
CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES

CALEB Z. WHITE, YOUNGBAE LEE, YOONSOO KIM, REKHA THOMAS, AND PATRICK PERKINS

Abstract. We develop a method to generate optimal weekly timetables for tutors at the University of

Washington Math Study Center using stated and inferred preferences. These timetables were previously

generated using heuristics. We show that it is possible to create timetables using a model based on Integer

Programming that are superior to the previous schedules. We compare two variants of our model. The first

involves the progressive relaxation of the least important constraints and the second incorporates a penalty

for constraint relaxation directly into the objective function. We find that the second approach generates

better schedules. We find that using our model instead of the old system creates improvements in the value

of the objective function of up to 7.2%. Less prosaically, our model creates schedules that significantly
increase the satisfaction and happiness of the individual tutors.

1. Problem Statement

The Math Study Center (MSC) at the University of Washington is a tutorial facility for undergraduate
students taking mathematics classes. The tutors are graduate and undergraduate students at the University.
Each quarter, the MSC needs to create timetables (work schedules) for between 8 and 20 tutors. The MSC
is typically open 56 hours a week, and certain times, like Monday afternoons, have historically been busy
and require more tutors. Thus, for each time slot (1 hour) the MSC determines a number between 1 and 5
representing the number of tutors they need. They also guarantee each tutor a certain number of hours of
employment per week. Since the tutors are all students, they are not available for work in every time slot
due to conflicts with classes and other responsibilities. The tutors are allowed to rank each time slot from 1
to 3, with 3 meaning they strongly wish to be assigned that time slot and 1 meaning they would prefer not
to be assigned that time slot. If the tutor has a schedule conflict and absolutely cannot work at a particular
time slot, then they may place a zero in the time slots to indicate they are not available. A form on a web
page is used to gather this information.
In this paper, we model and solve the problem of creating timetables for tutors at the MSC. For a

survey of automated timetabling see [6]. For a general discussion of current research directions see [1]. Our
formulation takes the rankings the students individually assigned various hours and creates a work schedule
that maximizes the total ranking of all assigned time slots. We have chosen schedules from the Summer
2003, Winter 2003, and Autumn 2002 quarters as representative instances on which to test our model and
compare it to the previous solutions. These schedules were previously created using a system of heuristics
that first assigns time slots in a greedy fashion until a feasible schedule is created. It then attempts to swap
time slots to obtain a higher quality schedule. Finally, it may be manually adjusted to correct any part of
the schedule that was particularly poor.
The simplest approach to this problem is to model it as a transportation problem. The limit on the number

of hours each tutor may work each week is the supply constraint and the number of tutors required at each
time slot is the demand constraint. If the coefficients in the constraints are all integer and supply equals
demand, then the problem can be solved as a linear programming problem and be guaranteed an integer
solution [2].

Date: April 9, 2004.

Key words and phrases. Timetabling, Crew Rostering, Integer Programming.
The first and second authors are undergraduates and were partially supported by NSF VIGRE Grant DMS-9810726.

The fourth author is partially supported by NSF Grant DMS-0100141.

This project began as an optional “industrial project” in the Spring of 2003 in Math 409, an undergraduate course in Discrete
Optimization at the University of Washington, taught by Rekha Thomas. The problem was provided by Patrick Perkins, the

director of the MSC.

1



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 2

Unfortunately, tutors have additional preferences not captured by the individual ranking they gave each
hour. The problem becomes considerably more complex if we attempt to optimize schedules based on these
additional preferences. Specifically, we develop methods to incorporate the following inferred preferences
into the problem. Tutors prefer not to be assigned more than 5 hours in one day, or more than 3 hours in
a row on weekdays. They prefer not to enter and leave the MSC more than twice a day. They prefer not
to tutor a single hour at a time. Finally, they prefer to have as small a spread as possible between the first
hour they are at the MSC and the last hour when they leave the MSC. It is these additional constraints that
make this a difficult problem. Without these additional constraints, the value of any one time slot to an
individual tutor is independent of the other time slots the tutor is assigned. With the additional constraints,
whether a tutor should be assigned a particular time slot becomes dependent on the other hours they may
or may not have been assigned that day. This interdependency makes the problem much more complicated.
This paper is organized as follows. The methods we use are described in Section 2. Section 3 details the

problem formulation. In Section 4, the implementation is discussed. Finally, our results and conclusions are
explained in Section 5.

2. Methods

There are many possible approaches to solving this type of problem. The most appropriate choice is not
obvious on first inspection. We develop and implement two related variants of a particular model for this
problem. In both variants, we model it as a binary integer programming (IP) problem with many constraints.
Our models use these many constraints to capture the way being assigned a particular time slot affects the
value a tutor places on being assigned a different time slot. Our model can thus obtain an exact solution
while simultaneously accounting for the complicated interdependencies between time slots.
The advantage of using integer programming to model the problem is that IP models of the size and

type we formulate are relatively tractable and well tuned algorithms in commercially available software, e.g.,
ILOG’s CPLEX [3], already exist for solving IP problems. Some particular characteristics of our problem
lead to particularly fast solution times. If the values of the right hand side (RHS) of the constraints are
generally kept to 0 or 1, the cut and bound methods CPLEX uses can be very effective. Unfortunately, worst
case behavior may be problematic, even for relatively small instances of the problem.
Throughout the rest of this paper, we will continually refer to the two variants of our model. Henceforth,

we shall refer to them as the constraint relaxation approach and the penalty approach. The constraint
relaxation approach is to formulate all the constraints necessary to weed out undesirable schedules. Then,
from the subset of good feasible schedules, we choose the one that maximizes the value of the objective
function. Under this formulation, there is no guarantee of feasibility. It may be that some constraints are
exclusive and cannot be mutually satisfied. In this case, we progressively relax (remove) the least important
infeasible constraint until we obtain a feasible solution. Under this approach, the trade off between relaxing
constraints and increasing the value of the objective function is difficult to quantify.
The penalty approach is to formulate the same set of constraints as in the constraint relaxation approach,

but to add a new variable to each constraint. This new variable has a value of 0 if the original constraint
is satisfied and 1 if the original constraint is not satisfied. The new variables are then incorporated into the
objective function with an appropriate negative cost. Thus, maximizing the value of the objective function
trades off increasing the ranking tutors gave their assigned time slots with reducing the number of violated
constraints.
The penalty approach will always have a feasible solution and with the right costs, it is possible to trade-

off poor schedule quality for an increased objective value in a meaningful way. The disadvantage is that
it increases the size of the problem. It introduces one new variable for every constraint and as we discuss
later, the number of constraints is roughly of the same order as the number of original variables. Thus, the
problem roughly doubles in size.

3. Problem Formulation

Both of the approaches outlined above share some common elements. The objective function of the
constraint relaxation approach is one part of the objective function used in the penalty approach. Also,
the first three constraints (discussed below) are the same under both approaches. We call these first three



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 3

constraints the ‘hard’ constraints. The additional constraints will be called ‘soft’ constraints. We shall
assume that the ‘hard’ constraints are fixed for any given problem.
We shall first discuss the variables we use in our model. Next, we shall discuss all eight constraints under

both the constraint relaxation approach and the penalty approach. Finally, we shall outline the two objective
functions we use for the two approaches.

3.1. Variables. We define binary decision variables xjdh, where j = 1, 2, . . . , J is the index of the tutors
being scheduled, with J being the total number of tutors; d = 1, 2, . . . , D is the index of the days of the
week, with D being the number of days the MSC is open each week; and h = 1, 2, . . . , Hd is the index of
the hours of the day, with 1 being the first scheduled hour of the day and Hd being the last hour of day d.
We assign xjdh = 1, if tutor j is assigned hour h of day d, and 0 otherwise. The total number of variables
is the total number of tutors times the total number of time slots, i.e. the number of x variables is equal to

J ·
(

∑D
d=1 Hd

)

. Additional dummy variables are introduced for certain constraints and are outlined below

under the applicable constraint. In general, the number of tutors, the number of days the MSC is open a
week, and how many hours it is open each day varies from quarter to quarter.

Binary Integer Variables (0 or 1) — all lower case

xjdh 1 if tutor j is assigned hour h on day d

yjdh 1 if tutor j enters MSC next hour after h on day d (Constraint 6)
zjdh 1 if tutor j is assigned an early hour h on day d (Constraint 8)
a4

jd 1 if tutor j is assigned more than Njd hours on day d (Constraint 4)

a5
jdh 1 if tutor j is assigned Pjd + 1 hours in a row on a day d starting at hour h (Constraint 5)

a6
jd 1 if tutor j is assigned more than 2 blocks of hours in a day (Constraint 6)

a7
jdh 1 if tutor j is assigned a single hour h on day d and Vjdh = 0 (Constraint 7)

a8
jdh 1 if tutor j is assigned 1 hour greater than spread Sjd (Constraint 8)

all equal 0 otherwise

Indices

j index of tutors
d index of days
h index of time slots (hours)
h0 dummy index to index time slots

Parameters — all upper case

Hd number of hours on day d

D number of days MSC is open per week
J total number of tutors at MSC
Wjdh weight given by tutor j to hour h on day d

Bdh number of tutors needed on day d at hour h

Mj number of hours tutor j may be assigned each week
Njd number of hours tutor j may be assigned on day d

Pjd number of hours tutor j may be assigned in a row on day d

Vjdh 1 if tutor j may be assigned a single hour h on day d

Sjd maximum allowed spread between first hour and last hour of day d for tutor j

C4 the cost of violating Constraint 4 (negative number)
C5 the cost of violating Constraint 5 (negative number)
C6 the cost of violating Constraint 6 (negative number)
C7 the cost of violating Constraint 7 (negative number)
C8 the cost of violating Constraint 8 (negative number)

Table 1: A summary of the variables, indices, and parameters of the model.

Next, we define the constraints. Constraints are considered in their order of importance. The first three
‘hard’ constraints are considered the most important and will be relaxed only in the face of infeasibility.



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 4

In the event that there is no feasible solution under the first three constraints— for example, there are not
enough tutors available to fill the required time slots— it is assumed that either the supply or demand will
be adjusted exogenously (by hand) to obtain feasibility and the problem will be resubmitted.

3.2. The First Constraint: Available Hours. Some tutors cannot be assigned particular time slots. We
represent this by forcing the variable xjdh to zero for those time slots, implying,

(1) xjdh = 0,

for every tutor j who marks a zero in hour h on day d. This constraint is identical under both the con-
straint relaxation approach and the penalty approach. The number of constraints is equal to the number
of zeros marked by tutors. In practice, these variables are removed by the software package CPLEX in its
preprocessing phase.

3.3. The Second Constraint: Demand for Tutors. There must be a certain number of tutors, typically
between 1 and 5, in any given time slot. This implies,

(2)

J
∑

j=1

xjdh = Bdh ∀ d, h,

where Bdh ∈ {1, 2, . . . , 5} is the number of required tutors for the corresponding time slot. This constraint
is identical under both the constraint relaxation and the penalty approaches. The number of constraints is
equal to the total number of time slots.

3.4. The Third Constraint: Supply of Tutors. It is assumed that the supply of tutors matches the de-
mand for tutors. The management of the MSC may preferentially adjust the number of hours per week some
tutors are assigned in order to achieve this. At the MSC, a distinction is made between graduate and under-
graduate tutors. Graduate tutors have a fixed number of hours they must be assigned and undergraduate
tutors have a maximum number of hours they may be assigned.

D
∑

d=1

Hd
∑

h=1

xjdh = Mgrad ∀ jgrad,(3)

D
∑

d=1

Hd
∑

h=1

xjdh ≤ Mundergrad ∀ jundergrad,(4)

where Mgrad is the required number of hours that a particular graduate student must tutor each week, and
Mundergrad is the maximum number of hours a particular undergraduate student may tutor in a week. If
supply equals demand,

(5)
J
∑

j=1

Mj =
D
∑

d=1

Hd
∑

h=1

Bdh,

then equation (4) becomes an equality. Both of these sets of constraints are identical under both approaches.
The number of constraints of type (3) and (4) are equal to the number of graduate tutors, Jgrad, and
undergraduate tutors, Jundergrad, respectively.

3.5. The Fourth Constraint: Hours per Day. It is understood that tutors do not want to be assigned
more than a certain number of hours on any given day. This number may vary depending on the student
and depending on the day. For example, students typically wish to be assigned more hours per day on the
weekends, as they have to come to campus just for this purpose. Under the constraint relaxation approach,
the constraint is,

(6)

Hd
∑

h=1

xjdh ≤ Njd ∀ j, d,

where Njd is a parameter for the maximum number of hours student j wishes to be assigned on day d.
Although we use the same value ofNjd for all tutors in the instances we solve later, in theory these parameters
could be uniquely specified by the individuals themselves. A typical value is Njd = 5.



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 5

For constraints 4-8 (the ‘soft’ constraints), the penalty approach differs from the constraint relaxation
approach in a very similar manner. In each case, we introduce new dummy binary integer variables that are
added to the right hand side of the constraints. If the original constraint was infeasible, the new constraint
will be feasible, but only if the added variable assumes a value of one. This variable is then included in the
objective function with a negative cost. This negative cost results in the new variable assuming a value of
one only if necessary. This is a method of relaxing the constraints, but only at the cost of reducing the value
of the objective function. The precise nature of the relaxation varies from constraint to constraint, but in
each case it involves the value of a binary integer variable changing from 0 to 1. At a sufficient penalty all
of the ‘soft’ constraints may be relaxed. The following example may make this more concrete.
Under the penalty approach we add a new variable a4

jd and the new fourth constraint is

(7)

Hd
∑

h=1

xjdh ≤ Njd + (Hd −Njd) · a
4
jd ∀ j, d.

This allows the number of hours a tutor is assigned on a particular day to equal Hd, which would have
violated the original constraint, but this can happen if and only if a4

jd = 1.
We assign a large negative cost to this variable in the objective function. We use a value of C4 = −5.

The number of constraints is equal to the number of tutors times the number of days.

3.6. The Fifth Constraint: Hours in a Row. Tutors do not wish to be assigned more than a certain
number of hours in a row. In addition to the workers’ preferences, the management of the MSC does not
want tutors to work more than 5 hours in a row and would prefer they work no more than three hours in
a row. Let parameter Pjd represent the maximum number of hours that tutor j may be scheduled in a row
on day d. This is equivalent to saying that tutors may be assigned no more than Pjd hours in any given
contiguous (Pjd + 1) hour block on any given day. Therefore, under the constraint relaxation approach we
have

(8)

h0+Pjd
∑

h=h0

xjdh ≤ Pjd ∀ j, d, and h0 = 1, 2, . . . , Hd − Pjd.

Clearly, this constraint is only applicable if Pjd is less than Hd, that is the number of hours a tutor may be
assigned in a row is less than the number of hours the MSC is open that day. Typical values for Pjd are
between 3 and 5.
Under the penalty approach, we again add a new variable a5

jdh0
and the fifth constraint becomes,

(9)

h0+Pjd
∑

h=h0

xjdh ≤ Pjd + a5
jdh0

∀ j, d, and h0 = 1, 2, . . . , Hd − Pjd.

In this case, every time a tutor is scheduled for an hour beyond Pjd hours in row, a5
jdh0

equals one. For
example if Pjd equals three and the tutor is scheduled for the first five hours of the day, all in a row, then
the two variables a5

jd1 and a5
jd2 equal one and all other a5

jdh0
for that day and tutor are equal to zero. We

assign a moderate negative cost to this variable in the objective function. We use a value of C5 = −2. The
number of constraints is equal to the number of blocks in each day times the number of employees times the
number of days.

3.7. The Sixth Constraint: Blocks per Day. Tutors prefer that they be assigned no more than two
blocks of hours in each day. In other words, employees do not want to have to enter and leave the Math
Study Center more than twice a day. This constraint is slightly more complicated than the constraints we
have considered previously. We introduce a dummy variable yjdh that is equal to 1 every time a tutor enters
the MSC. Note that if a tutor will enter the MSC in the next hour, this implies they are assigned the next
hour, but they are not assigned the current hour. Recall that an x variable takes value one if a tutor is

assigned that hour and a value of zero if they are not. Thus, there is a pattern 0 1 in the vector of x

variables every time a tutor enters the MSC to begin tutoring, as illustrated below.

xjd → . . .

h0

0
h0+1

1 . . . ⇒ xjd(h0+1) − xjdh0
= 1⇒ yjdh0

= 1.



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 6

If we subtract the current hour from the next hour, we obtain a value that is equal to 1 only if the pairwise

pattern in the vector of x variables is 0 1 and a value equal to 0 or -1 in all other cases. We do this for
every pair of hours in the day h0. There is one less pair of hours than there are hours in the day Hd. Under
the constraint relaxation approach, this is,

(10) xjd(h0+1) − xjdh0
≤ yjdh0

∀ j, d, and h0 = 1, 2, . . . , Hd − 1.

After we check every pair of x values in the day, we then add a constraint that the sum of yjdh—the number
of times the tutor enters the MSC for the day—be no greater than two (the number of blocks of hours) and
we obtain the constraint,

(11)

Hd−1
∑

h=1

yjdh ≤ 2− xjd1 ∀ j, d.

The variable xjd1 on the right hand side of the above equation is meant to account for the fact that yjdh

does not determine if the tutor was assigned the first hour of the day. Note, yjd1 = 1 implies that xjd1 = 0
and xjd2 = 1, that is the tutor entered the MSC on the second hour of the day. So if the tutor was assigned
the first hour of the day, we must ensure that they enter the MSC only one more time by subtracting one
from the right hand side of Constraint (11). This constraint adds a large number of dummy variables (the
number of y variables is of the same order as the number of x variables) and a large number of inequality
constraints (one for each x variable).
Under the penalty approach we add the variable a6

jd to Constraint (11) such that,

(12)

Hd−1
∑

h=1

yjdh ≤ 2− xjd1 +

(⌈

Hd

2

⌉

− 2

)

· a6
jd ∀ j, d.

Tutors may now enter the MSC every other hour when a6
jd = 1. We assign a large negative cost to this

variable in the objective function. We use a value of C6 = −5. The number of constraints is equal to the
number of hours in each day times the number of employees times the number of days.

3.8. The Seventh Constraint: No Single Hours. Tutors prefer not to be assigned only one hour at a
time. They prefer to work for at least two hours in a row. Again we are looking for a pattern in the values

of the vector of x variables, specifically, if a tutor is assigned a single hour we see the pattern 0 1 0 in
the values of the x variables. If we want to prevent this pattern from being assigned, we add a constraint
that the x value of the first plus third hour must be greater than or equal to the x value of the second hour
for every triplet of hours in the day. This constraint forces every hour that is assigned to have another hour

assigned beside it on one side or the other, for example 1 1 0 or 0 1 1 .
We provide an exception to this constraint. If a tutor has ranked a time slot as 3 (very high), but marked

the time slots on both sides of it as 0 (prohibited), it is often the case that the time slot fills a one hour gap
in the students class schedule. This is often highly desired because it makes the student’s day very compact.
We define a new parameter Vjdh such that,

(13) Vjdh =



















1, if h = 1, Wjd1 = 3 and Wjd2 = 0; (first hour)

1, if Wjdh = 3 and Wjd(h−1) =Wjd(h+1) = 0; (hour in the middle of the day)

1, if h = Hd, WjdHd
= 3 and Wjd(Hd−1) = 0; (last hour)

0, otherwise.

This parameter is computed from the student rankings and will be used in Constraints (14)–(19) to provide
an exception to the general constraints that try to prevent the scheduling of single hours. This parameter is
being inferred from the student’s rankings, but it could also be provided by the students directly.
The first and last hour of the day also add a slight complication. In these two cases, the pattern in the

values of the x variables that we are trying to prevent is 1 0 for the first two hours of the day and 0 1
for the last two hours of the day. Constraints (14) and (16) represent the constraints on the first and last
hour of the day.



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 7

This reasoning leads to the following constraints (under the constraint relaxation approach),

xjd1 ≤ Vjd1 + xjd2 ∀ j, d,(14)

xjdh0
≤ Vjdh0

+ xjd(h0−1) + xjd(h0+1) ∀ j, d, and h0 = 2, 3, . . . , Hd − 1,(15)

xjdHd
≤ VjdHd

+ xjd(Hd−1) ∀ j, d.(16)

Each of these constraints is always satisfied in the case Vjdh = 1.
Following the usual construction under the penalty approach, we add variable a7

jdh and obtain,

xjd1 ≤ Vjd1 + a7
jd1 + xjd2 ∀ j, d,(17)

xjdh0
≤ Vjdh0

+ a7
jdh0

+ xjd(h0−1) + xjd(h0+1) ∀ j, d, and h0 = 2, 3, . . . , Hd − 1,(18)

xjdHd
≤ VjdHd

+ a7
jdHd

+ xjd(Hd−1) ∀ j, d.(19)

Now if either Vjdh0
= 1 or a7

jdh = 1 the constraint is always satisfied regardless of whether tutor j was

assigned a single hour h on day d. We assign a smaller negative cost to the variable a7
jdh in the objective

function. We use a value of C6 = −1. The number of constraints is equal to the number of hours in each
day times the number of employees times the number of days.

3.9. The Eighth Constraint: No Large Spread. Tutors prefer not to have schedules where there is a
large spread between the first hour they are assigned and the last hour they are assigned. For example they
do not wish to be assigned the first hour of the day and then come back 10 hours later to work during the
last hour of the day. Let parameter Sjd be the maximum allowed spread between the first hour assigned
and the last hour assigned for student j on day d. So if a tutor is assigned the first hour, they do not wish
to be assigned any hours past Sjd. We use a technique from [4] (see also [5]) to convert or-type constraints
into and-type constraints. We create a new binary integer variable zjdh. Under the constraint relaxation
approach we have,

xjdh0
≤ 1− zjdh0

∀ j, d, and h0 = 1, 2, . . . , Hd − Sjd,(20)

Hd
∑

h=h0+Sjd

xjdh ≤ (Hd − Sjd) · zjdh0
∀ j, d, and h0 = 1, 2, . . . , Hd − Sjd.(21)

Note that zjdh0
∈ {0, 1}. Thus if the right hand side of Constraint (20) equals one, then the right hand side

of Constraint (21) must equal zero. On the other hand, if the right hand side of Constraint (20) equals zero
then Constraint (21) imposes no restrictions. In this way the binary variable zjdh requires that if the tutor
is assigned hour h0, then they cannot be assigned any hours at or past h0 + Sjd. Clearly this constraint is
only applicable if Hd > Sjd.
Under the penalty approach, we add a new variable a8

jdh to constraint (20) and obtain,

(22) xjdh0
≤ 1− zjdh0

+ a8
jdh0

∀ j, d, and h0 = 1, 2, . . . , Hd − Sjd.

If a tutor’s schedule exceeds the allowable spread Sjd, it forces the new variable a8
jdh to equal one. We assign

a moderate negative cost to this variable in the objective function. We use a value of C8 = −2. The number
of constraints is (Hd − Sjd) times the number of days times the number of tutors.

3.10. The Objective Function. We define two different objective functions. One is for the constraint
relaxation approach, which we shall label Objective(I) and one is for the penalty approach, which we shall
label Objective(II).
The purpose of Objective(I)—under the constraint relaxation approach—is to maximize the collective

ranking given by the tutors to their respective scheduled hours

(23) max

J
∑

j=1

D
∑

d=1

Hd
∑

h=1

Wjdhxjdh,

where Wjdh ∈ {0, 1, 2, 3} is the ranking tutor j gave the time slot at hour h on day d (0 is given if the tutor
does not wish to be assigned the corresponding time).



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 8

Under the penalty approach, we wish to maximize Objective(II). Objective(II) includes Objective(I), but
also incorporates additional negative costs for violating the constraints. Constraints 1-3 are required and
thus there are no costs. The variables a4

jd, a5
jdh0

, a6
jd, a7

jdh, a8
jdh0

are associated with Constraints 4-8 and

were defined above. They are equal to 1 if the respective constraint is violated and 0 if it is not. Objective(II)
is then,

max

J
∑

j=1

D
∑

d=1

Hd
∑

h=1

Wjdhxjdh +

J
∑

j=1

D
∑

d=1

C4a
4
jd +

J
∑

j=1

D
∑

d=1

Hd−Pjd
∑

h0=1

C5a
5
jdh0

(24)

+

J
∑

j=1

D
∑

d=1

C6a
6
jd +

J
∑

j=1

D
∑

d=1

Hd
∑

h=1

C7a
7
jdh +

J
∑

j=1

D
∑

d=1

Hd−Sjd
∑

h0=1

C8a
8
jdh0

,

where Ci is the negative cost associated with violating constraint i.

4. Implementation

The two approaches used in our model were tested on three particular instances. We chose quarters of
increasing complexity to test our model. The parameters used for the three instances are presented in Table
2. The Summer 2003 quarter has a reduced number of tutors and time slots. Autumn 2002 is a typical
quarter. The Winter 2003 quarter had the greatest number of tutors and was the largest instance available.
The parameters used were the same for all tutors, but tailoring the parameters to individual students

can be done easily enough. The schedule actually used for the Summer 2003 quarter (generated using the
original system of heuristics) is shown in Figure 1.

Quarter Year Tutors Days Total Hrs.
Summer 2003 8 5 30

Parameters
Days - d Hd Nd Pd Sd

1 9 5 3 6
2 4 5 4 4
3 9 5 3 6
4 4 5 4 4
5 4 5 4 4

Quarter Year Tutors Days Total Hrs.
Autumn 2002 15 6 56
Winter 2003 20 6 56

Parameters - Same for Both Quarters
Days - d Hd Nd Pd Sd

1 12 5 3 8
2 12 5 3 8
3 12 5 3 8
4 12 5 3 8
5 4 5 4 4
6 4 5 4 4

Table 2: Parameters used for the three example quarters.

Figures 1 through 3 are the Summer 2003 quarter schedules generated by the original system and the two
approaches we tested. Supplementary material containing the schedules for the Autumn 2002 and the Winter
2003 quarters are available at http://www.math.washington.edu/∼thomas/papers/articles.html. They all
have the same basic layout. The tutors’ names are abbreviated on the left. Graduate students are capitalized
and undergraduates are in lowercase letters. The row of numbers under the days of the week represent how



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 9

many tutors were required for that time slot, Bdh. The column of numbers on the far right is how many hours
each tutor was assigned, Mj . The numbers in the main field represent the rankings tutors gave individual
time slots. The shaded boxes are the hours that were actually scheduled. Note, no shaded box has a zero
ranking, the number of shaded boxes in each column equals Bdh, and the number of shaded boxes in each
row equals Mj . Thus, you can see visually that the ‘hard’ constraints were satisfied for every schedule.
To solve these instances, the models for each quarter were created using Matlab 6.5 and solved using

CPLEX 8.1 on a Linux box with two 1.4 Ghz processors and 1.2 Gbytes of memory.
Each instance was modeled using Matlab to generate the objective and constraint matrices. Then, the

LP-relaxation was checked for feasibility in the first three constraints using Linprog in Matlab. If the
problem was infeasible in the ‘hard’ constraints, then the supply or demand was manually adjusted to ensure
feasibility. Once the problem was feasible in the first three constraints, the LP-relaxation was checked with
all the constraints. If some ‘soft’ constraints were infeasible under the constraint relaxation approach, those
constraints were removed by using a binary sort to move the infeasible constraints to the bottom of the
constraint matrix before removing them entirely. After the feasible LP-relaxation was found, the model was
read into CPLEX and solved. It is possible that the problem is feasible in the LP-relaxation, but not feasible
as an IP. If the IP problem is infeasible, CPLEX can pinpoint the constraint creating the infeasibility and
that constraint can be removed manually and the process repeated.

5. Computational Results and Conclusions

The size of the models created for each quarter and the computational time required to solve them using
CPLEX are shown in Table 3. It was assumed that because of the larger size of the models using the penalty
approach, they would require significantly longer times to solve. This turned out not to be the case. The
problem was actually solved more quickly using the penalty approach for these three particular instances.

Quarter Approach # Variables # Equality # Inequality Time to
Constraints Constraints Solve (Sec.)

Sum. 03 Relaxation 488 36 714 0.24
Penalty 952 36 714 0.07

Aut. 02 Relaxation 1830 64 2797 12.19
Penalty 3630 64 2797 9.72

Win. 03 Relaxation 2440 68 3728 514.67
Penalty 4840 68 3728 156.35

Table 3: Comparison of the size of the problem and the solution time.

The solutions generated by the constraint relaxation approach and the penalty approach for the Summer
2003 quarter are included in Figures 2 and 3. A summary of the results for all three quarters, including the
value of the objective functions; Objective(I) and Objective(II), appears in Table 4.
It was always possible to satisfy the first four constraints, so those columns are not shown in Table 4.

The number of times constraints 5-8 were violated under each approach is shown in the respective column.
The numbers equal the sum of the ai variable for the respective constraint i. For example, the Autumn 2002
quarter schedule under the system of heuristics violated a number of the constraints. On two days there
were a total of three scheduled hours that occurred immediately after a tutor had already been assigned
three hours in a row. There were two times when a tutor was assigned three blocks of hours in a single day.
There were five times when a tutor was assigned a single hour that did not meet the exception rule. Finally,
there was a single time when a tutor was assigned a single hour that was outside the allowed spread of eight
hours for that day.
In contrast, the Autumn 2002 quarter schedule generated by the Constraint approach only failed to satisfy

a single constraint, yet still managed to achieve a higher value for Objective(I). In fact, the constraint that
was violated was violated under all three approaches and involved a single hour that had to be scheduled in
order to satisfy the more important ‘hard’ constraints.



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 10

Constraints 5 through 8
Hours in Blocks in # Single # Hours > % Inc. over

Objective a Row a day Hours Spread Objective Heuristic
Quarter Approach (I) C5 = −2 C6 = −5 C7 = −1 C8 = −2 (II) Approach

Sum. 03 Heuristic 253 13 0 0 1 225
Relaxation 253 10 0 1 1 230 2.2%
Penalty 257 10 0 3 0 234 4.0%

Aut. 02 Heuristic 370 3 2 5 1 347
Relaxation 372 0 0 1 0 371 6.9%
Penalty 375 0 0 3 0 372 7.2%

Win. 03 Heuristic 426 6 0 13 0 401
Relaxation 427 0 0 0 0 427 6.5%
Penalty 427 0 0 0 0 427 6.5%

Table 4: Values of the objective functions and the ‘soft’ constraint violations.

The penalty approach actually scheduled three single hours (beyond the allowed exceptions), but in doing
so it managed to increase the sum of the individual rankings—Objective(I)—by a value of five over the
heuristic approach and three over the constraint relaxation approach. Note the cost of scheduling a single
hour was −1, so even though the penalty approach schedules two more single hours than the constraint
relaxation approach, because it manages to increase the value of Objective(I) by three, it comes out one
point better in Objective (II).
The comparison in the Winter 2003 quarter is just as dramatic. The constraint relaxation approach and

the penalty approach both managed to create a schedule with a value of Objective(I) one point better than
the heuristic system, but they accomplished it without violating any of the constraints.
In reviewing the results, some important observations can be made. The two new approaches always

created better schedules than the previous system of heuristics. The differences in Objective(I) were fairly
small, but the two new approaches generated much higher quality solutions, as is indicated by the value of
Objective(II). The number of times the new schedules violated the rules for generating a good schedule was
much smaller. The new methods appear to do even better than the original method on the more complex
problems. Our two new approaches, and the penalty approach in particular, are also much more flexible.
The relative importance of the various constraints can be adjusted by choosing the appropriate costs and
students can individually tailor their preferences for the various parameters.
In general, the penalty approach is faster, it attains a better solution, it is more flexible, and it does not

require the overhead of sorting out and removing the infeasible constraints. Thus, the penalty approach is
the preferred method of creating weekly timetables that maximize the MSC employee preferences. Since
this work was done, Patrick Perkins has been using an implementation of the penalty model and CPLEX to
compute work schedules in the MSC. He has used it on three different occasions, including the busiest times
of the school year. The results have been very satisfactory. The implementation is easier to use than the
previous method and much quicker. The average time it took CPLEX to compute a solution was about 5
seconds. The maximum was under 12 seconds. His employees have expressed satisfaction with the general
improvement in the schedules.
Some additional observations may be made. The nature of the individual preferences has a lot of bearing

on how the final solution turns out. Many students, especially in the Summer 2003 example, gave a positive
ranking only to the exact number of hours that they were available, thus the system was forced to select
the precise hours they chose. A successful model should be adjusted so as to prevent tutors from “gaming”
the system. It should also be noted that this work does not address the system of rankings that the tutors
use, nor does it address how the value of the parameters and the costs for violating constraints should
be calculated. The method of using a summation of finite discrete rankings as the objective function to
determine the preferred overall schedule is probably not optimal. Tutors should be able to indicate more
precisely the intensity of their preferences for particular hours. Future work might explore the appropriate
mechanism to attain individual schedule preferences and aggregate them into a single measure.



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 11

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Days
Tutrs./ Hrs./

Hour 2 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 4 4 5 5 2 3 4 4 2 2 2 2 week

PAN. 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3 3 20
RYA. 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 1 1 1 1 10
GAR. 0 0 3 3 3 3 3 3 2 0 0 1 1 0 0 3 3 3 3 3 3 2 0 0 1 1 0 0 2 2 10
TRA. 1 1 1 1 1 1 1 1 1 2 3 3 3 2 3 3 3 3 3 2 2 2 2 3 3 3 2 2 2 2 10
CAT. 2 3 3 3 2 2 1 1 1 2 3 3 3 2 3 3 2 2 0 0 1 1 2 3 3 2 2 2 2 2 10
ISH. 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 0 0 0 0 10
mic. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 10
geo. 0 0 0 0 3 3 3 3 3 0 0 0 0 0 0 0 0 3 3 3 3 3 0 0 0 0 0 0 0 0 10

FRIDAYMONDAY TUES. WEDNESDAY THURS.

Figure 1: Schedule created for Summer 2003 Quarter using system of heuristics.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Days
Tutrs./ Hrs./

Hour 2 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 4 4 5 5 2 3 4 4 2 2 2 2 week

PAN. 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3 3 20
RYA. 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 1 1 1 1 10
GAR. 0 0 3 3 3 3 3 3 2 0 0 1 1 0 0 3 3 3 3 3 3 2 0 0 1 1 0 0 2 2 10
TRA. 1 1 1 1 1 1 1 1 1 2 3 3 3 2 3 3 3 3 3 2 2 2 2 3 3 3 2 2 2 2 10
CAT. 2 3 3 3 2 2 1 1 1 2 3 3 3 2 3 3 2 2 0 0 1 1 2 3 3 2 2 2 2 2 10
ISH. 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 0 0 0 0 10
mic. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 10
geo. 0 0 0 0 3 3 3 3 3 0 0 0 0 0 0 0 0 3 3 3 3 3 0 0 0 0 0 0 0 0 10

FRIDAYMONDAY TUES. WEDNESDAY THURS.

Figure 2: Schedule created for Summer 2003 Quarter using constraint relaxation approach.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Days
Tutrs./ Hrs./

Hour 2 2 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 4 4 5 5 2 3 4 4 2 2 2 2 week

PAN. 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 3 3 3 3 20
RYA. 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 1 1 1 1 10
GAR. 0 0 3 3 3 3 3 3 2 0 0 1 1 0 0 3 3 3 3 3 3 2 0 0 1 1 0 0 2 2 10
TRA. 1 1 1 1 1 1 1 1 1 2 3 3 3 2 3 3 3 3 3 2 2 2 2 3 3 3 2 2 2 2 10
CAT. 2 3 3 3 2 2 1 1 1 2 3 3 3 2 3 3 2 2 0 0 1 1 2 3 3 2 2 2 2 2 10
ISH. 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 0 0 0 0 0 3 3 3 3 0 0 0 0 10
mic. 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 10
geo. 0 0 0 0 3 3 3 3 3 0 0 0 0 0 0 0 0 3 3 3 3 3 0 0 0 0 0 0 0 0 10

FRIDAYMONDAY TUES. WEDNESDAY THURS.

Figure 3: Schedule created for Summer 2003 Quarter using penalty approach.



CREATING WEEKLY TIMETABLES TO MAXIMIZE EMPLOYEE PREFERENCES 12

References

[1] E. Burke and S. Petrovic, Recent Research Directions in Automated Timetabling, European Journal of Operational Research

140 (2002), 266-280.

[2] William J. Cook, William H Cunningham, William R. Pulleyblank, and Alexander Schrijver, Combinatorial Optimization,

Wiley-Interscience Series in Discrete Mathematics and Optimization, 1998.

[3] ILOG, ILOG CPLEX 8.0 User’s Manual , 2002.

[4] V. Chandru and J.N. Hooker, Optimization Methods for Logical Inference, John Wiley and Sons, 1999.

[5] A. Richard, T. Schouwenaars, J. How, and E. Feron, Spacecraft Trajectory Planning with Collision and Plume Avoidance

Using Mixed-Integer Linear Programming, AIAA Journal of Guidance, Control, and Dynamics (July, 2002).

[6] A. Schaerf, A Survey of Automated Timetabling, Artificial Intelligence Review 13 (2) (1999), 87-127.

Caleb White, Department of Economics, PO Box 353330

E-mail address: zeon@u.washington.edu

Youngbae Lee, LG Chemical Ltd. in Seoul, Korea

E-mail address: rooftree@u.washington.edu

Yoonsoo Kim, Department of Aeronautics and Astronautics, PO Box 352400

E-mail address: yoonsoo@aa.washington.edu

Rekha Thomas, Department of Mathematics, PO Box 354350

E-mail address: thomas@math.washington.edu

Patrick Perkins, Director, Math Study Center, PO Box 354350
E-mail address: perkins@math.washington.edu

All (except Youngbae Lee) at: University of Washington, Seattle, WA 98195


