
Research Statement – Cynthia Vinzant

My research lies at the interface between real algebraic geometry, convexity, and combi-
natorics. This involves the study of real polynomials with special properties such as hyper-
bolicity. The goal of this research is to develop this theory both for its own sake as well as
for applications in combinatorics, matrix theory, and convex optimization.

One of the benefits of studying polynomials and solutions to polynomial equations over
the real numbers is that techniques and results lend themselves immediately to applications
in several other fields. In my research, this has been particularly true for real algebraic sets
defined by determinants or minors of matrices, which appear in convex optimization [38, 60],
sums of squares [15, 24], numerical linear algebra [14, 40], and signal progressing [25, 61].

Hyperbolic polynomials and, even more generally, log-concave polynomials are real poly-
nomials that share many of the useful functional properties of determinants. Hyperbolic
polynomials were introduced in the mid-20th century by Petrovsky and Gårding, who es-
tablished many of their basic properties in order to understand related partial differential
equations. Güler [31] and Renegar [51] brought this theory into the field convex optimization
and showed that hyperbolicity underlies the success of fundamental algorithms in the area.
Borcea and Brändén [16] made several breakthroughs in the related theory of stable poly-
nomials around the same time. Since then, hyperbolic and stable polynomials have found
wide-spread applications in combinatorics [19, 32, 42], convex analysis [13], operator theory
[34, 43], probability [17], and theoretical computer science [6, 41, 58]. My research in this
area involves characterizing which hyperbolic polynomials can be written as determinants,
constructing determinantal representations when they exist, investigating analogues in real
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Figure 1. A quartic hyperbolic hypersurface, two affine slices, and tropicalization.

Recently, I have been working to extend this theory to a larger class of real polynomials,
namely those that are log-concave as functions on the positive orthant. These polynomials are
closely related to combinatorial structures called matroids. With coauthors Anari, Liu, and
Oveis Gharan, I have used these polynomials to answer two long-standing open conjectures on
matroids, namely Mason’s conjecture on the ultra-log-concavity of numbers of independent
sets [8] and the Mihail-Vazirani conjecture on the expansion of the basis-exchange graph [7].

My research program aims to use the powerful tools of real algebraic geometry and tropical
geometry to better illuminate the algebraic, analytic, and combinatorial properties of deter-
minantal, hyperbolic, and log-concave polynomials. This is a goal worthy in its own right
as well as for its potential to impact other areas of mathematics, statistics, and computer
science. The following three branches of this research are described in more detail below:
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1. Hyperbolic polynomials, stable polynomials, and determinants

A homogeneous polynomial f ∈ R[x1, . . . , xn]d is hyperbolic with respect to e ∈ Rn if
f(e) 6= 0 and for every vector v ∈ Rn the univariate polynomial f(te−v) ∈ R[t] has only real
zeroes. First explored by Gårding for his work in PDE’s [30], hyperbolic polynomials later
became useful in optimization as a very general context for interior point methods [31, 51].
We call f stable (or real stable) if it is hyperbolic with respect to every point in the positive
orthant. This is equivalent to the more usual definition that f(z) 6= 0 whenever Im(z) ∈ Rn

>0.
Determinants form important examples of hyperbolic polynomials. Consider d × d Her-

mitian matrices A1, . . . , An and the linear matrix polynomial A(x) = x1A1 + . . . xnAn. If the
matrix A(e) is positive definite for some point e ∈ Rn, then f is hyperbolic with respect to
e. For example, if A(e) = I, then the roots of f(te− v) are the eigenvalues of A(v). Helton
and Vinnikov showed that a polynomial in n = 3 variables is hyperbolic if and only if it has
such a symmetric definite determinantal representation [34]. One of the main themes of my
research has been to understand which hyperbolic polynomials are determinantal [38] and
construct determinantal representations when they exist [14, 46, 47, 48, 49].

In 2013, Plaumann and I [49] extended a classical construction by Dixon [29] to produce
Hermitian determinantal representations of hyperbolic plane curves. For f ∈ R[x1, x2, x3]d
hyperbolic with respect to e ∈ R3, we give a method for constructing a d × d Hermitian
matrix pencil A(x) =

∑
i xiAi so that f = det(A(x)) and A(e) is definite. A main ingredient

of this proof was the following strong connection between definiteness and interlacing.
Theorem (Plaumann, Vinzant [49]). A matrix representation f = det(

∑n
i=1 xiAi) is definite

(i.e. the linear span of A1, . . . , An contains a definite matrix) if and only if the diagonal
entries of the adjugate matrix (

∑n
i=1 xiAi)

adj are hyperbolic and interlace f .
A follow-up paper studied convex cones of interlacers, certificates of hyperbolicity using

sums of squares, and applications to basis generating polynomials of matroids [38].

Figure 2. Invariant hyperbolic
hypersurfaces and interlacers

My recently-graduated Ph.D. student, Faye Pasley
Simon, built off of these techniques in her thesis [40, 57]
to answer a question of Chien and Nakazato on the ro-
tational invariance of the numerical range of a complex
matrix [22]. This involves determinantal representa-
tions certifying invariance under finite group actions.
Specifically, a unitary representation ρ : Γ → U(d) of
the group Γ ⊂ GL(Cn) acts on Cd×d by conjugation.
We say that a d × d linear matrix A(x) =

∑
i xiAi is

invariant with respect to γ and ρ if for every γ ∈ Γ,
A(γ · x) = ρ(γ)A(x)ρ(γ−1). The determinant f =

det(A(x)) is then invariant under the action of Γ. For n = 3, curves invariant under the
cyclic group of rotations by 2π/n always have such a representation.
Theorem (Simon, Vinzant, 2019+). For d ∈ nZ+, every hyperbolic, invariant polynomial f
in R[x1, x2, x3]

Cn
d has a definite, invariant determinantal representation f = det(A(x)).

Studying determinantal representations in more variables requires understanding the ap-
pearance of low-rank matrices in subspaces of d × d Hermitian matrices. One application
of this appears in signal processing, in which one wants to recover vector v ∈ Cd from its
“measurements” |〈φk, v〉|2 = trace(φkφ

∗
kvv

∗) given by φ1, . . . , φn ∈ Cd. This relates to low-
rank matrix completion and has many imaging-related applications: microscopy, optics, and
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diffraction imaging, among others. An important question in this field is how many measure-
ments are necessary to guarantee that phase retrieval is possible [11, 33]. Using techniques
from real algebraic geometry, coauthors and I prove a conjecture of [12] that 4d− 4 generic
measurements suffice and that fewer measurements may not.

Theorem (Conca, Edidin, Hering, Vinzant [25, 61]). For generic vectors φ1, . . . , φn ∈ Cd

with n ≥ 4d− 4, the real values trace(φkφ
∗
kvv

∗) uniquely determine the rank-one matrix vv∗.
Moreover, this is tight for d = 2k + 1 but not for d = 4.

There are also several applications of determinantal polynomials in discrete probability
and theoretical computer science comes from determinantal point processes [37, 53]. Poly-
nomials of the form f(x) = det(

∑
i xiviv

∗
i ) ∈ R[x1, . . . , xn]d where vi ∈ Cd have nonnegative

coefficients. If they also sum to one, then these coefficients form a discrete probability distri-
bution on the support {S : coeff(f, xS) 6= 0} of f . The stability of f implies that this will be
a strongly Rayleigh distribution, which exhibits nice properties such as negative dependence.

2. Log-concave polynomials and matroids

One important direction of my research concerns a generalization of hyperbolicity called
complete log-concavity. For v ∈ Rn, let Dvf =

∑n
i=1 vi∂f/∂xi denote the directional deriv-

ative of f in direction v. A polynomial f ∈ R[x1, . . . , xn]d is completely log-concave on
an open convex cone K ⊂ Rn if for any vectors v1, . . . , vs ∈ K, the polynomial Dv1 · · ·Dvsf
is either identically zero or log-concave on K. One motivating example is a hyperbolic
polynomial, which is log-concave on its hyperbolicity cone.

There is a beautiful connection between hyperbolic polynomials and combinatorial struc-
tures called matroids. A matroid M on ground set [n] can be defined by its set of bases,
B(M), which is a non-empty collection of subsets of [n] satisfying the “exchange property”

A,B ∈ B(M), a ∈ A\B ⇒ ∃ b ∈ B with A\{a} ∪ {b} ∈ B(M).

The independent sets of M are I(M) = {I : I ⊆ B for some B ∈ B(M)}. Matroids model
various types of independence, such as cyclic independence in graphs, linear independence in
vector spaces, and algebraic independence in field extensions. Working with general matroids
allows for proving statements about all of these independence structures simultaneously.

One can study properties of matroids using polynomials. Choe, Oxley, Sokal, and Wag-
ner [23] show that the support {S ⊂ [n] : cS 6= 0} of a multiaffine stable polynomial∑

S∈([n]
d ) cSx

S in R[x1, . . . , xn]d is the set of bases of a matroid. For example, if vectors

Figure 3. A matroid polytope and
corresponding real stable hypersurface.

v1, . . . , vn in Cd represent a matroid of rank d,
the support of the stable, multiaffine polynomial
det(

∑
i xiviv

∗
i ) in R[x1, . . . , xn]d is exactly its set

of bases. That is, the coefficient of the mono-
mial xS is nonzero if and only if the vectors
{vi : i ∈ S} form a basis for Cd. Some, but
not all, matroids appear as the support of a real
stable polynomial [18, 38, 63]. Completely log-
concavity on the positive orthant, however, per-
fectly captures the combinatorial condition of be-
ing a matroid.
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Theorem (Anari, Liu, Oveis Gharan, Vinzant [8, 9]). If a multiaffine polynomial is com-
pletely log-concave on Rn

>0, then its support forms the bases of a matroid. Moreover, for any
matroid M , the basis and independent set generating polynomials, fM =

∑
B∈B(M)

∏
i∈B xi

and gM =
∑

I∈I(M) y
n−|I|∏

i∈I xi, are completely log-concave on Rn
>0.

We also have generalizations of this theorem for polynomials with arbitrary degree in each
variable, but thus far, the strongest consequences appear using the multiaffine polynomials
above. In particular, this implies the strongest form of Mason’s conjecture [44].

Theorem (Anari, Liu, Oveis Gharan, Vinzant [8]). For any matroid on n elements, the
sequence (Ik) of the number independent sets of size k is ultra log-concave, i.e. for 0 < k < n,(

Ik(
n
k

))2

≥ Ik−1(
n

k−1

) · Ik+1(
n

k+1

) .
The recent breakthroughs in combinatorial Hodge theory by Adiprasito, Huh, and Katz [1]

resolved a weaker version of Mason’s conjecture. Completely log-concavity is one distillation
of conditions that appear in this work. Brändén and Huh independently introduce Lorentzian
polynomials [20, 21] and prove the strongest form of Mason’s conjecture.

Complete log-concavity of polynomials on Rn
>0 also has remarkably close connections with

the theory of high dimensional expanders developed by Dinur, Kaufman, Mass and Oppen-
heim [28, 35, 36]. These define random walks on the maximal faces of a simplicial complex
that mix quickly. Mixing times of random walks are closely related to the expansion of the
underlying graph. Mihail and Vazirani conjectured that the edge graph of any 0-1 polytope
has expansion ≥ 1 [45]. Building off of this and the results above, we prove this conjecture
for matroid polytopes, whose vertices are the indicator vectors of the bases of a matroid.

Theorem (Anari, Liu, Oveis Gharan, Vinzant [7]). The basis-exchange graph of any matroid
has expansion ≥ 1. Moreover, there is a Markov chain on the bases of a rank-r matroid M
with uniform stationary distribution that mixes in time O(r2 log(n)).

Based on the techniques developed in this paper, Cryan, Guo, and Mousa recently obtained
an improved bound on this mixing time [26]. There are several remaining open questions
about the structure and applications of completely log-concave polynomials, such as a clas-
sification of preserving operations and the development of a meaningful analogue of the
hyperbolicity cone. The theory of high dimensional expanders also suggests various gener-
alizations of complete log-concavity whose combinatorial implications are entirely unknown.
This is area rich with interesting research questions with a wide variety of applications.

3. Hyperbolic varieties and tropical geometry

Combinatorial structure also appears in higher codimensional analogues of hyperbolicity.
Shamovich and Vinnikov extended the notion of hyperbolicity to general varieties [56]. Kum-
mer and I introduced a natural analogue of stability in this context [39]. A real irreducible
variety X ⊂ Pn−1(C) of codimension c is positively hyperbolic if it contains no points [z]
whose imaginary part Im(z) is non-zero and belongs to a positive linear space L ∈ Gr+(c, n).
Here a variety in Pn−1(C) is called real when invariant under complex conjugation.

Reciprocal linear spaces are fundamental examples. For a linear space L ⊆ Pn−1(C), define

L−1 =
{[
x−11 : . . . : x−1n

]
such that x ∈ L with xi 6= 0

}
.
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This variety is closely related to the matroid of L [50] and appears in the study of central
curves of linear programs [27] and hyperplane arrangements [54]. It is hyperbolic with respect
to the orthogonal complement L⊥ [59]. Graduate student Georgy Scholten and I have studied
the non-projective varieties obtained from L by inverting some subset of coordinates, [55].

Just as a definite determinantal representation of a polynomial certifies its hyperbolicity,
the hyperbolicity of a variety X follows from the existence of certain definite determinantal
representations of its Chow form [56]. The Chow form of a (d − 1)-dimensional variety
X ⊂ Pn−1(C) is a polynomial in the Plücker coordinates of V ∈ Gr(d, n) that vanishes
whenever the intersection V ⊥ ∩X in Pn−1(C) is nonempty.

Theorem (Kummer, Vinzant [39]). The Chow form of L−1 has a determinantal represen-
tation given by a definite linear matrix pencil in Plücker coordinates.

Real tropical geometry offers methods for understanding and constructing varieties and
semialgebraic sets with intricate structure via combinatorial methods. This includes Viro’s
patchworking methods [62] for constructing real plane curves with prescribed topology,
Brändén connections between stable polynomials and discrete convexity [18], and the work of
Gaubert et. al. relating linear and semidefinite programs with mean payoff games [2, 3, 4, 5].

The definition of positive hyperbolicity extends directly to varieties over C{{t}}. The
tropicalization of a variety over C{{t}} is a polyhedral complex, which one can study via
its maximal faces. For hypersurfaces X = V (f), these correspond to the cones dual to the
edges of the Newton polytope of f . One analogue of the Newton polytope for X of high
codimension is the Chow polytope, which is the image of the Newton polytope of the Chow
form of X under the map R(n

d) → Rn given by eI 7→
∑

i∈I ei. Using the theory of non-
crossing partitions, developed in [10] to study positroids, it is possible to give combinatorial
conditions on the tropicalization of a positively hyperbolic variety.

Theorem (Rincón, Vinzant, Yu [52]). If X is positively hyperbolic, then the linear space
parallel to any maximal face of trop(X) is spanned by 0-1 vectors with disjoint, non-crossing
supports. Moreover, the Chow polytope of X is a generalized permutohedron.

Figure 4. The complex and real tropicalization of a reciprocal line in
P3(C{{t}}) and induced subdivision of its Chow polytope.

For hypersurfaces, this recovers the theorems of [18, 23] on the discrete concavity of stable
polynomials over R{{t}}. Another motivation for developing this theory is that the tropical
objects satisfying the combinatorial conditions for hyperbolicity may be interesting in their
own right, even when not realized as the tropicalization of a hyperbolic variety. In trop-
ical geometry, the difference between realizable matroids and all matroids appears as the
difference between tropicalizations of linear spaces and tropical linear spaces, which merely
satisfy the same combinatorial conditions. Tropical linear spaces provide geometric objects
that can play the role of linear spaces, even for non-representable matroids. One goal for
future work is to develop an analogous theory for tropical hyperbolic varieties.
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