in R$ as a sum of squares over a ring R (usually $\mathbb{R}[x_0, \ldots, x_n]$ or a quotient) is an expression

$$f = h_1^2 + \ldots + h_r^2$$
 where $h_j \in R$.

Over $R = \mathbb{R}[x_0, ..., x_n]$, this certifies the nonnegativity of f on \mathbb{R}^{n+1} . e.g. $x^4 - 4x^3y + 5x^2y^2 - 2xy^3 + y^4 = (x^2 - 2xy)^2 + (xy - y^2)^2$

向下 イヨト イヨト

A representation of a element $f \in R$ as a sum of squares over a ring R (usually $\mathbb{R}[x_0, \ldots, x_n]$ or a quotient) is an expression

$$f = h_1^2 + \ldots + h_r^2$$
 where $h_j \in R$.

Over $R = \mathbb{R}[x_0, ..., x_n]$, this certifies the nonnegativity of f on \mathbb{R}^{n+1} . e.g. $x^4 - 4x^3y + 5x^2y^2 - 2xy^3 + y^4 = (x^2 - 2xy)^2 + (xy - y^2)^2$

Let $\sum_{n,2d}$ denote the sums of squares in $\mathbb{R}[x_0, \ldots, x_n]_{2d}$ and $P_{n,2d}$ denote polynomials in $\mathbb{R}[x_0, \ldots, x_n]_{2d}$ nonnegative on \mathbb{R}^{n+1} .

伺 ト イヨト イヨト

A representation of a element $f \in R$ as a sum of squares over a ring R (usually $\mathbb{R}[x_0, \ldots, x_n]$ or a quotient) is an expression

$$f = h_1^2 + \ldots + h_r^2$$
 where $h_j \in R$.

Over $R = \mathbb{R}[x_0, ..., x_n]$, this certifies the nonnegativity of f on \mathbb{R}^{n+1} . e.g. $x^4 - 4x^3y + 5x^2y^2 - 2xy^3 + y^4 = (x^2 - 2xy)^2 + (xy - y^2)^2$

Let $\sum_{n,2d}$ denote the sums of squares in $\mathbb{R}[x_0, \ldots, x_n]_{2d}$ and $P_{n,2d}$ denote polynomials in $\mathbb{R}[x_0, \ldots, x_n]_{2d}$ nonnegative on \mathbb{R}^{n+1} .

Theorem (Hilbert): $\sum_{n,2d} = P_{n,2d}$ if and only if

n = 1 or 2d = 2 or (n, 2d) = (2, 4).

Motzkin non-example: $x^2y^4 + x^4y^2 - 3x^2y^2z^2 + z^6 \in P_{2,6} \setminus \Sigma_{2,6}$

イロト 不得 トイヨト イヨト

n = 1: A nonnegative bivariate form is a sum of *two* squares Proof: Factor $f = (p + iq)(p - iq) = p^2 + q^2$ where $p, q \in \mathbb{R}[x_0, x_1]_d$

2d = 2: A nonnegative quadratic form in $P_{n,2}$ is a sum of n + 1 squares Proof: Diagonalization of quadratic forms

(n, 2d) = (2, 4): A nonnegative ternary quartic is a sum of *three* squares Proof by Hilbert, 1888

向下 イヨト イヨト

n = 1: A nonnegative bivariate form is a sum of *two* squares Proof: Factor $f = (p + iq)(p - iq) = p^2 + q^2$ where $p, q \in \mathbb{R}[x_0, x_1]_d$

2d = 2: A nonnegative quadratic form in $P_{n,2}$ is a sum of n + 1 squares Proof: Diagonalization of quadratic forms

(n, 2d) = (2, 4): A nonnegative ternary quartic is a sum of *three* squares Proof by Hilbert, 1888

Our goal: Unify/generalize these results using varieties of minimal degree

(日本) (日本) (日本)

Let ... $X \subset \mathbb{P}^{N}(\mathbb{C}) = a$ real, nondegenerate irreducible variety equal to $\overline{X(\mathbb{R})}^{Zar}$, $\mathbb{R}[X]_{k} = \mathbb{R}[x_{0}, \dots, x_{N}]_{k}/\mathcal{I}(X) = \text{coordinate ring of } X \text{ in degree } k$,

Image: A Image: A

Let ... $X \subset \mathbb{P}^{N}(\mathbb{C}) = a$ real, nondegenerate irreducible variety equal to $\overline{X(\mathbb{R})}^{Zar}$, $\mathbb{R}[X]_{k} = \mathbb{R}[x_{0}, \dots, x_{N}]_{k}/\mathcal{I}(X) = \text{coordinate ring of } X \text{ in degree } k$, $\Sigma_{X} = \{\ell_{1}^{2} + \dots + \ell_{r}^{2} : \ell_{i} \in \mathbb{R}[X]_{1}\} \subset \mathbb{R}[X]_{2}, \text{ and}$ $P_{X} = \{q \in \mathbb{R}[X]_{2} : q(x) \geq 0 \text{ for all } x \in X(\mathbb{R})\} \subset \mathbb{R}[X]_{2}$ Let ... $X \subset \mathbb{P}^{N}(\mathbb{C}) = a$ real, nondegenerate irreducible variety equal to $\overline{X(\mathbb{R})}^{Zar}$, $\mathbb{R}[X]_{k} = \mathbb{R}[x_{0}, \dots, x_{N}]_{k}/\mathcal{I}(X) = \text{coordinate ring of } X \text{ in degree } k,$ $\Sigma_{X} = \{\ell_{1}^{2} + \dots + \ell_{r}^{2} : \ell_{i} \in \mathbb{R}[X]_{1}\} \subset \mathbb{R}[X]_{2}, \text{ and}$ $P_{X} = \{q \in \mathbb{R}[X]_{2} : q(x) \geq 0 \text{ for all } x \in X(\mathbb{R})\} \subset \mathbb{R}[X]_{2}$

If $X = \nu_d(\mathbb{P}^n)$, then $\Sigma_X \cong \Sigma_{n,2d}$ and $P_X \cong P_{n,2d}$.

Image: A image: A

Let ... $X
ightarrow \mathbb{P}^{N}(\mathbb{C})$ = a real, nondegenerate irreducible variety equal to $\overline{X(\mathbb{R})}^{Zar}$, $\mathbb{R}[X]_{k} = \mathbb{R}[x_{0}, \dots, x_{N}]_{k}/\mathcal{I}(X)$ = coordinate ring of X in degree k, $\Sigma_{X} = \{\ell_{1}^{2} + \dots + \ell_{r}^{2} : \ell_{i} \in \mathbb{R}[X]_{1}\} \subset \mathbb{R}[X]_{2}$, and $P_{X} = \{q \in \mathbb{R}[X]_{2} : q(x) \ge 0 \text{ for all } x \in X(\mathbb{R})\} \subset \mathbb{R}[X]_{2}$ If $X = \nu_{d}(\mathbb{P}^{n})$, then $\Sigma_{X} \cong \Sigma_{n,2d}$ and $P_{X} \cong P_{n,2d}$. Ex: Let $X = \nu_{2}(\mathbb{P}^{1})$, where $\nu_{2}([x : y]) = [x^{2} : xy : y^{2}] = [a : b : c]$. Then $(x^{2} - 2xy)^{2} + (xy - y^{2})^{2} \in \Sigma_{1,4} \leftrightarrow (a - 2b)^{2} + (b - c)^{2} \in \Sigma_{X}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let ... $X \subset \mathbb{P}^{N}(\mathbb{C}) = a$ real, nondegenerate irreducible variety equal to $\overline{X(\mathbb{R})}^{Zar}$, $\mathbb{R}[X]_{k} = \mathbb{R}[x_{0}, ..., x_{N}]_{k}/\mathcal{I}(X) = \text{coordinate ring of } X \text{ in degree } k,$ $\Sigma_{X} = \{\ell_{1}^{2} + ... + \ell_{r}^{2} : \ell_{i} \in \mathbb{R}[X]_{1}\} \subset \mathbb{R}[X]_{2}, \text{ and}$ $P_{X} = \{q \in \mathbb{R}[X]_{2} : q(x) \geq 0 \text{ for all } x \in X(\mathbb{R})\} \subset \mathbb{R}[X]_{2}$ If $X = \nu_{d}(\mathbb{P}^{n})$, then $\Sigma_{X} \cong \Sigma_{n, 2d}$ and $P_{X} \cong P_{n, 2d}$.

Ex: Let
$$X = \nu_2(\mathbb{P}^1)$$
, where $\nu_2([x : y]) = [x^2 : xy : y^2] = [a : b : c]$. Then $(x^2 - 2xy)^2 + (xy - y^2)^2 \in \Sigma_{1,4} \leftrightarrow (a - 2b)^2 + (b - c)^2 \in \Sigma_X$

Theorem (Blekherman-Smith-Velasco): $\Sigma_X = P_X$ if and only if X is a variety of minimal degree (i.e. deg(X) = codim(X) + 1).

・ 同 ト ・ ヨ ト ・ ヨ ト

Let ... $X \subset \mathbb{P}^{N}(\mathbb{C}) = a$ real, nondegenerate irreducible variety equal to $\overline{X(\mathbb{R})}^{Zar}$, $\mathbb{R}[X]_{k} = \mathbb{R}[x_{0}, \dots, x_{N}]_{k}/\mathcal{I}(X) = \text{coordinate ring of } X \text{ in degree } k$, $\Sigma_{X} = \{\ell_{1}^{2} + \dots + \ell_{r}^{2} : \ell_{i} \in \mathbb{R}[X]_{1}\} \subset \mathbb{R}[X]_{2}, \text{ and}$ $P_{X} = \{q \in \mathbb{R}[X]_{2} : q(x) \ge 0 \text{ for all } x \in X(\mathbb{R})\} \subset \mathbb{R}[X]_{2}$

If
$$X = \nu_d(\mathbb{P}^n)$$
, then $\Sigma_X \cong \Sigma_{n,2d}$ and $P_X \cong P_{n,2d}$.
Ex: Let $X = \nu_2(\mathbb{P}^1)$, where $\nu_2([x : y]) = [x^2 : xy : y^2] = [a : b : c]$. Then
 $(x^2 - 2xy)^2 + (xy - y^2)^2 \in \Sigma_{1,4} \leftrightarrow (a - 2b)^2 + (b - c)^2 \in \Sigma_X$

Theorem (Blekherman-Smith-Velasco): $\Sigma_X = P_X$ if and only if X is a variety of minimal degree (i.e. deg(X) = codim(X) + 1).

 $\nu_d(\mathbb{P}^n)$ has minimal degree $\Leftrightarrow n = 1$, d = 1, or (n, d) = (2, 2)Corollary: Hilbert's result.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem: If X is a variety of minimal degree, then any $q \in P_X$ is a sum of dim(X) + 1 squares. For generic q this bound is tight.

伺下 イヨト イヨト

Theorem: If X is a variety of minimal degree, then any $q \in P_X$ is a sum of dim(X) + 1 squares. For generic q this bound is tight.

A variety of minimal degree is isomorphic to one of the following:

- a quadratic hypersurface
- $\nu_d(\mathbb{P}^1)$
- ▶ ν₂(ℙ²)
- a rational normal scroll
- a cone over one of the above.

Theorem: If X is a variety of minimal degree, then any $q \in P_X$ is a sum of dim(X) + 1 squares. For generic q this bound is tight.

A variety of minimal degree is isomorphic to one of the following:

- a quadratic hypersurface
- $\triangleright \nu_d(\mathbb{P}^1)$ $\Rightarrow f \in P_{1,2d} = \text{sum of } 2 \text{ squares}$
- \triangleright $\nu_2(\mathbb{P}^2)$

医下颌 医下口

- a rational normal scroll
- a cone over one of the above.

Theorem: If X is a variety of minimal degree, then any $q \in P_X$ is a sum of dim(X) + 1 squares. For generic q this bound is tight.

A variety of minimal degree is isomorphic to one of the following:

- a quadratic hypersurface
- ► $\nu_d(\mathbb{P}^1)$ $\Rightarrow f \in P_{1,2d} = \text{sum of } 2 \text{ squares}$
- ► $\nu_2(\mathbb{P}^2)$ $\Rightarrow f \in P_{2,4}$ = sum of 3 squares
- a rational normal scroll
- a cone over one of the above.

• • = • • = •

Theorem: If X is a variety of minimal degree, then any $q \in P_X$ is a sum of dim(X) + 1 squares. For generic q this bound is tight.

A variety of minimal degree is isomorphic to one of the following:

- a quadratic hypersurface
- ► $\nu_d(\mathbb{P}^1)$ $\Rightarrow f \in P_{1,2d} = \text{sum of } 2 \text{ squares}$
- ► $\nu_2(\mathbb{P}^2)$ $\Rightarrow f \in P_{2,4}$ = sum of 3 squares
- a rational normal scroll \Rightarrow ??
- a cone over one of the above.

Rational normal scrolls and biforms

Rational normal scroll X = closure of the image of $\mathbb{C} \times \mathbb{P}^{n-1}$ under

 $(t,x)\mapsto [x_1:x_1t:\ldots:x_1t^{d_1}:\ldots:x_n:x_nt:\ldots:x_nt^{d_n}]\in \mathbb{P}^{d_1+\ldots+d_n+n-1}$

Э

Rational normal scroll X = closure of the image of $\mathbb{C} \times \mathbb{P}^{n-1}$ under

 $(t,x)\mapsto [x_1:x_1t:\ldots:x_1t^{d_1}:\ldots:x_n:x_nt:\ldots:x_nt^{d_n}]\in \mathbb{P}^{d_1+\ldots+d_n+n-1}$

A quadratic form on X corresponds to a *biform* (Choi, Lam, Reznick), which can be written as

$$f = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ where } a_{ij} \in \mathbb{R}[t]_{\leq d_i + d_j}.$$

同トイヨトイヨト

Rational normal scroll X = closure of the image of $\mathbb{C} \times \mathbb{P}^{n-1}$ under

 $(t,x)\mapsto [x_1:x_1t:\ldots:x_1t^{d_1}:\ldots:x_n:x_nt:\ldots:x_nt^{d_n}]\in \mathbb{P}^{d_1+\ldots+d_n+n-1}$

A quadratic form on X corresponds to a *biform* (Choi, Lam, Reznick), which can be written as

$$f = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ where } a_{ij} \in \mathbb{R}[t]_{\leq d_i + d_j}.$$

f is nonnegative $\Leftrightarrow A = (a_{ij})_{ij}$ is positive semidefinite for all $t \in \mathbb{R}$ *f* is a sum of *r* squares $\Leftrightarrow A = BB^T$ where $B \in \mathbb{R}[t]^{n \times r}$

• (1) • (

Rational normal scroll X = closure of the image of $\mathbb{C} \times \mathbb{P}^{n-1}$ under

 $(t,x)\mapsto [x_1:x_1t:\ldots:x_1t^{d_1}:\ldots:x_n:x_nt:\ldots:x_nt^{d_n}]\in \mathbb{P}^{d_1+\ldots+d_n+n-1}$

A quadratic form on X corresponds to a *biform* (Choi, Lam, Reznick), which can be written as

$$f = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{1n} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \text{ where } a_{ij} \in \mathbb{R}[t]_{\leq d_i + d_j}.$$

f is nonnegative $\Leftrightarrow A = (a_{ij})_{ij}$ is positive semidefinite for all $t \in \mathbb{R}$ *f* is a sum of *r* squares $\Leftrightarrow A = BB^T$ where $B \in \mathbb{R}[t]^{n \times r}$

Cor: If A is p.s.d. for all $t \in \mathbb{R}$, then $A = BB^T$ where $B \in \mathbb{R}[t]^{n \times (n+1)}$.

• □ ▶ • □ ▶ • □ ▶ • □ ▶ • □ ▶

Biforms: an example $(n = 2, d_1 = 1, d_2 = 2)$

Let $X \subset \mathbb{P}^4$ be the closure of the image of $\mathbb{C} \times \mathbb{P}^1$ under

$$(t, [x:y]) \mapsto [x:xt:y:yt:yt^2] = [u_0:\ldots:u_4] \in \mathbb{P}^4.$$

A D D A D D A D D A D D A

크

Biforms: an example $(n = 2, d_1 = 1, d_2 = 2)$

Let $X \subset \mathbb{P}^4$ be the closure of the image of $\mathbb{C} imes \mathbb{P}^1$ under

 $(t,[x:y]) \mapsto [x:xt:y:yt:yt^2] = [u_0:\ldots:u_4] \in \mathbb{P}^4.$

The quadratic form $q = \sum_{i=0}^4 u_i^2$ in $\mathbb{R}[X]_2$ corresponds to the biform

$$f = (1+t^2)x^2 + (1+t^2+t^4)y^2 = \begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} 1+t^2 & 0 \\ 0 & 1+t^2+t^4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

Let $X \subset \mathbb{P}^4$ be the closure of the image of $\mathbb{C} imes \mathbb{P}^1$ under

 $(t, [x:y]) \mapsto [x:xt:y:yt:yt^2] = [u_0:\ldots:u_4] \in \mathbb{P}^4.$

The quadratic form $q = \sum_{i=0}^4 u_i^2$ in $\mathbb{R}[X]_2$ corresponds to the biform

$$f = (1+t^2)x^2 + (1+t^2+t^4)y^2 = \begin{pmatrix} x \\ y \end{pmatrix}^T \begin{pmatrix} 1+t^2 & 0 \\ 0 & 1+t^2+t^4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

The representation of $f = y^2 + (xt + yt)^2 + (x - yt^2)^2$ gives

$$\begin{pmatrix} 1+t^2 & 0\\ 0 & 1+t^2+t^4 \end{pmatrix} = BB^T \quad \text{where} \quad B = \begin{pmatrix} 0 & t & 1\\ 1 & t & -t^2 \end{pmatrix}.$$

向下 イヨト イヨト

向下 イヨト イヨト

Theorem (Powers-Reznick-Scheiderer-Sottile): A generic positive ternary quartic has 8 representations as a sum of 3 squares.

白 ト イ ヨ ト イ ヨ ト

Theorem (Powers-Reznick-Scheiderer-Sottile): A generic positive ternary quartic has 8 representations as a sum of 3 squares.

Theorem: If $X \subset \mathbb{P}^N$ is a *surface* of minimal degree, then a generic $q \in P_X$ has 2^{N-2} representations as a sum of 3 squares.

Theorem (Powers-Reznick-Scheiderer-Sottile): A generic positive ternary quartic has 8 representations as a sum of 3 squares.

Theorem: If $X \subset \mathbb{P}^N$ is a *surface* of minimal degree, then a generic $q \in P_X$ has 2^{N-2} representations as a sum of 3 squares.

Conjecture: If $X \subset \mathbb{P}^N$ is a variety of minimal degree, then a generic $q \in P_X$ has $2^{\operatorname{codim}(X)}$ representations as a sum of $\dim(X) + 1$ squares. (Possible proof by Hanselka and Sinn)

Real vs. complex representations

Remarkably, the number of real representations as sums of few squares is more stable over $\mathbb R$ than $\mathbb C.$

• • = • • = •

Remarkably, the number of real representations as sums of few squares is more stable over $\mathbb R$ than $\mathbb C.$

Example. There are four surfaces of minimal degree in \mathbb{P}^5 : the cone over $\nu_4(\mathbb{P}^1)$, $\nu_2(\mathbb{P}^2)$, and the rational normal scrolls X_{d_1,d_2} with $(d_1, d_2) = (2, 2), (1, 3)$.

A general element $q \in P_X$ is a sum of 3 squares $q = h_1^2 + h_2^2 + h_3^2$. If $h_1, h_2, h_3 \in \mathbb{F}[X]_1$, say the representation is over the field \mathbb{F} .

Image: A image: A

Remarkably, the number of real representations as sums of few squares is more stable over $\mathbb R$ than $\mathbb C.$

Example. There are four surfaces of minimal degree in \mathbb{P}^5 : the cone over $\nu_4(\mathbb{P}^1)$, $\nu_2(\mathbb{P}^2)$, and the rational normal scrolls X_{d_1,d_2} with $(d_1, d_2) = (2, 2), (1, 3)$.

A general element $q \in P_X$ is a sum of 3 squares $q = h_1^2 + h_2^2 + h_3^2$. If $h_1, h_2, h_3 \in \mathbb{F}[X]_1$, say the representation is over the field \mathbb{F} .

Х	$\#$ reps. over ${\mathbb R}$	$\#$ reps. over $\mathbb C$
$\frac{\operatorname{cone}(\nu_4(\mathbb{P}^1))}{\nu_2(\mathbb{P}^2)}$	8	35
$ u_2(\mathbb{P}^2)$	8	63
$X_{2,2}$	8	64
$X_{3,1}$	8	64

Remarkably, the number of real representations as sums of few squares is more stable over $\mathbb R$ than $\mathbb C.$

Example. There are four surfaces of minimal degree in \mathbb{P}^5 : the cone over $\nu_4(\mathbb{P}^1)$, $\nu_2(\mathbb{P}^2)$, and the rational normal scrolls X_{d_1,d_2} with $(d_1, d_2) = (2, 2), (1, 3)$.

A general element $q \in P_X$ is a sum of 3 squares $q = h_1^2 + h_2^2 + h_3^2$. If $h_1, h_2, h_3 \in \mathbb{F}[X]_1$, say the representation is over the field \mathbb{F} .

Х	$\#$ reps. over ${\mathbb R}$	$\#$ reps. over $\mathbb C$
$\operatorname{cone}(u_4(\mathbb{P}^1)) u_2(\mathbb{P}^2)$	8	35
$ u_2(\mathbb{P}^2)$	8	63
$X_{2,2}$	8	64
X _{3,1}	8	64

Thanks!

(1月) (3日) (3日) 日