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Spectrahedra

Let Sn+ denote the convex cone of
positive semidefinite matrices in Sn.

A spectrahedron is the intersection Sn+
with an affine linear space L.

Example: for π : Sn → R[x1, . . . , xn]≤2d given by π(A) = mT
d A md

π−1(f ) ∩ Sn+

is the spectrahedron of sums of squares representations of f .
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Spectrahedra of a sum of squares

For n = 1, 2d = 4, and f (x) = x4 + x2 + 1,

f (x) =
(
1 x x2

)



1 0 a
0 1− 2a 0
a 0 1






1
x
x2




This matrix is positive semidefinite ⇔ a ∈ [−1, 1/2].

At endpoints, a = −1, 1/2, this matrix has rank two ⇒

(x2 − 1)2 + (
√

3x)2 and (x2 + 1/2)2 + (
√

3/2)2.
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Spectrahedra

Example:

L =








1 x y z
x 1 x y
y x 1 x
z y x 1


 : (x , y , z) ∈ R3





L ∩ S4+

Goal: understand the algebraic and convex geometry of L ∩ Sn+
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Positive semidefinite matrices

A real symmetric matrix A is positive semidefinite if the following
equivalent conditions hold:

I all eigenvalues of A are ≥ 0

I all diagonal minors of A are ≥ 0

I vTAv ≥ 0 for all v ∈ Rn

I there exists B ∈ Rn×k with

A = BBT = (〈ri , rj〉)ij =
k∑

i=1

cic
T
i

where r1, . . . , rn, c1, . . . , ck are the rows and columns of B
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Real algebraic geometry basics

Basic closed semialgebraic set = set of the form

{p ∈ Rn : g1(p) ≥ 0, . . . , gs(p) ≥ 0}

where g1, . . . , gs ∈ R[x1, . . . , xn].

Example: Sn+ and Sn+ ∩ L (given by diagonal minors ≥ 0)

Semialgebraic set = finite boolean combination (complements,
intersections, and unions) of basic closed semialgebraic sets

basic closed basic closed not basic closed

1− x2 − y2 ≥ 0 x(2− x) ≥ 0, 1− y2 ≥ 0 (union)
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Real algebraic geometry basics

Tarski-Seidenberg Theorem
The projection of a semialgebraic set is semialgebraic.

S = {(x , y , z) : (y+x)2 ≤ (z+1)(x+1), (y−x)2 ≤ (z−1)(x−1), x2 ≤ 1}

S πxz(S)

πxz(S) = {(x , z) : −1 ≤ z ≤ 4x3 − 3x , x ≤ 1/2}
∪ {(x , z) : 4x3 − 3x ≤ z ≤ 1, −1/2 ≤ x}

Computation: Cylindrical Algebraic Decomposition
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Convexity basics

A subset C ⊆ Rd is . . .

. . . convex if for x, y ∈ C , λ ∈ [0, 1], λx + (1− λ)y ∈ C

. . . a convex cone if it is convex and µC ⊆ C for µ ∈ R≥0

The convex hull of S ⊆ Rd is

conv(S) =

{
k∑

i=1

λipi : pi ∈ S , λi ≥ 0,
k∑

i=1

λi = 1

}
.

The conical hull of S ⊆ Rd is

R≥0 · conv(S) =

{
k∑

i=1

λipi : pi ∈ S , λi ≥ 0

}
.
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Convexity basics : extreme points/rays

An extreme point of a convex set C is a point p ∈ C such that

p = λx + (1− λ)y for x, y ∈ C , λ ∈ (0, 1) ⇒ x = y = p.

Krein-Milman Theorem
A convex compact set is the convex hull of its extreme points.

An extreme ray of a convex cone C is a ray R+r ⊆ C such that

r = λx + µy for x, y ∈ C , λ, µ ∈ R+ ⇒ x, y ∈ R+r.
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Convexity basics : faces

Extreme points and rays are examples of faces.

We say F ⊆ C is a face of C if F is convex and

λx + (1− λ)y ∈ F for x, y ∈ C , λ ∈ (0, 1) ⇒ x, y ∈ F .

Example: F = {x ∈ C : 〈c, x〉 ≥ 〈c, y〉 for all y ∈ C}

Note: Faces of C ∩ L has the form F ∩ L where F = face of C .

Extreme points of C ∩ L need not be extreme points of C !
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Convexity basics : faces of the PSD cone

Example: Sn+ = conv({xxT : x ∈ Rn}) is a convex cone.

Its extreme rays are {R+xx
T : x ∈ Rn}.

Faces of Sn+ have dim
(r+1

2

)
for r = 0, 1, . . . , n and look like

FV = {A ∈ Sn+ : V ⊆ ker(A)}.

Ex: for V = span{er+1, . . . , en},

FV =

{(
B 0
0 0

)
: B ∈ Sr+

}
∼= Sr+
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Convexity basics : faces of spectrahedra

Faces of Sn+ ∩ L have the form FV = {A ∈ Sn+ ∩ L : V ⊆ ker(A)}.

Example:

L =

A(x , y , z) =


1− x y 0 0
y 1 + x 0 0
0 0 1− z 0
0 0 0 1 + z

 : (x , y , z) ∈ R3



S4+ ∩ L

V FV

spanR{e3} → 2−dim’l face z = 1

spanR{e1} → edge x = 1, y = 0

spanR{e1, e3} → point (x , y , z) = (1, 0, 1)
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Dual cones

For a convex convex cone C ⊆ Rd ,
the dual cone is

C ∗ = {c ∈ Rd : 〈c, x〉 ≥ 0 for all x ∈ C}.

For closed cones, (C ∗)∗ = C .

Visualizing with c1 = x1 = 1:
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Dual cones: visualization challenge

For a convex convex cone C ⊆ Rd ,
the dual cone is

C ∗ = {c ∈ Rd : 〈c, x〉 ≥ 0 for all x ∈ C}.

Visualizing with c1 = x1 = 1:
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Dual cones: projection and slicing

Consider (orthogonal) projection πL : Rd → L.

For a convex cone C ⊆ Rd , what linear inequalities define πL(C )?

Ans: {` ∈ C ∗ : ` is constant on preimages of πL} ∼= C ∗ ∩ L

Projection and slicing are dual operations.
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Dual cones: projection and slicing

For (orthogonal) projection πL : Rd → L.

(πL(C ))∗ = C ∗ ∩ L and (C ∩ L)∗ = πL(C ∗)

Projection and slicing are dual operations.
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Dual cones: PSD cone

The cone of PSD matrices Sn+ = conv({xxT : x ∈ Rn}).

Sn+ is self-dual under the inner product 〈A,B〉 = trace(A · B) :

〈A,B〉 ≥ 0 for all B ∈ Sn+ ⇔ 〈A, bbT 〉 ≥ 0 for all b ∈ Rn

⇔ bTAb ≥ 0 for all b ∈ Rn

⇔ A ∈ Sn+

Then for any subspace L ⊂ Sn,

(πL(Sn+))∗ = Sn+ ∩ L and (Sn+ ∩ L)∗ = πL(Sn+)

Cor: {spectrahedral shadows} are closed under projection, duality
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Dual cones: sums of squares

For any subspace L ⊂ Sn,

(πL(Sn+))∗ = Sn+ ∩ L and (Sn+ ∩ L)∗ = πL(Sn+)

Recall that Σn,≤2d = πL(SN+ ) where πL(A) = md(x)TA md(x)

Cor: Σ∗
n,≤2d = SN+ ∩ L is a spectrahedron!

When Σn,≤2d = Pn,≤2d , this gives that

P∗
n,≤2d = conv(m2d(x) : x ∈ Rn}

is a spectrahedron.
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Duality and SOS

C = conv{λ(1, t, 2t2 − 1, 4t3 − 3t) : t ∈ [−1, 1], λ ≥ 0}

C ∗ = {(a, b, c , d) : a+bt+c(2t2−1)+d(4t3−3t) ≥ 0 for t ∈ [−1, 1]}

C C ∗

spectrahedron spec. shadow
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Spectrahedral shadows: an interlude

Caution:
The projection of spectrahedron may not be a spectrahedron!

C = π(C ) =
not basic closed
⇒ not a spectrahedron

Caution:
The dual of spectrahedron may not be a spectrahedron!

C =

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

C ∗ = still not a spectrahedron
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Spectrahedral shadows: an interlude

A spectrahedral shadow is the image of a spectrahedron under linear
projection. These are convex semialgebraic sets.

Unlike spectrahedra, the class of spectrahedral shadows is closed under
projection, duality, convex hull of unions, . . .

Helton-Nie Conjecture (2009):
Every convex semialgebraic set is a spectrahedral shadow.

Counterexample by Scheiderer in 2016: P3,≤6.

Open: What is the smallest dimension of a counterexample?
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Back to spectrahedra L ∩ Sn+

Parametrize L by A(x) = A0 + x1A1 + . . . , xdAd .

Then L ∩ Sn+ ∼= {x ∈ Rd : A(x) � 0}.

polytope cylinder elliptope`1(x) 0
. . .

0 `12(x)



1− x y 0 0
y 1 + x 0 0
0 0 1− z 0
0 0 0 1 + z


1 x y
x 1 z
y z 1
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Example: Elliptopes

The n × n elliptope is

En = {A ∈ PSDn : Aii = 1 for all i}

= {n × n correlation matrices} in stats

En has 2n−1 matrices of rank-one: {xxT : x ∈ {−1, 1}n},
corresponding to cuts in the complete graph Kn.

MAXCUT = max
S⊂[n]

∑

i∈S,j∈Sc

wij = max
x∈{−1,1}d

∑

i,j

wij
(1− xixj)

2

= max
A∈En,rk(A)=1

∑

i,j

wij
(1− Aij)

2
≤ max

A∈En

∑

i,j

wij
(1− Aij)

2
.

Goemans-Williamson use this to give ≈ .87 optimal cuts of graphs.
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Example: Univariate Moments

C = conv{(t, t2, . . . , t2d) : t ∈ R} is a spectrahedron in R2d

C =
{
x ∈ R2d : M(x) � 0

}
where M(x) = (xi+j−2)1≤i ,j≤d+1

Ex. (d=1): conv{(t, t2) : t ∈ R} =

{
(x1, x2) :

(
1 x1
x1 x2

)
� 0

}

Minimization of univariate polynomial of degree ≤ 2d

→Minimization of linear function over C

Ex: conv{(t, t2, t3) : t ∈ [−1, 1]}

=

{
x ∈ R3 :

(
1± x1 x1 ± x2
x1 ± x2 x2 ± x3

)
� 0

}
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C =
{
x ∈ R2d : M(x) � 0

}
where M(x) = (xi+j−2)1≤i ,j≤d+1

Ex. (d=1): conv{(t, t2) : t ∈ R} =

{
(x1, x2) :

(
1 x1
x1 x2

)
� 0

}

Minimization of univariate polynomial of degree ≤ 2d

→Minimization of linear function over C

Ex: conv{(t, t2, t3) : t ∈ [−1, 1]}

=

{
x ∈ R3 :

(
1± x1 x1 ± x2
x1 ± x2 x2 ± x3

)
� 0

}
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Extreme Points: Pataki range

C = {x ∈ Rd : A(x) � 0}, dim(C ) = d , Ai ∈ Sn.

If x is an extreme point of C and r is the rank of A(x) then

(
r + 1

2

)
+ d ≤

(
n + 1

2

)

Furthermore if A0, . . . ,Ad are generic, then d ≥
(n−r+1

2

)
.

The interval of r ∈ Z+ satisfying both ≤’s is the Pataki range.
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Pataki range: examples

Example: d = 3, n = 3
Pataki range: r = 1, 2




1 x y
x 1 z
y z 1




Example: d = 3, n = 4
Pataki range: r = 2, 3


1 − x y 0 0

y 1 + x 0 0
0 0 1 − z 0
0 0 0 1 + z



Example: d = 3, n = 4
Pataki range: r = 2, 3


1 x y z
x 1 x y
y x 1 x
z y x 1
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Low-rank matrices on the elliptope

Example: d = 3, n = 3 Pataki range: r = 1, 2

Counting rank-1 matrices:

{X : rank(X ) ≤ 1} is variety of codim 3 and degree 4 in S3.

⇒ 0, 1, 2, 3, 4 or ∞ rank-1 matrices in C (generically 0,2, or 4)

There must be ≥ 1 rank-1 matrix. Why? Topology!

If ∂C has no rank-1 matrices, then the map S2 ∼= ∂C → P2(R) given by
x 7→ ker(A(x)) is an embedding. ⇒⇐

(For more see Friedland, Robbin, Sylvester,1984)
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Another connection with topology

Suppose A0 = I and let f (x) = det(A(x)).

⇒ f is hyperbolic, i.e.
for every x ∈ Rn, f (tx) ∈ R[t] is real-rooted.

Figure 4: A quartic symmetroid of type (⇢, �) = (2, 2).

We now establish the existence part of the Degtyarev-Itenberg theorem.

Proof of the if direction in Theorem 1.1. The constraints 0  �  ⇢  10 and ⇢ � 2 allow
for 20 solutions (⇢, �) among even integers. In the following table we list the twenty pairs
(⇢, �) followed by four symmetric 4 ⇥ 4-matrices A0, A1, A2, A3 with integer entries. Each
quadruple specifies a matrix A(x) as in (1.1) whose symmetroid f = det(A(x)) is transversal
and has a non-empty spectrahedron S(f). To verify the correctness of the list, one computes
the ten complex nodes, one checks that ⇢ of them are real, and one examines how many lie on
the spectrahedron. The latter test is done by computing the eigenvalues of the matrix A(x)
at each node x. If all eigenvalues have the same sign then x is on the spectrahedron. The
list starts with (⇢, �) = (2, 2), as in Figure 4, and ends with (⇢, �) = (10, 0), as in Figure 3.

(2, 2) :

2
664

3 4 1 �4
4 14 �6 �10
1 �6 9 2
�4 �10 2 8

3
775

2
664

11 0 2 2
0 6 �1 4
2 �1 6 2
2 4 2 4

3
775

2
664

17 �3 2 9
�3 6 �4 1
2 �4 13 10
9 1 10 17

3
775

2
664

9 �3 9 3
�3 10 6 �7
9 6 18 �3
3 �7 �3 5

3
775

(4, 4) :

2
664

18 3 9 6
3 5 �1 �3
9 �1 13 7
6 �3 7 6

3
775

2
664

17 �10 4 3
�10 14 �1 �3
4 �1 5 �4
3 �3 �4 6

3
775

2
664

8 6 10 10
6 18 6 15
10 6 14 9
10 15 9 22

3
775

2
664

8 �4 8 0
�4 10 �4 0
8 �4 8 0
0 0 0 0

3
775

6

If VR(f ) is smooth, this implies that that
VR(f ) ⊂ Pn−1 consists of bd/2c nested spheres.

Open (Generalized Lax Conjecture):
Is every hyperbolicity region a spectrahedron?
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Some combinatorial questions on spectrahedra

What is the “f -vector” of a spectrahedron?

Extreme points and faces come with a lot of discrete data . . .

dimension, matrix rank, dimension of normal cone, degree,
# number of connected components, Betti #s, . . .

Very open: What values are possible?

Thanks!
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