An SOS Relaxation for Hyperbolicity Cones

Cynthia Vinzant

University of Michigan

joint work with Daniel Plaumann

김 글 아이지 글 아

A homogeneous polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point $e \in \mathbb{R}^n$ if $f(e) \neq 0$ and for every $x \in \mathbb{R}^n$, all roots of $f(te + x) \in \mathbb{R}[t]$ are real.

伺 とう ヨン うちょう

A homogeneous polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point $e \in \mathbb{R}^n$ if $f(e) \neq 0$ and for every $x \in \mathbb{R}^n$, all roots of $f(te + x) \in \mathbb{R}[t]$ are real.

hyperbolic with respect to e = (1, 0, 0)

Hyperbolic Polynomials

A homogeneous polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point $e \in \mathbb{R}^n$ if $f(e) \neq 0$ and for every $x \in \mathbb{R}^n$, all roots of $f(te + x) \in \mathbb{R}[t]$ are real.

向下 イヨト イヨト

Its hyperbolicity cone, denoted C(f, e), is the connected component of e in $\mathbb{R}^n \setminus \mathcal{V}_{\mathbb{R}}(f)$.

向下 イヨト イヨト

Its hyperbolicity cone, denoted C(f, e), is the connected component of e in $\mathbb{R}^n \setminus \mathcal{V}_{\mathbb{R}}(f)$.

3 × 4 3 ×

Gårding (1959) showed that

- C(f, e) is convex, and
- f is hyperbolic with respect to any point $a \in C(f, e)$.

Its hyperbolicity cone, denoted C(f, e), is the connected component of e in $\mathbb{R}^n \setminus \mathcal{V}_{\mathbb{R}}(f)$.

(4) (2) (4) (2) (4)

Gårding (1959) showed that

- C(f, e) is convex, and
- f is hyperbolic with respect to any point $a \in C(f, e)$.

One can use interior point methods to optimize a linear function over an affine section of a hyperbolicity cone, Güler (1997), Renegar (2006). This solves a *hyperbolic program*.

Two Important Examples of Hyperbolic Programming

f	
I	
е	
<i>C</i> (<i>f</i> , <i>e</i>)	

(E) < E)</p>

Two Important Examples of Hyperbolic Programming

	Linear Programming	
f	$\prod_i x_i$	
е	$(1,\ldots,1)$	
<i>C</i> (<i>f</i> , <i>e</i>)	$(\mathbb{R}_+)^n$	

(E) < E)</p>

Two Important Examples of Hyperbolic Programming

	Linear Programming	Semidefinite Programming
f	$\prod_i x_i$	$\det \begin{pmatrix} x_{11} & \dots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{1n} & \dots & x_{nn} \end{pmatrix}$
е	$(1,\ldots,1)$	ld _n
<i>C</i> (<i>f</i> , <i>e</i>)	$(\mathbb{R}_+)^n$	positive definite matrices

Theorem

Every hyperbolicity cone is a linear slice of the cone of nonnegative polynomials.

Theorem

Every hyperbolicity cone is a linear slice of the cone of nonnegative polynomials.

If $f \in \mathbb{R}[x_1, ..., x_n]_d$ is hyperbolic with respect to $e \in \mathbb{R}^n$, then its hyperbolicity cone C(f, e) is a slice of the cone of nonnegative polynomials in $\mathbb{R}[x_1, ..., x_n]_{2d-2}$.

Interlacing Derivatives

If all roots of p(t) are real, then the roots of p'(t) are real and interlace the roots of p(t).

• 3 >

A ■

→ ∃ →

Interlacing Derivatives

If all roots of p(t) are real, then the roots of p'(t) are real and interlace the roots of p(t).

For any direction $a \in C(f, e)$ the polynomial

$$D_a(f) = \sum_i a_i \frac{\partial f}{\partial x_i} = \left(\frac{\partial}{\partial t} f(ta+x) \right) \Big|_{t=0}$$

is hyperbolic and interlaces f.

Interlacing Derivatives

If all roots of p(t) are real, then the roots of p'(t) are real and interlace the roots of p(t).

For any direction $a \in C(f, e)$ the polynomial

$$D_a(f) = \sum_i a_i \frac{\partial f}{\partial x_i} = \left(\frac{\partial}{\partial t} f(ta+x) \right) \Big|_{t=0}$$

is hyperbolic and interlaces f. (Not true for $a \notin C(f, e)$).

For any $a \in C(f, e)$, the product $D_e f \cdot D_a f$ is nonnegative on $\mathcal{V}_{\mathbb{R}}(f)$.

3 × 4 3 ×

For any $a \in C(f, e)$, the product $D_e f \cdot D_a f$ is nonnegative on $\mathcal{V}_{\mathbb{R}}(f)$.

In fact, $D_e f \cdot D_a f - f \cdot D_e D_a f$ is nonnegative on \mathbb{R}^n .

A 3 >

- ∢ ≣ >


```
In fact, D_e f \cdot D_a f - f \cdot D_e D_a f
is nonnegative on \mathbb{R}^n.
```


・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

If $f \in \mathbb{R}[x_1, ..., x_n]_d$ is square-free and hyperbolic with respect to the point $e \in \mathbb{R}^n$ and f(e) > 0, then the hyperbolicity cone $\overline{C(f, e)}$ is the following linear section of nonnegative polynomials:

 $\{ a \in \mathbb{R}^n : D_e f \cdot D_a f - f \cdot D_e D_a f \ge 0 \text{ on } \mathbb{R}^n \}.$

$$f(x) = x_1^2 - x_2^2 - \ldots - x_n^2$$
 $e = (1, 0, \ldots, 0)$

(신문) (신문)

A ₽

伺下 イヨト イヨト

3

伺下 イヨト イヨト

$$f(x) = x_1^2 - x_2^2 - \dots - x_n^2 \quad e = (1, 0, \dots, 0)$$

$$D_e f \cdot D_a f - f \cdot D_e D_a f$$

$$= (2x_1)(2a_1x_1 - \sum_{j \neq 1} 2a_jx_j) - (x_1^2 - \sum_{j \neq 1} x_j^2)(2a_1)$$

$$= 2\left(a_1 \sum_j x_j^2 - 2\sum_{j \neq 1} a_jx_1x_j\right)$$

$$\Rightarrow \quad \overline{C(f, e)} = \left\{a \in \mathbb{R}^n : \begin{pmatrix}a_1 & -a_2 & \dots & -a_n \\ -a_2 & a_1 & 0 \\ \vdots & \ddots & \vdots \\ -a_n & 0 & \dots & a_1 \end{pmatrix} \succeq 0\right\}$$

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

$$f(x) = x_1^2 - x_2^2 - \dots - x_n^2 \quad e = (1, 0, \dots, 0)$$

$$D_e f \cdot D_a f - f \cdot D_e D_a f$$

$$= (2x_1)(2a_1x_1 - \sum_{j \neq 1} 2a_jx_j) - (x_1^2 - \sum_{j \neq 1} x_j^2)(2a_1)$$

$$= 2\left(a_1 \sum_j x_j^2 - 2\sum_{j \neq 1} a_jx_1x_j\right)$$

$$\Rightarrow \quad \overline{C(f, e)} = \left\{a \in \mathbb{R}^n : \begin{pmatrix}a_1 & -a_2 & \dots & -a_n \\ -a_2 & a_1 & 0 \\ \vdots & \ddots & \vdots \\ -a_n & 0 & \dots & a_1 \end{pmatrix} \succeq 0\right\}$$

 $(determinant = a_1^{n-2}f(a))$

Sums of Squares Relaxation

Corollary

 $\{a \in \mathbb{R}^n : D_e f \cdot D_a f - f \cdot D_e D_a f \text{ is a sum of squares }\} \subseteq C(f, e).$

< 3 > <

Corollary $\{a \in \mathbb{R}^n : D_e f \cdot D_a f - f \cdot D_e D_a f \text{ is a sum of squares }\} \subseteq C(f, e).$ *the projection of a spectrahedron!*

Corollary

 $\{a \in \mathbb{R}^n : D_e f \cdot D_a f - f \cdot D_e D_a f \text{ is a sum of squares } \} \subseteq C(f, e).$ the projection of a spectrahedron!

Theorem

If $f = det(\sum_{i} x_i M_i)$ where M_1, \ldots, M_n are real symmetric matrices and $\sum_{i} e_i M_i \succ 0$, then this relaxation is exact.

Corollary

$$\{a \in \mathbb{R}^n : D_e f \cdot D_a f - f \cdot D_e D_a f \text{ is a sum of squares } \} \subseteq C(f, e).$$

the projection of a spectrahedron!

Theorem

If $f = det(\sum_{i} x_i M_i)$ where M_1, \ldots, M_n are real symmetric matrices and $\sum_{i} e_i M_i \succ 0$, then this relaxation is exact.

Conjecture

This relaxation is always exact and every hyperbolicity cone is the projection of a spectrahedron.

Corollary

$$\{a \in \mathbb{R}^n : D_e f \cdot D_a f - f \cdot D_e D_a f \text{ is a sum of squares } \} \subseteq C(f, e).$$

the projection of a spectrahedron!

Theorem

If $f = det(\sum_{i} x_i M_i)$ where M_1, \ldots, M_n are real symmetric matrices and $\sum_{i} e_i M_i \succ 0$, then this relaxation is exact.

Conjecture

This relaxation is always exact and every hyperbolicity cone is the projection of a spectrahedron.

Thanks!

