The Chow form of a reciprocal linear space

Cynthia Vinzant

North Carolina State University

joint work with Mario Kummer, Universität Konstanz

A polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point v if every real line through v meets $\mathcal{V}(f)$ in only real points.

A polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point v if every real line through v meets $\mathcal{V}(f)$ in only real points.

Example: $f = x^2 - y^2 - z^2$, v = (1, 0, 0)

A polynomial $f \in \mathbb{R}[x_1, ..., x_n]_d$ is hyperbolic with respect to a point v if every real line through v meets $\mathcal{V}(f)$ in only real points.

Example: $f = x^2 - y^2 - z^2$, v = (1, 0, 0)

Example: $f = det(\sum_{i} x_i A_i)$ where $A_1, \ldots, A_n \in \mathbb{R}^{d \times d}_{sym}$ and the matrix $\sum_{i} v_i A_i$ is positive definite

A polynomial $f \in \mathbb{R}[x_1, ..., x_n]_d$ is hyperbolic with respect to a point v if every real line through v meets $\mathcal{V}(f)$ in only real points.

Example: $f = x^2 - y^2 - z^2$, v = (1, 0, 0)

Example: $f = \det(\sum_{i} x_{i}A_{i})$ where $A_{1}, \ldots, A_{n} \in \mathbb{R}^{d \times d}_{sym}$ and the matrix $\sum_{i} v_{i}A_{i}$ is positive definite

e.g.
$$x^2 - y^2 - z^2 = \det \begin{pmatrix} x + y & z \\ z & x - y \end{pmatrix}$$

A polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point v if every real line through v meets $\mathcal{V}(f)$ in only real points.

A polynomial $f \in \mathbb{R}[x_1, \ldots, x_n]_d$ is hyperbolic with respect to a point v if every real line through v meets $\mathcal{V}(f)$ in only real points.

Theorem (Helton-Vinnikov 2007). A polynomial $f \in \mathbb{R}[x_1, x_2, x_3]_d$ is hyperbolic if and only if there exist $A_1, A_2, A_3 \in \mathbb{R}^{d \times d}_{sym}$ with

$$f = \det\left(\sum_{i} x_i A_i\right)$$
 and $\sum_{i} v_i A_i \succ 0.$

 $\{L: L^{\perp} \text{ intersects } X\}$ is a hypersurface in $\mathbb{G}(d-1, n-1)$

3

 $\{L: L^{\perp} \text{ intersects } X\}$ is a hypersurface in $\mathbb{G}(d-1, n-1)$

defined by a polynomial in the Plücker coordinates on $\mathbb{G}(d-1, n-1)$ called the Chow form of X.

(日本)(日本)(日本)

 $\{L: L^{\perp} \text{ intersects } X\}$ is a hypersurface in $\mathbb{G}(d-1, n-1)$

defined by a polynomial in the Plücker coordinates on $\mathbb{G}(d-1, n-1)$ called the Chow form of X.

Example: $X = \{ [s^3 : s^2t : st^2 : t^3] : [s : t] \in \mathbb{P}^1 \}$

(4月) (3日) (3日) 日

 $\{L: L^{\perp} \text{ intersects } X\}$ is a hypersurface in $\mathbb{G}(d-1, n-1)$

defined by a polynomial in the Plücker coordinates on $\mathbb{G}(d-1, n-1)$ called the Chow form of X.

Example: $X = \{[s^3 : s^2t : st^2 : t^3] : [s : t] \in \mathbb{P}^1\}$ $L = \operatorname{span}\{a, b\} \subset \mathbb{P}^3,$ $L^{\perp} \cap X \neq 0 \Leftrightarrow a_0 + a_1t + a_2t^2 + a_3t^3, b_0 + b_1t + b_2t^2 + b_3t^3$ have a common root

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\{L: L^{\perp} \text{ intersects } X\}$ is a hypersurface in $\mathbb{G}(d-1, n-1)$

defined by a polynomial in the Plücker coordinates on $\mathbb{G}(d-1, n-1)$ called the Chow form of X.

Example: $X = \{[s^3 : s^2t : st^2 : t^3] : [s : t] \in \mathbb{P}^1\}$ $L = \operatorname{span}\{a, b\} \subset \mathbb{P}^3,$ $L^{\perp} \cap X \neq 0 \Leftrightarrow a_0 + a_1t + a_2t^2 + a_3t^3, b_0 + b_1t + b_2t^2 + b_3t^3$ have a common root

The Chow form of X is the resultant of these polynomials.

・ 同 ト ・ ヨ ト ・ ヨ ト

A real variety $X \subset \mathbb{P}^{n-1}(\mathbb{C})$ of codim(X) = c is **hyperbolic** with respect to a linear space *L* of dim c - 1 if $X \cap L = \emptyset$ and for all real linear spaces $L' \supset L$ of dim(L') = c, all points $X \cap L'$ are real.

A real variety $X \subset \mathbb{P}^{n-1}(\mathbb{C})$ of codim(X) = c is **hyperbolic** with respect to a linear space L of dim c - 1 if $X \cap L = \emptyset$ and for all real linear spaces $L' \supset L$ of dim(L') = c, all points $X \cap L'$ are real.

Theorem (Shamovich-Vinnikov 2015). If a curve $X \subset \mathbb{P}^{n-1}$ is hyperbolic with respect to L, then its Chow form is a determinant

det $\left(\sum_{I \in \binom{[n]}{2}} p_I(M) A_I\right)$ with $\sum_{I \in \binom{[n]}{2}} p_I(L^{\perp}) A_I \succ 0$

for some matrices $A_I \in \mathbb{C}_{Herm}^{D \times D}$ with $D = \deg(X)$.

Given a linear space $\mathcal{L} \in \operatorname{Gr}(d, n)$, its reciprocal linear space is

$$\mathcal{L}^{-1} = \mathbb{P}\left(\overline{\left\{\left(x_1^{-1}, \dots, x_n^{-1}\right) : x \in \mathcal{L} \cap (\mathbb{C}^*)^n\right\}}\right).$$

(ロ) (同) (E) (E) (E)

Given a linear space $\mathcal{L} \in \operatorname{Gr}(d, n)$, its reciprocal linear space is

$$\mathcal{L}^{-1} = \mathbb{P}\left(\overline{\left\{\left(x_1^{-1},\ldots,x_n^{-1}\right): x \in \mathcal{L} \cap (\mathbb{C}^*)^n\right\}}\right).$$

Varchenko (1995): \mathcal{L}^{-1} is hyperbolic with respect to \mathcal{L}^{\perp} .

ヨット イヨット イヨッ

Given a linear space $\mathcal{L} \in \mathrm{Gr}(d, n)$, its reciprocal linear space is

$$\mathcal{L}^{-1} = \mathbb{P}\left(\overline{\left\{\left(x_1^{-1}, \ldots, x_n^{-1}\right) : x \in \mathcal{L} \cap (\mathbb{C}^*)^n\right\}}\right).$$

Varchenko (1995): \mathcal{L}^{-1} is hyperbolic with respect to \mathcal{L}^{\perp} .

Proudfoot-Speyer (2006): $\deg(\mathcal{L}^{-1})$ a matroid invariant of Lgenerically = $\binom{n-1}{d-1}$

Given a linear space $\mathcal{L} \in \mathrm{Gr}(d, n)$, its reciprocal linear space is

$$\mathcal{L}^{-1} = \mathbb{P}\left(\overline{\left\{\left(x_1^{-1},\ldots,x_n^{-1}\right): x \in \mathcal{L} \cap (\mathbb{C}^*)^n\right\}}\right).$$

Varchenko (1995): \mathcal{L}^{-1} is hyperbolic with respect to \mathcal{L}^{\perp} .

Proudfoot-Speyer (2006): $\deg(\mathcal{L}^{-1})$ a matroid invariant of Lgenerically = $\binom{n-1}{d-1}$

De Loera-Sturmfels-V. (2012): $\mathcal{L}^{-1} \cap (\mathcal{L}^{\perp} + v)$ are analytic centers of the bounded regions in a hyperplane arrangement.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: (d, n) = (2, 4)

Take $\ell_0, \ell_1, \ell_2, \ell_3 \in \mathbb{R}[s, t]$.

Then $\mathcal{L} = \{ [\ell_0 : \ell_1 : \ell_2 : \ell_3] : [s : t] \in \mathbb{P}^1 \} \in \mathbb{G}(1, 3).$

イロン イボン イヨン イヨン 三日

Example: (d, n) = (2, 4)

Take $\ell_0, \ell_1, \ell_2, \ell_3 \in \mathbb{R}[s, t]$.

Then
$$\mathcal{L} = \{ [\ell_0 : \ell_1 : \ell_2 : \ell_3] : [s : t] \in \mathbb{P}^1 \} \in \mathbb{G}(1, 3).$$

 \mathcal{L} intersects the coordinate hyperplanes $\{x_i = 0\}$ in 4 points. Remove them and take inverses to get

$$\mathcal{L}^{-1} = \overline{\{ [\frac{1}{\ell_0} : \frac{1}{\ell_1} : \frac{1}{\ell_2} : \frac{1}{\ell_3}] \}} = \overline{\{ [\ell_1 \ell_2 \ell_3 : \ell_0 \ell_2 \ell_3 : \ell_0 \ell_1 \ell_3 : \ell_0 \ell_1 \ell_2] \}}.$$

Example: (d, n) = (2, 4)

Take $\ell_0, \ell_1, \ell_2, \ell_3 \in \mathbb{R}[s, t]$.

Then
$$\mathcal{L} = \{ [\ell_0 : \ell_1 : \ell_2 : \ell_3] : [s : t] \in \mathbb{P}^1 \} \in \mathbb{G}(1, 3).$$

 \mathcal{L} intersects the coordinate hyperplanes $\{x_i = 0\}$ in 4 points. Remove them and take inverses to get

$$\mathcal{L}^{-1} = \overline{\{[\frac{1}{\ell_0} : \frac{1}{\ell_1} : \frac{1}{\ell_2} : \frac{1}{\ell_3}]\}} = \overline{\{[\ell_1 \ell_2 \ell_3 : \ell_0 \ell_2 \ell_3 : \ell_0 \ell_1 \ell_3 : \ell_0 \ell_1 \ell_2]\}}.$$

$$\mathcal{L}^{-1} \text{ is a rational cubic curve.}$$
Any plane \mathcal{L}' containing \mathcal{L}^{\perp} intersects
$$\mathcal{L}^{-1} \text{ in } 3 = \deg(\mathcal{L}^{-1}) \text{ real points.}$$

向下 イヨト イヨト

3

Determinantal representation for \mathcal{L}^{-1}

Let $\mathcal{L} \in \mathbb{G}(d-1, n-1)$ not contained in a hyperplane $\{x_i = 0\}$.

Define $p(\mathcal{L}) \in \mathbb{P}(\bigwedge^d \mathbb{R}^n)$ and $\mathcal{B} = \{I \in {[n] \choose d} : p_I(\mathcal{L}) \neq 0\}.$

Determinantal representation for \mathcal{L}^{-1}

Let $\mathcal{L} \in \mathbb{G}(d-1, n-1)$ not contained in a hyperplane $\{x_i = 0\}$.

Define
$$p(\mathcal{L}) \in \mathbb{P}(\bigwedge^d \mathbb{R}^n)$$
 and $\mathcal{B} = \{I \in {[n] \choose d} : p_I(\mathcal{L}) \neq 0\}.$

Theorem (Kummer-V. 2016). The Chow form of \mathcal{L}^{-1} can be written as a determinant

$$\det\left(\sum_{I\in\mathcal{B}}\frac{p_I(\mathcal{M})}{p_I(\mathcal{L})}A_I\right)$$

for some rank-one, p.s.d. matrices $A_I = v_I v_I^T$ of size deg (\mathcal{L}^{-1}) .

通 とう ほう とう マン・

Determinantal representation for \mathcal{L}^{-1}

Let $\mathcal{L} \in \mathbb{G}(d-1, n-1)$ not contained in a hyperplane $\{x_i = 0\}$.

Define
$$p(\mathcal{L}) \in \mathbb{P}(\bigwedge^d \mathbb{R}^n)$$
 and $\mathcal{B} = \{I \in {[n] \choose d} : p_I(\mathcal{L}) \neq 0\}.$

Theorem (Kummer-V. 2016). The Chow form of \mathcal{L}^{-1} can be written as a determinant

$$\det\left(\sum_{I\in\mathcal{B}}\frac{p_I(\mathcal{M})}{p_I(\mathcal{L})}A_I\right)$$

for some rank-one, p.s.d. matrices $A_I = v_I v_I^T$ of size deg (\mathcal{L}^{-1}) .

The rowspan of the deg $(\mathcal{L}^{-1}) \times |\mathcal{B}|$ matrix $(v_I : I \in \mathcal{B})$ is

 $\operatorname{span}\{p(\mathcal{L}): (1,\ldots,1) \in \mathcal{L}\} \cap (\mathbb{C}^*)^{\mathcal{B}}.$

Generic case: the uniform matroid

If
$$\mathcal{B} = {\binom{[n]}{d}}$$
 the vectors $\{v_l : l \in \mathcal{B}\}$ can be taken to be
 $v_l = e_{l \setminus \{n\}}$ for $l \ni n$ and $\sum_{k=1}^d (-1)^k e_{l \setminus \{i_k\}}$ for $l \not\supseteq n$.

For d = 2, these vectors represent the graphic matroid of K_n .

白 ト イヨト イヨト

æ

Generic case: the uniform matroid

7 1

If
$$\mathcal{B} = {\binom{[n]}{d}}$$
 the vectors $\{v_l : l \in \mathcal{B}\}$ can be taken to be
 $v_l = e_{l \setminus \{n\}}$ for $l \ni n$ and $\sum_{k=1}^d (-1)^k e_{l \setminus \{i_k\}}$ for $l \not\ni n$.

For d = 2, these vectors represent the graphic matroid of K_n .

Theorem (Kummer-V.). If $\mathcal{L} \in Gr(2, n)$ has no zero Plücker coordinates, then the Chow form of \mathcal{L}^{-1} is

$$\sum_{T\in\mathcal{T}_n}\prod_{\{i,j\}\in T}p_{ij}(\mathcal{M})\cdot\prod_{\{k,\ell\}\in T^c}p_{k\ell}(\mathcal{L}),$$

where T_n denotes the set of spanning trees on *n* vertices.

ヨット イヨット イヨッ

For d = 2, n = 4, \mathcal{L}^{-1} generically has degree 3 and we can take

$$egin{pmatrix} (v_{14} & v_{24} & v_{34} & v_{12} & v_{13} & v_{23} \end{pmatrix} = egin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & -1 & 0 & 1 \ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix}$$

(本語) (本語) (本語) (二語)

For d = 2, n = 4, \mathcal{L}^{-1} generically has degree 3 and we can take

$$\begin{pmatrix} v_{14} & v_{24} & v_{34} & v_{12} & v_{13} & v_{23} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{pmatrix}$$

If $p = p(\mathcal{M})$ and $q = p(\mathcal{L})$ then the Chow form of \mathcal{L}^{-1} is

$$\det\left(\sum_{I} \frac{p_{I}}{q_{I}} \cdot v_{I}v_{I}^{T}\right) = \\ \det\left(\begin{array}{ccc} \frac{p_{14}}{q_{14}} + \frac{p_{12}}{q_{12}} + \frac{p_{13}}{q_{13}} & -p_{12}/q_{12} & -p_{13}/q_{13} \\ -p_{12}/q_{12} & \frac{p_{24}}{q_{24}} + \frac{p_{12}}{q_{12}} + \frac{p_{23}}{q_{23}} & -p_{23}/q_{23} \\ -p_{13}/q_{13} & -p_{23}/q_{23} & \frac{p_{34}}{q_{34}} + \frac{p_{13}}{q_{13}} + \frac{p_{23}}{q_{23}} \end{array}\right)$$

٠

| ▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

The varieties \mathcal{L}^{-1} are hyperbolic with respect to an orthant in the Grassmannian, and the Chow forms we found only involve square-free monomials in $\mathbb{C}[p_I(\mathcal{M})]$.

There will be nice combinatorics and geometry in the following:

The varieties \mathcal{L}^{-1} are hyperbolic with respect to an orthant in the Grassmannian, and the Chow forms we found only involve square-free monomials in $\mathbb{C}[p_I(\mathcal{M})]$.

There will be nice combinatorics and geometry in the following:

What are the possible supports of square-free Chow forms of hyperbolic varieties?

The varieties \mathcal{L}^{-1} are hyperbolic with respect to an orthant in the Grassmannian, and the Chow forms we found only involve square-free monomials in $\mathbb{C}[p_I(\mathcal{M})]$.

There will be nice combinatorics and geometry in the following:

What are the possible supports of square-free Chow forms of hyperbolic varieties?

Which hyperbolic varieties have determinantal representations?

The varieties \mathcal{L}^{-1} are hyperbolic with respect to an orthant in the Grassmannian, and the Chow forms we found only involve square-free monomials in $\mathbb{C}[p_I(\mathcal{M})]$.

There will be nice combinatorics and geometry in the following:

What are the possible supports of square-free Chow forms of hyperbolic varieties?

Which hyperbolic varieties have determinantal representations?

Thanks!