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Sums of squares and nonnegative polynomials

A representation of a element f € R as a sum of squares over a ring R
(usually R[xo, ..., x,] or a quotient) is an expression

f=nh+...4+h* where h cR.
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Sums of squares and nonnegative polynomials

A representation of a element f € R as a sum of squares over a ring R
(usually R[xo, ..., x,] or a quotient) is an expression

f=nh+...4+h* where h cR.

Over R = R[xo, - - ., X,], this certifies the nonnegativity of f on R"*1,

e.g. x* —4x3y +5x2y% — 2xy3 + y*
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Sums of squares and nonnegative polynomials

A representation of a element f € R as a sum of squares over a ring R
(usually R[xo, ..., x,] or a quotient) is an expression

f=nh+...4+h* where h cR.

Over R = R[xo, - - ., X,], this certifies the nonnegativity of f on R"*1,
eg. x* —4x3y +5x%y% — 2xy3 + y* = (x® — 2xy)% + (xy — y?)?
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Sums of squares and nonnegative polynomials

A representation of a element f € R as a sum of squares over a ring R
(usually R[xo, ..., x,] or a quotient) is an expression

f=nh+...4+h* where h cR.

Over R = R[xo, - - ., X,], this certifies the nonnegativity of f on R"*1,
eg. x* —4x3y +5x%y% — 2xy3 + y* = (x® — 2xy)% + (xy — y?)?

Let X, 24 denote the sums of squares in R[xo, . . . , Xp]2d
and P, 4 denote polynomials in R[x, . .., X,]24 nonnegative on R,
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Sums of squares and nonnegative polynomials

A representation of a element f € R as a sum of squares over a ring R
(usually R[xo, ..., x,] or a quotient) is an expression

f=nh+...4+h* where h cR.

Over R = R[xo, - - ., X,], this certifies the nonnegativity of f on R"*1,
eg. x* —4x3y +5x%y% — 2xy3 + y* = (x® — 2xy)% + (xy — y?)?

Let X, 24 denote the sums of squares in R[xo, . . . , Xp]2d
and P, 4 denote polynomials in R[x, . .., X,]24 nonnegative on R,

Theorem (Hilbert): ¥, 54 = Py2q4 if and only if
n=1 o 2d=2 or (n2d)=(2,4).

Motzkin non-example: x2y* + x*y? — 3x2y222 + 2% € P, 6\¥06
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Number of squares

n = 1: A nonnegative bivariate form is a sum of two squares
Proof: Factor f = (p+1iq)(p —iq) = p?> + g° where p, q € R[xo, x1]4

2d = 2: A nonnegative quadratic form in P, is a sum of n+ 1 squares
Proof: Diagonalization of quadratic forms

(n,2d) = (2,4): A nonnegative ternary quartic is a sum of three squares
Proof by Hilbert, 1888
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Number of squares

n = 1: A nonnegative bivariate form is a sum of two squares
Proof: Factor f = (p+1iq)(p —iq) = p?> + g° where p, q € R[xo, x1]4

2d = 2: A nonnegative quadratic form in P, is a sum of n+ 1 squares
Proof: Diagonalization of quadratic forms

(n,2d) = (2,4): A nonnegative ternary quartic is a sum of three squares
Proof by Hilbert, 1888

Our goal: Unify/generalize these results using varieties of minimal degree
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Quadratic forms on varieties

Let ...
——Zar
X C PN(C) = a real, nondegenerate irreducible variety equal to X(RR) ’

R[X]k = R[xo, - - -, xn]k/Z(X) = coordinate ring of X in degree k,

Cynthia Vinzant Low-rank sums-of-squares representations



Quadratic forms on varieties

Let ...
————Zar
X C PN(C) = a real, nondegenerate irreducible variety equal to X(RR) o

R[X]k = R[xo, - - -, xn]k/Z(X) = coordinate ring of X in degree k,
Yx = {K% + ... +€% i€ R[X]l} C R[X]g, and
Px ={q € R[X]2: q(x) > 0 for all x € X(R)} C R[X]2
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Quadratic forms on varieties

Let ...
——Zar
X C PN(C) = a real, nondegenerate irreducible variety equal to X(RR) ’

R[X]k = R[xo, - - -, xn]k/Z(X) = coordinate ring of X in degree k,
Yx = {K% + ... +€% i€ R[X]l} C R[X]g, and
Px ={q € R[X]2: q(x) > 0 for all x € X(R)} C R[X]2

If X = I/d(Pn), then X x = vagd and Px & angd.
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Quadratic forms on varieties

Let ...
——Zar
X C PN(C) = a real, nondegenerate irreducible variety equal to X(RR) ’

R[X]k = R[xo, - - -, xn]k/Z(X) = coordinate ring of X in degree k,
Yx = {K% + ... +€% i€ R[X]l} C R[X]g, and
Px ={q € R[X]2: q(x) > 0 for all x € X(R)} C R[X]2

If X = I/d(Pn), then X x = vagd and Px & angd.
Ex: Let X = 1»(P'), where vo([x : y]) = [x* i xy : y?| =[a: b: c]. Then
(x> =2xy)> + (xy — y?)? € 14 <> (a—2b)*> + (b —¢)? € Tx
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Quadratic forms on varieties

Let ...
——Zar
X C PN(C) = a real, nondegenerate irreducible variety equal to X(RR) ’

R[X]k = R[xo, - - -, xn]k/Z(X) = coordinate ring of X in degree k,
Yx = {K% + ... +€% i€ R[X]l} C R[X]g, and
Px ={q € R[X]2: q(x) > 0 for all x € X(R)} C R[X]2

If X = I/d(Pn), then X x = vagd and Px & angd.
Ex: Let X = 1»(P'), where vo([x : y]) = [x* i xy : y?| =[a: b: c]. Then
(x> =2xy)> + (xy — y?)? € 14 <> (a—2b)*> + (b —¢)? € Tx

Theorem (Blekherman-Smith-Velasco): ¥x = Px if and only if
X is a variety of minimal degree (i.e. deg(X) = codim(X) + 1).
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Quadratic forms on varieties

Let ...
——Zar
X C PN(C) = a real, nondegenerate irreducible variety equal to X(RR) ’

R[X]k = R[xo, - - -, xn]k/Z(X) = coordinate ring of X in degree k,
Yx = {K% + ... +€% i€ R[X]l} C R[X]g, and
Px ={q € R[X]2: q(x) > 0 for all x € X(R)} C R[X]2

If X = I/d(Pn), then X x = vagd and Px & angd.
Ex: Let X = 1»(P'), where vo([x : y]) = [x* i xy : y?| =[a: b: c]. Then
(x> =2xy)> + (xy — y?)? € 14 <> (a—2b)*> + (b —¢)? € Tx

Theorem (Blekherman-Smith-Velasco): ¥x = Px if and only if
X is a variety of minimal degree (i.e. deg(X) = codim(X) + 1).

v4(P") has minimal degree & n=1,d =1, or (n,d) = (2,2)
Corollary: Hilbert's result.
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Varieties of minimal degree

Theorem: If X is a variety of minimal degree, then any g € Px is
a sum of dim(X) + 1 squares. For generic g this bound is tight.
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Varieties of minimal degree

Theorem: If X is a variety of minimal degree, then any g € Px is
a sum of dim(X) + 1 squares. For generic g this bound is tight.

A variety of minimal degree is isomorphic to one of the following:
> a quadratic hypersurface

vq(PY)

vo(IP?)

a rational normal scroll

v

v

v

> a cone over one of the above.
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Varieties of minimal degree

Theorem: If X is a variety of minimal degree, then any g € Px is
a sum of dim(X) + 1 squares. For generic g this bound is tight.

A variety of minimal degree is isomorphic to one of the following:

> a quadratic hypersurface

v

vq(PY) = f € P14 = sum of 2 squares
vo(IP?)

a rational normal scroll

v

v

> a cone over one of the above.
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Varieties of minimal degree

Theorem: If X is a variety of minimal degree, then any g € Px is
a sum of dim(X) + 1 squares. For generic g this bound is tight.

A variety of minimal degree is isomorphic to one of the following:

> a quadratic hypersurface

> vy(Ph) = f € P14 = sum of 2 squares
> 1o(IP?) = f € P4 = sum of 3 squares
» a rational normal scroll

> a cone over one of the above.
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Varieties of minimal degree

Theorem: If X is a variety of minimal degree, then any g € Px is
a sum of dim(X) + 1 squares. For generic g this bound is tight.

A variety of minimal degree is isomorphic to one of the following:

> a quadratic hypersurface

> vy(Ph) = f € P14 = sum of 2 squares
> 1o(IP?) = f € P4 = sum of 3 squares
» a rational normal scroll = 77

> a cone over one of the above.
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Rational normal scrolls and biforms

Rational normal scroll X = closure of the image of C x P"~! under

(t,x) = [x1:xt o Xt Xy Xt X,,td"] € pditFdrtn—1
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Rational normal scrolls and biforms

Rational normal scroll X = closure of the image of C x P"~! under
(t,x) = [x1:xt o Xt Xy Xt X,,td"] € pditFdrtn—1
A quadratic form on X corresponds to a biform (Choi, Lam, Reznick),

which can be written as

T
X1 ai1 ... din X1

F=1: co || | where ay € Rlt]<qivg

Xn ain ... am Xn
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Rational normal scrolls and biforms

Rational normal scroll X = closure of the image of C x P"~! under
(t,x) = [x1:xt o Xt Xy Xt X,,td"] € pditFdrtn—1
A quadratic form on X corresponds to a biform (Choi, Lam, Reznick),

which can be written as

T
X1 ai1 ... din X1

F=1: co || | where ay € Rlt]<qivg

Xn ain ... am Xn

f is nonnegative < A = (aj);j is positive semidefinite for all t € R
fis a sum of r squares & A = BB where B € R[t]"*"
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Rational normal scrolls and biforms

Rational normal scroll X = closure of the image of C x P"~! under

(t,x) = [x1:xt o Xt Xy Xt X,,td"] € pditFdrtn—1

A quadratic form on X corresponds to a biform (Choi, Lam, Reznick),
which can be written as

T
X1 ai1 ... din X1

F=1: co || | where ay € Rlt]<qivg

Xn ain ... am Xn

f is nonnegative < A = (aj);j is positive semidefinite for all t € R
fis a sum of r squares & A = BB where B € R[t]"*"

Cor: If Ais p.s.d. forall t € R, then A= BBT where B € R[t]"*("+1),
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Biforms: an example (n=2,d; =1,d, =2)

Let X C P* be the closure of the image of C x P! under

(t,[x:y]) — [x:xt:y:yt:yt?]=[up:...: u) € P
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Biforms: an example (n=2,d; =1,d, =2)

Let X C P* be the closure of the image of C x P! under
(t,[x:y]) — [x:xt:y:yt:yt?]=[up:...: u) € P

The quadratic form g = Z?:o u? in R[X], corresponds to the biform

T 2
_ 2y,2 2 42 _ (X 14t 0 X
F=0+t)x"+(14+t+t)y = (y) ( 0 1+t2+t4><y>.
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Biforms: an example (n=2,d; =1,d, =2)

Let X C P* be the closure of the image of C x P! under
(t,[x:y]) — [x:xt:y:yt:yt?]=[up:...: u) € P

The quadratic form g = Z?:o u? in R[X], corresponds to the biform

T 2
_ 2y,2 2 42 _ (X 14t 0 X
F=0+t)x"+(14+t+t)y = (y) ( 0 1+t2+t4><y>.

The representation of f = y? + (xt + yt)? + (x — yt?)? gives

14 ¢ 0 ooT (0t 1
( 0 1+t2+t4>_BB where 8(1 ‘ t2>'
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Numbers of SOS representations

Theorem (Choi-Lam-Reznick): A generic positive bivariate form of
degree 2d has 297! representations as a sum of 2 squares.
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Numbers of SOS representations

Theorem (Choi-Lam-Reznick): A generic positive bivariate form of
degree 2d has 297! representations as a sum of 2 squares.

Theorem (Powers-Reznick-Scheiderer-Sottile): A generic positive ternary
quartic has 8 representations as a sum of 3 squares.
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Numbers of SOS representations

Theorem (Choi-Lam-Reznick): A generic positive bivariate form of
degree 2d has 297! representations as a sum of 2 squares.

Theorem (Powers-Reznick-Scheiderer-Sottile): A generic positive ternary
quartic has 8 representations as a sum of 3 squares.

Theorem: If X C PN is a surface of minimal degree, then a generic
g € Px has 2V=2 representations as a sum of 3 squares.
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Numbers of SOS representations

Theorem (Choi-Lam-Reznick): A generic positive bivariate form of
degree 2d has 297! representations as a sum of 2 squares.

Theorem (Powers-Reznick-Scheiderer-Sottile): A generic positive ternary
quartic has 8 representations as a sum of 3 squares.

Theorem: If X C PN is a surface of minimal degree, then a generic
g € Px has 2V=2 representations as a sum of 3 squares.

Conjecture: If X C PV is a variety of minimal degree, then a generic
q € Px has 2°°9im(X) representations as a sum of dim(X) -+ 1 squares.

(Possible proof by Hanselka and Sinn)
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Real vs. complex representations

Remarkably, the number of real representations as sums of few squares is
more stable over R than C.
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Real vs. complex representations

Remarkably, the number of real representations as sums of few squares is
more stable over R than C.

Example. There are four surfaces of minimal degree in P5:
the cone over v4(P!), 12(IP?), and the rational normal scrolls Xy, 4, with

(d17 d2) = (272)7 (17 3)'

A general element q € Px is a sum of 3 squares q = h? + h3 + h3.
If hy, ho, h3 € F[X];, say the representation is over the field F.
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Real vs. complex representations

Remarkably, the number of real representations as sums of few squares is
more stable over R than C.

Example. There are four surfaces of minimal degree in P5:
the cone over v4(P!), 12(IP?), and the rational normal scrolls Xy, 4, with

(d17 d2) = (272)7 (17 3)'

A general element q € Px is a sum of 3 squares q = h? + h3 + h3.
If hy, ho, h3 € F[X];, say the representation is over the field F.

X ‘ # reps. over R ‘ # reps. over C
cone(v4(PT)) 8 35
vo(IP?) 8 63
X2, 8 64
X31 8 64
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Real vs. complex representations

Remarkably, the number of real representations as sums of few squares is
more stable over R than C.

Example. There are four surfaces of minimal degree in P5:
the cone over v4(P!), 12(IP?), and the rational normal scrolls Xy, 4, with

(d17 d2) = (272)7 (17 3)'

A general element q € Px is a sum of 3 squares q = h? + h3 + h3.
If hy, ho, h3 € F[X];, say the representation is over the field F.

X ‘ # reps. over R ‘ # reps. over C
cone(v4(PT)) 8 35
vo(IP?) 8 63
X2, 8 64
X31 8 64
Thanks!
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