Geometry of Spectrahedra

Cynthia Vinzant, North Carolina State University

AMS Short Course on Sums of Squares JMM 2019 Let S^n_+ denote the convex cone of positive semidefinite matrices in S^n .

A spectrahedron is the intersection S_+^n with an affine linear space *L*.

Let S^n_+ denote the convex cone of positive semidefinite matrices in S^n .

A spectrahedron is the intersection S_+^n with an affine linear space *L*.

Example: for
$$\pi: S^n \to \mathbb{R}[x_1, \dots, x_n]_{\leq 2d}$$
 given by $\pi(A) = \mathrm{m}_d^T A \mathrm{m}_d$
$$\pi^{-1}(f) \cap S^n_+$$

is the spectrahedron of sums of squares representations of f.

For
$$n = 1$$
, $2d = 4$, and $f(x) = x^4 + x^2 + 1$,

$$f(x) = \begin{pmatrix} 1 & x & x^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 - 2a & 0 \\ a & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix}$$

This matrix is positive semidefinite $\Leftrightarrow a \in [-1, 1/2].$

同 ト イヨト イヨト

For n = 1, 2d = 4, and $f(x) = x^4 + x^2 + 1$,

$$f(x) = \begin{pmatrix} 1 & x & x^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 - 2a & 0 \\ a & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ x^2 \end{pmatrix}$$

This matrix is positive semidefinite $\Leftrightarrow a \in [-1, 1/2]$.

At endpoints, a = -1, 1/2, this matrix has rank two \Rightarrow

$$(x^2-1)^2 + (\sqrt{3}x)^2$$
 and $(x^2+1/2)^2 + (\sqrt{3}/2)^2$

白 と く ヨ と く ヨ と …

Example:

$$L = \left\{ \begin{pmatrix} 1 & x & y & z \\ x & 1 & x & y \\ y & x & 1 & x \\ z & y & x & 1 \end{pmatrix} : (x, y, z) \in \mathbb{R}^{3} \right\}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Goal: understand the algebraic and convex geometry of $L \cap S^n_+$

A real symmetric matrix *A* is positive semidefinite if the following equivalent conditions hold:

- ▶ all eigenvalues of A are ≥ 0
- all diagonal minors of A are ≥ 0

•
$$v^T A v \ge 0$$
 for all $v \in \mathbb{R}^n$

• there exists $B \in \mathbb{R}^{n \times k}$ with

$$A = BB^{T} = (\langle r_i, r_j \rangle)_{ij} = \sum_{i=1}^{k} c_i c_i^{T}$$

where $r_1, \ldots, r_n, c_1, \ldots, c_k$ are the rows and columns of B

向下 イヨト イヨト

Basic closed semialgebraic set = set of the form

$$\{\mathbf{p}\in\mathbb{R}^n:g_1(\mathbf{p})\geq0,\ldots,g_s(\mathbf{p})\geq0\}$$

where $g_1, \ldots, g_s \in \mathbb{R}[x_1, \ldots, x_n]$.

Example: S^n_+ and $S^n_+ \cap L$ (given by diagonal minors ≥ 0)

白 と く ヨ と く ヨ と …

Basic closed semialgebraic set = set of the form

$$\{\mathbf{p}\in\mathbb{R}^n:g_1(\mathbf{p})\geq0,\ldots,g_s(\mathbf{p})\geq0\}$$

where $g_1, \ldots, g_s \in \mathbb{R}[x_1, \ldots, x_n]$.

Example: S^n_+ and $S^n_+ \cap L$ (given by diagonal minors ≥ 0)

Semialgebraic set = finite boolean combination (complements, intersections, and unions) of basic closed semialgebraic sets

Tarski-Seidenberg Theorem The projection of a semialgebraic set is semialgebraic.

 $S = \{(x, y, z) : (y+x)^2 \le (z+1)(x+1), (y-x)^2 \le (z-1)(x-1), x^2 \le 1\}$

.

Tarski-Seidenberg Theorem The projection of a semialgebraic set is semialgebraic.

 $S = \{(x, y, z) : (y+x)^2 \le (z+1)(x+1), (y-x)^2 \le (z-1)(x-1), x^2 \le 1\}$

$$\pi_{xz}(S) = \{(x, z) : -1 \le z \le 4x^3 - 3x, \ x \le 1/2\} \\ \cup \{(x, z) : 4x^3 - 3x \le z \le 1, \ -1/2 \le x\}$$

Computation: Cylindrical Algebraic Decomposition

Convexity basics

A subset $C \subseteq \mathbb{R}^d$ is ...

 \dots convex if for $\mathbf{x}, \mathbf{y} \in C$, $\lambda \in [0, 1]$, $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in C$

... a *convex cone* if it is convex and $\mu C \subseteq C$ for $\mu \in \mathbb{R}_{\geq 0}$

向下 イヨト イヨト

Convexity basics

A subset $C \subseteq \mathbb{R}^d$ is ...

- \ldots convex if for $\mathbf{x}, \mathbf{y} \in C$, $\lambda \in [0, 1]$, $\lambda \mathbf{x} + (1 \lambda) \mathbf{y} \in C$
- ... a *convex cone* if it is convex and $\mu C \subseteq C$ for $\mu \in \mathbb{R}_{\geq 0}$

The convex hull of $S \subseteq \mathbb{R}^d$ is

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^k \lambda_i \mathbf{p}_i : \mathbf{p}_i \in S, \ \lambda_i \ge 0, \ \sum_{i=1}^k \lambda_i = 1 \right\}.$$

通 ト イ ヨ ト イ ヨ ト

Convexity basics

A subset $C \subseteq \mathbb{R}^d$ is convex if for $\mathbf{x}, \mathbf{y} \in C$, $\lambda \in [0, 1]$, $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in C$... a convex cone if it is convex and $\mu C \subseteq C$ for $\mu \in \mathbb{R}_{\geq 0}$

The convex hull of $S \subseteq \mathbb{R}^d$ is

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^k \lambda_i \mathbf{p}_i : \mathbf{p}_i \in S, \ \lambda_i \ge 0, \ \sum_{i=1}^k \lambda_i = 1 \right\}.$$

The conical hull of $S \subseteq \mathbb{R}^d$ is

$$\mathbb{R}_{\geq 0} \cdot \operatorname{conv}(S) = \left\{ \sum_{i=1}^{k} \lambda_i \mathbf{p}_i : \mathbf{p}_i \in S, \ \lambda_i \geq 0 \right\}.$$

白 ト イ ヨ ト イ ヨ ト

Convexity basics : extreme points/rays

An extreme point of a convex set C is a point $\mathbf{p} \in C$ such that

 $\mathbf{p} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \ \text{ for } \ \mathbf{x}, \mathbf{y} \in \mathcal{C}, \lambda \in (0, 1) \ \Rightarrow \ \mathbf{x} = \mathbf{y} = \mathbf{p}.$

Convexity basics : extreme points/rays

An extreme point of a convex set C is a point $\mathbf{p} \in C$ such that

 $\mathbf{p} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \ \text{ for } \ \mathbf{x}, \mathbf{y} \in \mathcal{C}, \lambda \in (0, 1) \ \Rightarrow \ \mathbf{x} = \mathbf{y} = \mathbf{p}.$

Krein-Milman Theorem

A convex compact set is the convex hull of its extreme points.

Convexity basics : extreme points/rays

An extreme point of a convex set C is a point $\mathbf{p} \in C$ such that

 $\mathbf{p} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \ \text{ for } \ \mathbf{x}, \mathbf{y} \in \mathcal{C}, \lambda \in (0, 1) \ \Rightarrow \ \mathbf{x} = \mathbf{y} = \mathbf{p}.$

Krein-Milman Theorem

A convex compact set is the convex hull of its extreme points.

An extreme ray of a convex cone *C* is a ray $\mathbb{R}_+\mathbf{r} \subseteq C$ such that

$$\mathbf{r} = \lambda \mathbf{x} + \mu \mathbf{y}$$
 for $\mathbf{x}, \mathbf{y} \in \mathcal{C}, \lambda, \mu \in \mathbb{R}_+ \Rightarrow \mathbf{x}, \mathbf{y} \in \mathbb{R}_+ \mathbf{r}$.

Convexity basics : faces

Extreme points and rays are examples of faces. We say $F \subseteq C$ is a *face* of *C* if *F* is convex and

 $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in F \ \text{ for } \ \mathbf{x}, \mathbf{y} \in C, \lambda \in (0, 1) \ \Rightarrow \ \mathbf{x}, \mathbf{y} \in F.$

Convexity basics : faces

Extreme points and rays are examples of faces. We say $F \subseteq C$ is a *face* of *C* if *F* is convex and

 $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in F \ \text{ for } \ \mathbf{x}, \mathbf{y} \in C, \lambda \in (0, 1) \ \Rightarrow \ \mathbf{x}, \mathbf{y} \in F.$

Example: $F = \{ \mathbf{x} \in C : \langle \mathbf{c}, \mathbf{x} \rangle \ge \langle \mathbf{c}, \mathbf{y} \rangle \text{ for all } \mathbf{y} \in C \}$

Convexity basics : faces

Extreme points and rays are examples of faces. We say $F \subseteq C$ is a *face* of *C* if *F* is convex and

 $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in F \ \text{ for } \ \mathbf{x}, \mathbf{y} \in C, \lambda \in (0, 1) \ \Rightarrow \ \mathbf{x}, \mathbf{y} \in F.$

Example: $F = \{ \mathbf{x} \in C : \langle \mathbf{c}, \mathbf{x} \rangle \ge \langle \mathbf{c}, \mathbf{y} \rangle \text{ for all } \mathbf{y} \in C \}$

Note: Faces of $C \cap L$ has the form $F \cap L$ where F = face of C. Extreme points of $C \cap L$ need not be extreme points of C!

Convexity basics : faces of the PSD cone

Example: $S^n_+ = \operatorname{conv}(\{xx^T : x \in \mathbb{R}^n\})$ is a convex cone.

Its extreme rays are $\{\mathbb{R}_+xx^T : x \in \mathbb{R}^n\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Convexity basics : faces of the PSD cone

Example: $S^n_+ = \operatorname{conv}(\{xx^T : x \in \mathbb{R}^n\})$ is a convex cone.

Its extreme rays are $\{\mathbb{R}_+xx^T : x \in \mathbb{R}^n\}$.

Faces of \mathcal{S}^n_+ have dim $\binom{r+1}{2}$ for $r = 0, 1, \dots, n$ and look like

 $F_V = \{A \in \mathcal{S}^n_+ : V \subseteq \ker(A)\}.$

Ex: for $V = \operatorname{span} \{ e_{r+1}, \dots, e_n \}$, $F_V = \left\{ \begin{pmatrix} B & \underline{0} \\ \underline{0} & \underline{0} \end{pmatrix} : B \in \mathcal{S}_+^r \right\} \cong \mathcal{S}_+^r$

(本部) (本語) (本語) (二語)

Convexity basics : faces of spectrahedra

Faces of $\mathcal{S}^n_+ \cap L$ have the form $F_V = \{A \in \mathcal{S}^n_+ \cap L : V \subseteq \ker(A)\}.$

Example:

$$L = \left\{ A(x, y, z) = \begin{pmatrix} 1 - x & y & 0 & 0 \\ y & 1 + x & 0 & 0 \\ 0 & 0 & 1 - z & 0 \\ 0 & 0 & 0 & 1 + z \end{pmatrix} : (x, y, z) \in \mathbb{R}^{3} \right\}$$

 $\mathcal{S}^4_+\cap L$

(A) (E) (A) (E) (A)

Convexity basics : faces of spectrahedra

Faces of $\mathcal{S}^n_+ \cap L$ have the form $F_V = \{A \in \mathcal{S}^n_+ \cap L : V \subseteq \ker(A)\}.$

Example:

$$L = \left\{ A(x, y, z) = \begin{pmatrix} 1 - x & y & 0 & 0 \\ y & 1 + x & 0 & 0 \\ 0 & 0 & 1 - z & 0 \\ 0 & 0 & 0 & 1 + z \end{pmatrix} : (x, y, z) \in \mathbb{R}^{3} \right\}$$

 $V \qquad F_V$ $\operatorname{span}_{\mathbb{R}} \{e_3\} \rightarrow 2-\operatorname{dim'l face} z = 1$ $\operatorname{span}_{\mathbb{R}} \{e_1\} \rightarrow \operatorname{edge} x = 1, y = 0$ $\operatorname{span}_{\mathbb{R}} \{e_1, e_3\} \rightarrow \operatorname{point} (x, y, z) = (1, 0, 1)$

「ママ・ドレート」

 $\mathcal{S}^4_+\cap L$

Dual cones

For a convex convex cone $C \subseteq \mathbb{R}^d$, the *dual cone* is

$$C^* = \{ \mathbf{c} \in \mathbb{R}^d : \langle \mathbf{c}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in C \}.$$

For closed cones, $(C^*)^* = C$.

(日)、<回)、<三)、</p>

∢ ≣⇒

Dual cones

For a convex convex cone $C \subseteq \mathbb{R}^d$, the *dual cone* is

$$C^* = \{ \mathbf{c} \in \mathbb{R}^d : \langle \mathbf{c}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in C \}.$$

For closed cones, $(C^*)^* = C$.

Visualizing with $c_1 = x_1 = 1$:

Dual cones: visualization challenge

For a convex convex cone $C \subseteq \mathbb{R}^d$, the *dual cone* is

$$C^* = \{ \mathbf{c} \in \mathbb{R}^d : \langle \mathbf{c}, \mathbf{x} \rangle \ge 0 \text{ for all } \mathbf{x} \in C \}.$$

Visualizing with $c_1 = x_1 = 1$:

Dual cones: projection and slicing

Consider (orthogonal) projection $\pi_L : \mathbb{R}^d \to L$.

For a convex cone $C \subseteq \mathbb{R}^d$, what linear inequalities define $\pi_L(C)$?

Dual cones: projection and slicing

Consider (orthogonal) projection $\pi_L : \mathbb{R}^d \to L$.

For a convex cone $C \subseteq \mathbb{R}^d$, what linear inequalities define $\pi_L(C)$?

Ans: $\{\ell \in C^* : \ell \text{ is constant on preimages of } \pi_L\} \cong C^* \cap L$ Projection and slicing are dual operations.

Dual cones: projection and slicing

For (orthogonal) projection $\pi_L : \mathbb{R}^d \to L$.

 $(\pi_L(C))^* = C^* \cap L$ and $(C \cap L)^* = \overline{\pi_L(C^*)}$

Projection and slicing are dual operations.

The cone of PSD matrices $S^n_+ = \operatorname{conv}(\{xx^T : x \in \mathbb{R}^n\}).$

 \mathcal{S}^n_+ is self-dual under the inner product $\langle A, B \rangle = \text{trace}(A \cdot B)$:

 $\begin{array}{l} \langle A,B\rangle \geq 0 \text{ for all } B \in \mathcal{S}_{+}^{n} \iff \langle A,bb^{T}\rangle \geq 0 \text{ for all } b \in \mathbb{R}^{n} \\ \Leftrightarrow b^{T}Ab \geq 0 \text{ for all } b \in \mathbb{R}^{n} \\ \Leftrightarrow A \in \mathcal{S}_{+}^{n} \end{array}$

• • = • • = •

The cone of PSD matrices $S^n_+ = \operatorname{conv}(\{xx^T : x \in \mathbb{R}^n\}).$

 \mathcal{S}^n_+ is self-dual under the inner product $\langle A, B \rangle = \text{trace}(A \cdot B)$:

$$\begin{array}{l} \langle A,B\rangle \geq 0 \text{ for all } B \in \mathcal{S}_{+}^{n} \iff \langle A,bb^{T}\rangle \geq 0 \text{ for all } b \in \mathbb{R}^{n} \\ \Leftrightarrow b^{T}Ab \geq 0 \text{ for all } b \in \mathbb{R}^{n} \\ \Leftrightarrow A \in \mathcal{S}_{+}^{n} \end{array}$$

Then for any subspace $L \subset S^n$,

 $(\pi_L(\mathcal{S}^n_+))^* = \mathcal{S}^n_+ \cap L$ and $(\mathcal{S}^n_+ \cap L)^* = \overline{\pi_L(\mathcal{S}^n_+)}$

回 とくきとくきとうき

The cone of PSD matrices $S^n_+ = \operatorname{conv}(\{xx^T : x \in \mathbb{R}^n\}).$

 \mathcal{S}^n_+ is self-dual under the inner product $\langle A,B
angle = \operatorname{trace}(A\cdot B)$:

$$\begin{array}{l} \langle A,B\rangle \geq 0 \text{ for all } B \in \mathcal{S}_{+}^{n} \iff \langle A,bb^{T}\rangle \geq 0 \text{ for all } b \in \mathbb{R}^{n} \\ \Leftrightarrow b^{T}Ab \geq 0 \text{ for all } b \in \mathbb{R}^{n} \\ \Leftrightarrow A \in \mathcal{S}_{+}^{n} \end{array}$$

Then for any subspace $L \subset S^n$,

 $(\pi_L(\mathcal{S}^n_+))^* = \mathcal{S}^n_+ \cap L$ and $(\mathcal{S}^n_+ \cap L)^* = \overline{\pi_L(\mathcal{S}^n_+)}$

Cor: {spectrahedral shadows} are closed under projection, duality

< 同 > < 注 > < 注 > … 注

Dual cones: sums of squares

For any subspace $L \subset S^n$,

 $(\pi_L(\mathcal{S}^n_+))^* = \mathcal{S}^n_+ \cap L$ and $(\mathcal{S}^n_+ \cap L)^* = \overline{\pi_L(\mathcal{S}^n_+)}$

Recall that $\Sigma_{n,\leq 2d} = \pi_L(\mathcal{S}^N_+)$ where $\pi_L(A) = \mathrm{m}_d(\mathbf{x})^T A \mathrm{m}_d(\mathbf{x})$

回 と く ヨ と く ヨ と …

Dual cones: sums of squares

For any subspace $L \subset S^n$,

 $(\pi_L(\mathcal{S}^n_+))^* = \mathcal{S}^n_+ \cap L$ and $(\mathcal{S}^n_+ \cap L)^* = \overline{\pi_L(\mathcal{S}^n_+)}$

Recall that $\sum_{n,\leq 2d} = \pi_L(\mathcal{S}^N_+)$ where $\pi_L(A) = \mathrm{m}_d(\mathbf{x})^T A \mathrm{m}_d(\mathbf{x})$

Cor: $\sum_{n,\leq 2d}^{*} = S_{+}^{N} \cap L$ is a spectrahedron!

<回> < 注) < 注) < 注) < 注) = 注

For any subspace $L \subset S^n$,

 $(\pi_L(\mathcal{S}^n_+))^* = \mathcal{S}^n_+ \cap L$ and $(\mathcal{S}^n_+ \cap L)^* = \overline{\pi_L(\mathcal{S}^n_+)}$

Recall that $\Sigma_{n,\leq 2d} = \pi_L(\mathcal{S}^N_+)$ where $\pi_L(A) = \mathrm{m}_d(\mathbf{x})^T A \mathrm{m}_d(\mathbf{x})$

Cor: $\sum_{n,\leq 2d}^* = S_+^N \cap L$ is a spectrahedron!

When $\Sigma_{n,\leq 2d} = P_{n,\leq 2d}$, this gives that $P_{n,\leq 2d}^* = \operatorname{conv}(\operatorname{m}_{2d}(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n)$

is a spectrahedron.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Duality and SOS

$$C = \operatorname{conv}\{\lambda(1, t, 2t^2 - 1, 4t^3 - 3t) : t \in [-1, 1], \lambda \ge 0\}$$

 $C^* = \{(a, b, c, d) : a + bt + c(2t^2 - 1) + d(4t^3 - 3t) \ge 0 \text{ for } t \in [-1, 1]\}$

Caution:

The projection of spectrahedron may not be a spectrahedron!

not *basic* closed \Rightarrow not a spectrahedron

Spectrahedral shadows: an interlude

Caution:

The projection of spectrahedron may not be a spectrahedron!

not *basic* closed \Rightarrow not a spectrahedron

Caution:

The dual of spectrahedron may not be a spectrahedron!

still not a spectrahedron

A spectrahedral shadow is the image of a spectrahedron under linear projection. These are convex semialgebraic sets.

Unlike spectrahedra, the class of spectrahedral shadows is closed under projection, duality, convex hull of unions, ...

A spectrahedral shadow is the image of a spectrahedron under linear projection. These are convex semialgebraic sets.

Unlike spectrahedra, the class of spectrahedral shadows is closed under projection, duality, convex hull of unions, ...

Helton-Nie Conjecture (2009):

Every convex semialgebraic set is a spectrahedral shadow.

A spectrahedral shadow is the image of a spectrahedron under linear projection. These are convex semialgebraic sets.

Unlike spectrahedra, the class of spectrahedral shadows is closed under projection, duality, convex hull of unions, ...

Helton-Nie Conjecture (2009):

Every convex semialgebraic set is a spectrahedral shadow.

Counterexample by Scheiderer in 2016: $P_{3,\leq 6}$.

Open: What is the smallest dimension of a counterexample?

Back to spectrahedra $L \cap S^n_+$

Parametrize *L* by $A(\mathbf{x}) = A_0 + x_1A_1 + \dots, x_dA_d$. Then $L \cap S^n_+ \cong \{\mathbf{x} \in \mathbb{R}^d : A(\mathbf{x}) \succeq 0\}$.

・日・・ ヨ・・ モ・

The $n \times n$ elliptope is

 $\mathcal{E}_n = \{A \in PSD_n : A_{ii} = 1 \text{ for all } i\}$

 $= \{n \times n \text{ correlation matrices}\}$ in stats

 \mathcal{E}_n has 2^{n-1} matrices of rank-one: $\{\mathbf{x}\mathbf{x}^T : \mathbf{x} \in \{-1,1\}^n\}$, corresponding to cuts in the complete graph K_n .

The $n \times n$ elliptope is

- $\mathcal{E}_n = \{A \in PSD_n : A_{ii} = 1 \text{ for all } i\}$
- $= \{n \times n \text{ correlation matrices}\}$ in stats

・ 同 ト ・ ヨ ト ・ ヨ ト

 \mathcal{E}_n has 2^{n-1} matrices of rank-one: $\{\mathbf{x}\mathbf{x}^T : \mathbf{x} \in \{-1,1\}^n\}$, corresponding to cuts in the complete graph K_n .

$$\begin{aligned} MAXCUT &= \max_{S \subset [n]} \sum_{i \in S, j \in S^c} w_{ij} &= \max_{x \in \{-1,1\}^d} \sum_{i,j} w_{ij} \frac{(1 - x_i x_j)}{2} \\ &= \max_{A \in \mathcal{E}_n, r \in (A) = 1} \sum_{i,j} w_{ij} \frac{(1 - A_{ij})}{2} &\leq \max_{A \in \mathcal{E}_n} \sum_{i,j} w_{ij} \frac{(1 - A_{ij})}{2}. \end{aligned}$$

Goemans-Williamson use this to give \approx .87 optimal cuts of graphs.

 $\mathcal{C} = \operatorname{conv}\{(t, t^2, \dots, t^{2d}) : t \in \mathbb{R}\}$ is a spectrahedron in \mathbb{R}^{2d}

 $C = \left\{ \mathbf{x} \in \mathbb{R}^{2d} : M(\mathbf{x}) \succeq 0 \right\}$ where $M(\mathbf{x}) = (x_{i+j-2})_{1 \le i,j \le d+1}$

白をくぼとくほと

 $\mathcal{C} = \operatorname{conv}\{(t, t^2, \dots, t^{2d}) : t \in \mathbb{R}\}$ is a spectrahedron in \mathbb{R}^{2d}

 $C = \left\{ \mathbf{x} \in \mathbb{R}^{2d} : M(\mathbf{x}) \succeq 0 \right\}$ where $M(\mathbf{x}) = (x_{i+j-2})_{1 \le i,j \le d+1}$

Ex. (d=1): conv{
$$(t, t^2)$$
 : $t \in \mathbb{R}$ } = $\left\{ (x_1, x_2) : \begin{pmatrix} 1 & x_1 \\ x_1 & x_2 \end{pmatrix} \succeq 0 \right\}$

白をくぼとくほと

 $\mathcal{C} = \operatorname{conv}\{(t, t^2, \dots, t^{2d}) : t \in \mathbb{R}\}$ is a spectrahedron in \mathbb{R}^{2d}

 $C = \left\{ \mathbf{x} \in \mathbb{R}^{2d} : M(\mathbf{x}) \succeq 0 \right\} \text{ where } M(\mathbf{x}) = (x_{i+j-2})_{1 \le i,j \le d+1}$

Ex. (d=1): conv{
$$(t, t^2)$$
 : $t \in \mathbb{R}$ } = $\left\{ (x_1, x_2) : \begin{pmatrix} 1 & x_1 \\ x_1 & x_2 \end{pmatrix} \succeq 0 \right\}$

Minimization of univariate polynomial of degree $\leq 2d$ \rightarrow Minimization of linear function over C

向下 イヨト イヨト

 $\mathcal{C} = \operatorname{conv}\{(t, t^2, \dots, t^{2d}) : t \in \mathbb{R}\}$ is a spectrahedron in \mathbb{R}^{2d}

 $C = \left\{ \mathbf{x} \in \mathbb{R}^{2d} : M(\mathbf{x}) \succeq 0 \right\}$ where $M(\mathbf{x}) = (x_{i+j-2})_{1 \le i,j \le d+1}$

Ex. (d=1): conv{
$$(t, t^2)$$
 : $t \in \mathbb{R}$ } = $\left\{ (x_1, x_2) : \begin{pmatrix} 1 & x_1 \\ x_1 & x_2 \end{pmatrix} \succeq 0 \right\}$

Ex: conv{
$$(t, t^2, t^3)$$
 : $t \in [-1, 1]$ }
= $\left\{ \mathbf{x} \in \mathbb{R}^3 : \begin{pmatrix} 1 \pm x_1 & x_1 \pm x_2 \\ x_1 \pm x_2 & x_2 \pm x_3 \end{pmatrix} \succeq \mathbf{0} \right\}$

$$C = \{\mathbf{x} \in \mathbb{R}^d : A(\mathbf{x}) \succeq 0\}, \quad \dim(C) = d, A_i \in S^n.$$

If **x** is an extreme point of C and r is the rank of $A(\mathbf{x})$ then

$$\binom{r+1}{2} + d \leq \binom{n+1}{2}$$

Furthermore if A_0, \ldots, A_d are generic, then $d \ge \binom{n-r+1}{2}$.

The interval of $r \in \mathbb{Z}_+$ satisfying both \leq 's is the Pataki range.

向下 イヨト イヨト

Pataki range: examples

Example: d = 3, n = 3Pataki range: r = 1, 2

 $\begin{pmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{pmatrix}$

∢ ≣ ▶

Pataki range: examples

Example: d = 3, n = 3Pataki range: r = 1, 2

Example: d = 3, n = 4Pataki range: r = 2, 3

Pataki range: examples

Example: d = 3, n = 3Pataki range: r = 1, 2

Example: d = 3, n = 4Pataki range: r = 2, 3

Example: d = 3, n = 4Pataki range: r = 2, 3

< A > < B > <

Low-rank matrices on the elliptope

Example: d = 3, n = 3 Pataki range: r = 1, 2

∢ ≣ ▶

Example: d = 3, n = 3 Pataki range: r = 1, 2

Counting rank-1 matrices:

 $\{X : \operatorname{rank}(X) \leq 1\}$ is variety of codim 3 and degree 4 in S^3 .

 \Rightarrow 0, 1, 2, 3, 4 or ∞ rank-1 matrices in C (generically 0, 2, or 4)

Example: d = 3, n = 3 Pataki range: r = 1, 2

Counting rank-1 matrices:

 $\{X : \mathsf{rank}(X) \le 1\}$ is variety of codim 3 and degree 4 in \mathcal{S}^3 .

 $\Rightarrow 0, 1, 2, 3, 4$ or ∞ rank-1 matrices in C (generically 0, 2, or 4)

There must be \geq 1 rank-1 matrix. Why? Topology!

If ∂C has no rank-1 matrices, then the map $S^2 \cong \partial C \to \mathbb{P}^2(\mathbb{R})$ given by $\mathbf{x} \mapsto \ker(A(\mathbf{x}))$ is an embedding. $\Rightarrow \Leftarrow$

(For more see Friedland, Robbin, Sylvester, 1984)

Suppose $A_0 = I$ and let $f(\mathbf{x}) = \det(A(\mathbf{x}))$.

⇒ *f* is hyperbolic, i.e. for every $\mathbf{x} \in \mathbb{R}^n$, $f(t\mathbf{x}) \in \mathbb{R}[t]$ is real-rooted.

Suppose $A_0 = I$ and let $f(\mathbf{x}) = \det(A(\mathbf{x}))$.

⇒ *f* is hyperbolic, i.e. for every $\mathbf{x} \in \mathbb{R}^n$, $f(t\mathbf{x}) \in \mathbb{R}[t]$ is real-rooted.

If $V_{\mathbb{R}}(f)$ is smooth, this implies that that $V_{\mathbb{R}}(f) \subset \mathbb{P}^{n-1}$ consists of $\lfloor d/2 \rfloor$ nested spheres.

Suppose $A_0 = I$ and let $f(\mathbf{x}) = \det(A(\mathbf{x}))$.

⇒ *f* is hyperbolic, i.e. for every $\mathbf{x} \in \mathbb{R}^n$, $f(t\mathbf{x}) \in \mathbb{R}[t]$ is real-rooted.

If $V_{\mathbb{R}}(f)$ is smooth, this implies that that $V_{\mathbb{R}}(f) \subset \mathbb{P}^{n-1}$ consists of $\lfloor d/2 \rfloor$ nested spheres.

Open (Generalized Lax Conjecture): Is every hyperbolicity region a spectrahedron?

Some combinatorial questions on spectrahedra

What is the "*f*-vector" of a spectrahedron?

Extreme points and faces come with a lot of discrete data ...

dimension, matrix rank, dimension of normal cone, degree, # number of connected components, Betti #s, ...

Very open: What values are possible?

Some combinatorial questions on spectrahedra

What is the "*f*-vector" of a spectrahedron?

Extreme points and faces come with a lot of discrete data ...

dimension, matrix rank, dimension of normal cone, degree, # number of connected components, Betti #s, ...

Very open: What values are possible?

