Computing Hermitian Determinantal Representations of Plane Curves

joint with Daniel Plaumann, Rainer Sinn, and David Speyer.

Determinantal Representations

A determinantal representation of $f \in \mathbb{R}[x_1, \dots, x_n]_d$ is

$$f = \det \left(\sum_{i=1}^{n} x_i M_i \right)$$
 where M_i are $d \times d$ matrices.

Determinantal Representations

A determinantal representation of $f \in \mathbb{R}[x_1, \dots, x_n]_d$ is

$$f = \det \left(\sum_{i=1}^{n} x_i M_i \right)$$
 where M_i are $d \times d$ matrices.

Ex:
$$x^2 - y^2 - z^2 = \det \begin{pmatrix} x - y & z \\ z & x + y \end{pmatrix}$$
$$= \det \left(x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} + z \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right)$$

Determinantal Representations

A determinantal representation of $f \in \mathbb{R}[x_1, \dots, x_n]_d$ is

$$f = \det \left(\sum_{i=1}^{n} x_i M_i \right)$$
 where M_i are $d \times d$ matrices.

Ex:
$$x^2 - y^2 - z^2 = \det \begin{pmatrix} x - y & z \\ z & x + y \end{pmatrix}$$
$$= \det \left(x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + y \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} + z \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right)$$

A representation $\sum_i x_i M_i$ is **definite** if the M_i are real symmetric or Hermitian and there is a positive definite matrix in their span,

$$M(e) = \sum_{i} e_{i}M_{i} \succ 0$$
 for some $e \in \mathbb{R}^{n}$.

Hyperbolic Polynomials

$$f = \det(\sum_{i} x_{i} M_{i})$$
 with $\sum_{i} e_{i} M_{i} > 0$
 \Rightarrow f is **hyperbolic** with respect to e.
(roots of $f(e + tx)$ are real for every $x \in \mathbb{R}^{n}$)

a hyperbolic cubic

a hyperbolic quartic

a not-hyperbolic quartic

Hyperbolic Polynomials

$$f = \det(\sum_i x_i M_i)$$
 with $\sum_i e_i M_i \succ 0$
 \Rightarrow f is **hyperbolic** with respect to e.
(roots of $f(e + tx)$ are real for every $x \in \mathbb{R}^n$)

a hyperbolic cubic a hyperbolic quartic a not-hyperbolic quartic

Hyperbolic plane curves consist of degree/2 nested ovals in $\mathbb{P}^2(\mathbb{R})$.

Definite Determinantal Representations

Question: What hyperbolic polynomials have definite determinantal representations $f = \det(\sum_i x_i M_i)$?

Definite Determinantal Representations

Question: What hyperbolic polynomials have definite determinantal representations $f = \det(\sum_i x_i M_i)$?

Related Question: What convex semialgebraic sets can be written as a slice of the cone of positive semidefinite matrices?

Definite Determinantal Representations

Question: What hyperbolic polynomials have definite determinantal representations $f = \det(\sum_i x_i M_i)$?

Related Question: What convex semialgebraic sets can be written as a slice of the cone of positive semidefinite matrices?

Theorem (Helton-Vinnikov 2007)

If a polynomial $f \in \mathbb{R}[x, y, z]_d$ is hyperbolic with respect to $e \in \mathbb{R}^3$ then there exist real symmetric matrices $A, B, C \in \mathbb{R}^{d \times d}_{sym}$ with

$$f = \det(xA + yB + zC)$$
 and $e_1A + e_2B + e_3C > 0$.

Constructions

Computing real symmetric determinantal representations is hard.

One can use ...

- o theta functions (à la Helton and Vinnikov)
- o homotopy continuation (Leykin and Plaumann)

Constructions

Computing real symmetric determinantal representations is hard.

One can use ...

- o theta functions (à la Helton and Vinnikov)
- o homotopy continuation (Leykin and Plaumann)

These slow down around degree $\approx 6,7$.

Constructions

Computing real symmetric determinantal representations is hard.

One can use ...

- o theta functions (à la Helton and Vinnikov)
- homotopy continuation (Leykin and Plaumann)

These slow down around degree $\approx 6,7$.

Computing *Hermitian* determinantal representations is **easier**.

Interlacing and Distinguishing Definiteness

Theorem (Plaumann-V. 2013)

For a Hermitian matrix of linear forms $M(x) = \sum_i x_i M_i$, the matrix M(e) is (positive or negative) definite if and only if the top left $(d-1) \times (d-1)$ minor of M interlaces det(M) with respect to e.

Interlacing and Distinguishing Definiteness

Theorem (Plaumann-V. 2013)

For a Hermitian matrix of linear forms $M(x) = \sum_i x_i M_i$, the matrix M(e) is (positive or negative) definite if and only if the top left $(d-1) \times (d-1)$ minor of M interlaces $\det(M)$ with respect to e.

Interlacing and Distinguishing Definiteness

Theorem (Plaumann-V. 2013)

For a Hermitian matrix of linear forms $M(x) = \sum_i x_i M_i$, the matrix M(e) is (positive or negative) definite if and only if the top left $(d-1) \times (d-1)$ minor of M interlaces $\det(M)$ with respect to e.

For a matrix M, let M^{adj} denote its adjugate (or classical adjoint).

Some observations about the matrix M^{adj} ...

For a matrix M, let M^{adj} denote its adjugate (or classical adjoint).

Some observations about the matrix M^{adj} ...

o If $M = \sum_{i} x_{i} M_{i}$, the entries of M^{adj} have degree d - 1.

For a matrix M, let M^{adj} denote its adjugate (or classical adjoint).

Some observations about the matrix M^{adj} ...

- o If $M = \sum_{i} x_{i} M_{i}$, the entries of M^{adj} have degree d 1.
- o $M \cdot M^{adj} = M^{adj} \cdot M = \det(M)I$.

For a matrix M, let M^{adj} denote its adjugate (or classical adjoint).

Some observations about the matrix M^{adj} ...

- o If $M = \sum_{i} x_i M_i$, the entries of M^{adj} have degree d-1.
- o $M \cdot M^{adj} = M^{adj} \cdot M = \det(M)I$.
- o $M^{adj}(p)$ has rank ≤ 1 for every point p in $\mathcal{V}(\det(M))$.

For a matrix M, let M^{adj} denote its adjugate (or classical adjoint).

Some observations about the matrix M^{adj} ...

- o If $M = \sum_{i} x_i M_i$, the entries of M^{adj} have degree d-1.
- o $M \cdot M^{adj} = M^{adj} \cdot M = \det(M)I$.
- o $M^{adj}(p)$ has rank ≤ 1 for every point p in $\mathcal{V}(\det(M))$.

Idea (Dixon 1902): Construct a $d \times d$ matrix of forms of degree d-1 whose 2×2 minors lie in the ideal $\langle f \rangle$.

For a matrix M, let M^{adj} denote its adjugate (or classical adjoint).

Some observations about the matrix M^{adj} ...

- o If $M = \sum_{i} x_i M_i$, the entries of M^{adj} have degree d-1.
- o $M \cdot M^{adj} = M^{adj} \cdot M = \det(M)I$.
- o $M^{adj}(p)$ has rank ≤ 1 for every point p in $\mathcal{V}(\det(M))$.

Idea (Dixon 1902): Construct a $d \times d$ matrix of forms of degree d-1 whose 2×2 minors lie in the ideal $\langle f \rangle$.

o $(M^{adj})_{11}$ interlaces $\det(M) \Rightarrow M(e) \succ 0$.

Interlacers → Definite Determinantal Representations

Theorem (Plaumann-V. 2013)

Suppose $g_1 \in \mathbb{R}[x, y, z]_{d-1}$ interlaces f with respect to $e \in \mathbb{R}^3$ and split the points $\mathcal{V}(f, g_1)$ into disjoint sets $S \cup \overline{S}$.

Interlacers → Definite Determinantal Representations

Theorem (Plaumann-V. 2013)

Suppose $g_1 \in \mathbb{R}[x, y, z]_{d-1}$ interlaces f with respect to $e \in \mathbb{R}^3$ and split the points $\mathcal{V}(f, g_1)$ into disjoint sets $S \cup \overline{S}$.

If $g = (g_1, \dots, g_d)$ is a basis $\mathbb{C}[x, y, z]_{d-1} \cap \mathcal{I}(S)$,

Interlacers → Definite Determinantal Representations

Theorem (Plaumann-V. 2013)

Suppose $g_1 \in \mathbb{R}[x, y, z]_{d-1}$ interlaces f with respect to $e \in \mathbb{R}^3$ and split the points $\mathcal{V}(f, g_1)$ into disjoint sets $S \cup \overline{S}$.

If $g = (g_1, \dots, g_d)$ is a basis $\mathbb{C}[x, y, z]_{d-1} \cap \mathcal{I}(S)$, then there is a Hermitian matrix M = xA + yB + zC with

o Let
$$g_1=e_1\frac{\partial f}{\partial x}+e_2\frac{\partial f}{\partial y}+e_3\frac{\partial f}{\partial z}.$$

- o Let $g_1 = e_1 \frac{\partial f}{\partial x} + e_2 \frac{\partial f}{\partial y} + e_3 \frac{\partial f}{\partial z}$.
- o Compute the d(d-1) points $\mathcal{V}_{\mathbb{C}}(f) \cap \mathcal{V}_{\mathbb{C}}(g_1)$.

o Let
$$g_1 = e_1 \frac{\partial f}{\partial x} + e_2 \frac{\partial f}{\partial y} + e_3 \frac{\partial f}{\partial z}$$
.

- o Compute the d(d-1) points $\mathcal{V}_{\mathbb{C}}(f) \cap \mathcal{V}_{\mathbb{C}}(g_1)$.
- o Split $\mathcal{V}_{\mathbb{C}}(f) \cap \mathcal{V}_{\mathbb{C}}(g_1)$ into disjoint, conjugate sets $S \cup \overline{S}$.

- o Let $g_1 = e_1 \frac{\partial f}{\partial x} + e_2 \frac{\partial f}{\partial y} + e_3 \frac{\partial f}{\partial z}$.
- o Compute the d(d-1) points $\mathcal{V}_{\mathbb{C}}(f) \cap \mathcal{V}_{\mathbb{C}}(g_1)$.

- o Split $\mathcal{V}_{\mathbb{C}}(f) \cap \mathcal{V}_{\mathbb{C}}(g_1)$ into disjoint, conjugate sets $S \cup \overline{S}$.
- o Extend g_1 to a basis $g=(g_1,\ldots,g_d)$ of the space of polynomials in $\mathbb{C}[x,y,z]_{d-1}$ that vanish at the points S.

- o Let $g_1=e_1\frac{\partial f}{\partial x}+e_2\frac{\partial f}{\partial y}+e_3\frac{\partial f}{\partial z}$.
- o Compute the d(d-1) points $\mathcal{V}_{\mathbb{C}}(f)\cap\mathcal{V}_{\mathbb{C}}(g_1)$.

- o Split $\mathcal{V}_{\mathbb{C}}(f) \cap \mathcal{V}_{\mathbb{C}}(g_1)$ into disjoint, conjugate sets $S \cup \overline{S}$.
- o Extend g_1 to a basis $g=(g_1,\ldots,g_d)$ of the space of polynomials in $\mathbb{C}[x,y,z]_{d-1}$ that vanish at the points S.
- o In the $3d^2$ variables $A_{i,j}$, $B_{i,j}$, $C_{i,j}$, solve the $2d\binom{d+2}{2}$ affine equations coming from the polynomial vector equations

$$g \cdot (xA + yB + zC) = (f, 0...0)$$

$$(xA + yB + zC) \cdot \overline{g}^{T} = (f, 0...0)^{T}.$$

Input: $f \in \mathbb{R}[x, y, z]_d$ and $e \in \mathbb{R}^3$ with f hyperbolic w.resp. to e.

- o Let $g_1 = e_1 \frac{\partial f}{\partial x} + e_2 \frac{\partial f}{\partial y} + e_3 \frac{\partial f}{\partial z}$.
- o Compute the d(d-1) points $\mathcal{V}_{\mathbb{C}}(f) \cap \mathcal{V}_{\mathbb{C}}(g_1)$.

- o Split $\mathcal{V}_{\mathbb{C}}(f) \cap \mathcal{V}_{\mathbb{C}}(g_1)$ into disjoint, conjugate sets $S \cup \overline{S}$.
- o Extend g_1 to a basis $g = (g_1, \dots, g_d)$ of the space of polynomials in $\mathbb{C}[x, y, z]_{d-1}$ that vanish at the points S.
- o In the $3d^2$ variables $A_{i,j}, B_{i,j}, C_{i,j}$, solve the $2d\binom{d+2}{2}$ affine equations coming from the polynomial vector equations

$$g \cdot (xA + yB + zC) = (f, 0...0)$$

$$(xA + yB + zC) \cdot \overline{g}^{T} = (f, 0...0)^{T}.$$

Output: Hermitian matrices $A, B, C \in \mathbb{C}^{d \times d}$ with $f = \det(xA + yB + zC)$ and $e_1A + e_2B + e_3C \succ 0$.

$$\begin{aligned} \mathbf{f} &= \mathbf{x^4} - \mathbf{4}\mathbf{x^2}\mathbf{y^2} + \mathbf{y^4} - \mathbf{4}\mathbf{x^2}\mathbf{z^2} - \mathbf{2}\mathbf{y^2}\mathbf{z^2} + \mathbf{z^4} \\ &\quad \text{(hyperbolic w.resp. to (1,0,0))} \end{aligned}$$

$$\begin{aligned} f = x^4 - 4x^2y^2 + y^4 - 4x^2z^2 - 2y^2z^2 + z^4 \\ & \text{(hyperbolic w.resp. to } (1,0,0)) \end{aligned}$$

Let
$$g_1 = \frac{1}{4}\partial f/\partial x = x^3 - 2xy^2 - 2xz^2$$
.

$$\begin{aligned} \mathbf{f} &= \mathbf{x^4} - 4\mathbf{x^2}\mathbf{y^2} + \mathbf{y^4} - 4\mathbf{x^2}\mathbf{z^2} - 2\mathbf{y^2}\mathbf{z^2} + \mathbf{z^4} \\ &\quad \text{(hyperbolic w.resp. to (1,0,0))} \end{aligned}$$

Let
$$g_1 = \frac{1}{4}\partial f/\partial x = x^3 - 2xy^2 - 2xz^2$$
.

Split
$$\mathcal{V}(f) \cap \mathcal{V}(g_1) = S \cup \overline{S}$$
 where

$$S = \{[0:\pm 1:1], [2:\pm \sqrt{3}:i], [2:i:\pm \sqrt{3}]\}.$$

$$\begin{aligned} \mathbf{f} &= \mathbf{x^4} - \mathbf{4x^2y^2} + \mathbf{y^4} - \mathbf{4x^2z^2} - \mathbf{2y^2z^2} + \mathbf{z^4} \\ &\quad \text{(hyperbolic w.resp. to (1,0,0))} \end{aligned}$$

Let
$$g_1 = \frac{1}{4}\partial f/\partial x = x^3 - 2xy^2 - 2xz^2$$
.

Split
$$V(f) \cap V(g_1) = S \cup \overline{S}$$
 where $S = \{[0: \pm 1: 1], [2: \pm \sqrt{3}: i], [2: i: \pm \sqrt{3}]\}.$

The cubics in $\mathbb{C}[x,y,z]_3$ vanishing at S are spanned by $g=(g_1,g_2,g_3,g_4)$, where

$$g_2 = ix^3 + 4ixy^2 - 4x^2z - 4y^2z + 4z^3,$$

$$g_3 = -3ix^3 + 4x^2y + 4ixy^2 - 4y^3 + 4yz^2,$$

$$g_4 = -x^3 - 2ix^2y - 2ix^2z + 4xyz.$$

From the vector of cubics $g = (g_1, \dots, g_4)$, we solve the polynomial vector equations

$$g \cdot (xA + yB + zC) = (f, 0)$$
 and $(xA + yB + zC) \cdot \overline{g}^T = (f, 0)^T$.

From the vector of cubics $g = (g_1, \dots, g_4)$, we solve the polynomial vector equations

$$g \cdot (xA + yB + zC) = (f, 0)$$
 and $(xA + yB + zC) \cdot \overline{g}^T = (f, 0)^T$.
one entry \rightarrow 15 affine equations in A_{ij}, B_{ij}, C_{ij}

From the vector of cubics $g = (g_1, \dots, g_4)$, we solve the polynomial vector equations

$$g \cdot (xA + yB + zC) = (f, 0)$$
 and $(xA + yB + zC) \cdot \overline{g}^T = (f, 0)^T$.
one entry \rightarrow 15 affine equations in A_{ij}, B_{ij}, C_{ij}

Unique solution:

$$xA + yB + zC = \frac{1}{8} \begin{pmatrix} 14x & 2z & 2ix - 2y & 2i(y - z) \\ 2z & x & 0 & -ix + 2y \\ -2ix - 2y & 0 & x & ix - 2z \\ -2i(y - z) & ix + 2y & -ix - 2z & 4x \end{pmatrix}$$

From the vector of cubics $g = (g_1, \dots, g_4)$, we solve the polynomial vector equations

$$g \cdot (xA + yB + zC) = (f, 0)$$
 and $(xA + yB + zC) \cdot \overline{g}^T = (f, 0)^T$.
one entry \rightarrow 15 affine equations in A_{ij}, B_{ij}, C_{ij}

Unique solution:

$$xA + yB + zC = \frac{1}{8} \begin{pmatrix} 14x & 2z & 2ix - 2y & 2i(y - z) \\ 2z & x & 0 & -ix + 2y \\ -2ix - 2y & 0 & x & ix - 2z \\ -2i(y - z) & ix + 2y & -ix - 2z & 4x \end{pmatrix}$$

determinant = $(1/256) \cdot f$, positive definite at (x, y, z) = (1, 0, 0)

Numerical computations

For randomly generated hyperbolic polynomials, this method computes determinantal representations fairly quickly (in Mathematica).

Average computation times:

degree	5	6	7	8	9	10	15
time (sec)	0.4	8.0	1.7	3.2	6.1	10.7	110

References

- o A. C. Dixon. Note on the reduction of a ternary quantic to a symmetrical determinant. *Cambr. Proc.*, **11**, (1902) 350–351.
- o J. W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. *Comm. Pure Appl. Math.*, **60(5)**, (2007) 654–674.
- Anton Leykin and D. Plaumann. Determinantal representations of hyperbolic curves via polynomial homotopy continuation. arXiv:1212.3506
- D. Plaumann and C. Vinzant. Determinantal representations of hyperbolic plane curves: An elementary approach. *J. Symbolic Comput.*, 57 (2013), 48–60.

Thanks!

