From portfolio theory to optimal transport and Schrödinger bridge in-between

Soumik Pal
University of Washington, Seattle

McMaster University, Feb 142020

Based on joint work with T.-K. Leonard Wong University of Toronto, formerly UW, Seattle.

Introduction: portfolio theory

Stochastic portfolio theory

- Market weights for n stocks: $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right)$ in Δ_{n}, unit simplex

$$
\Delta_{n}=\left\{\left(p_{1}, \ldots, p_{n}\right): p_{i}>0, \sum_{i} p_{i}=1\right\} .
$$

- $\mu_{i}=$ Proportion of the total capital that belongs to i th stock.
- Process in time, $\mu(t), t=0,1,2, \ldots$.
- Portfolio: $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right) \in \Delta_{n}$.
- Portfolio weights: $\pi_{i}=$ Proportion of the total value that belongs to ith stock.
■ $\pi(t), t=0,1,2, \ldots$ is another process in the unit simplex.

Actively managed portfolios vs. passive index portfolios

Portfolio map

- $\boldsymbol{\pi}: \Delta_{n} \rightarrow \Delta_{n} . \pi(t) \equiv \boldsymbol{\pi}(\mu(t))$.
- Start by investing $\$ 1$ in portfolio and compare with index.
- Relative value process: $V(\cdot)=$ ratio of growth of $\$ 1$.

$$
\frac{V_{\pi}(t+1)}{V_{\pi}(t)}=\sum_{i=1}^{n} \pi_{i}(p) \frac{q_{i}}{p_{i}}
$$

Constant-weighted portfolio: $\pi(p) \equiv \pi \in \Delta_{n}$

Relative value and MCM portfolios

Figure: A market cycle

- Suppose we make no statistical assumptions, but are confident on the support $S \subseteq \Delta_{n}$ of the future market weights.
■ Given $\epsilon>0$, want $\lim \inf _{t \rightarrow \infty} V(t)>\epsilon$, irrespective of market paths.
- Are there portfolio maps $\boldsymbol{\pi}$ that guarantee that. No transac cost.

■ (Multiplicative cyclical monotonicity) Necessary that after any market cycle: $V(m+1) \geq 1$.

Definition

- $\varphi: \Delta_{n} \rightarrow \mathbb{R} \cup\{-\infty\}$ is exponentially concave if e^{φ} is concave.

$$
\operatorname{Hess}(\varphi)+\nabla \varphi(\nabla \varphi)^{\prime} \leq 0 .
$$

- Examples: $p, \pi \in \Delta_{n}, 0<\lambda<1$.

$$
\begin{aligned}
& \varphi(p)=\frac{1}{n} \sum_{i} \log p_{i}, \quad \varphi(p)=\sum_{i} \pi_{i} \log p_{i}, \\
& \varphi(p)=\log \left(\sum_{i} \pi_{i} p_{i}\right), \quad \varphi(p)=\frac{1}{\lambda} \log \left(\sum_{i} p_{i}^{\lambda}\right) .
\end{aligned}
$$

- Also called (K, N) convexity by Erbar, Kuwada, and Sturm '15.
- Statistics, optimization, machine learning. Cesa-Bianchi and Lugosi '06, Mahdavi, Zhang, and Jin '15.
- Compare log-concave functions.

Gradients of e-concave functions

- Fact 1: Gradients of exp-concave functions are probabilities.
- (Fernholz '02, P. and Wong '15). φ, exp-concave on Δ_{n}. Define π by

$$
\pi_{i}=p_{i}\left(1+D_{e(i)-p} \varphi(p)\right) .
$$

Then $\pi \in \Delta_{n} . e(i)$ is i th standard basis vector.

- Portfolio map: $\pi: \Delta_{n} \rightarrow \Delta_{n}$.
- Example: $\varphi(p)=\frac{1}{n} \sum_{i} \log p_{i}$. Then $\pi(p) \equiv(1 / n, \ldots, 1 / n)$.

Theorem (P.-Wong '15, Fernholz '02)
Assume $S \subseteq \Delta_{n}$ convex. π is MCM portfolio map on S if and only if
$\exists \varphi: \Delta \rightarrow(0, \infty)$, exponentially concave:

1. $\exists \epsilon>0$ s.t. $\inf _{p \in S} \varphi(p) \geq \log \epsilon$.
2. And

$$
\frac{\pi_{i}(p)}{p_{i}}=1+D_{e(i)-p} \varphi(p) .
$$

- The 'if' part was essentially shown by Fernholz. Functionally generated portfolios.
■ We show the 'only if' part.

Optimal Transportation

The Monge problem 1781

- P, Q - probabilities on $\mathcal{X}=\mathbb{R}^{d}=\mathcal{Y}$.
- $c(x, y)$ - cost of transport. E.g., $c(x, y)=\|x-y\|$ or $c(x, y)=\frac{1}{2}\|x-y\|^{2}$.
■ Monge problem: minimize among $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, T_{\#} P=Q$,

$$
\int c(x, T(x)) d P .
$$

Kantorovich relaxation 1939

Figure: by M. Cuturi

- $\Pi(P, Q)$ - couplings of (P, Q) (joint dist. with given marginals).
- (Monge-) Kantorovich relaxation: minimize among $\nu \in \Pi(P, Q)$

$$
\inf _{\nu \in \Pi(P, Q)}\left[\int c(x, y) d \nu\right] .
$$

- Linear optimization in ν over convex $\Pi(P, Q)$.

Example: quadratic Wasserstein

■ Consider $c(x, y)=\frac{1}{2}\|x-y\|^{2}$.
■ Assume P, Q has densities ρ_{0}, ρ_{1}.

$$
\mathbb{W}_{2}^{2}(P, Q)=\mathbb{W}_{2}^{2}\left(\rho_{0}, \rho_{1}\right)=\inf _{\nu \in \Pi\left(\rho_{0}, \rho_{\mathbf{1}}\right)}\left[\int\|x-y\|^{2} d \nu\right]
$$

Theorem (Y. Brenier '87)
There exists convex ϕ such that $T(x)=\nabla \phi(x)$ solves both Monge and Kantorovich OT problems for $\left(\rho_{0}, \rho_{1}\right)$ uniquely.
Idea: Rockafellar's cyclical monotonicity.

A MK optimal transport problem

- Unit simplex is an abelian group. If $p, q \in \Delta_{n}$, then

$$
(p \odot q)_{i}=\frac{p_{i} q_{i}}{\sum_{j=1}^{n} p_{j} q_{j}}, \quad\left(p^{-1}\right)_{i}=\frac{1 / p_{i}}{\sum_{j=1}^{n} 1 / p_{j}} .
$$

- $e=(1 / n, \ldots, 1 / n)$.
- K-L divergence or relative entropy as "distance":

$$
H(q \mid p)=\sum_{i=1}^{n} q_{i} \log \left(q_{i} / p_{i}\right)
$$

- Take $\mathcal{X}=\mathcal{Y}=\Delta_{n}$.

$$
c(p, q)=H\left(e \mid p^{-1} \odot q\right)=\log \left(\frac{1}{n} \sum_{i=1}^{n} \frac{q_{i}}{p_{i}}\right)-\frac{1}{n} \sum_{i=1}^{n} \log \frac{q_{i}}{p_{i}} \geq 0 .
$$

An optimal transport description of mcm portfolios

Theorem (P.-Wong '15, '18)
Given density $\left(\rho_{0}, \rho_{1}\right)$ on Δ_{n}, there exists an exp concave function φ such that the map

$$
q=T(p) \propto 1+D_{e(\cdot)-p} \varphi(p) \in \Delta_{n}
$$

solves the Monge and MK transport problem uniquely.

- The portfolio map is

$$
\pi(p)=T(p) \odot p^{-1}, \quad T(p)=p \odot \pi(p) .
$$

- Conversely all MCM portfolios are given this way.
- Transport maps are smooth MTW (Khan \& Zhang '19).

Models parametrized by probabilities

- What do ρ_{0}, ρ_{1} signify in portfolio theory?
- Roughly ρ_{0} is the distribution of the market weights.
- ρ_{1} is the distribution of the proportions of shares held in portfolio.
- They affect solely by their supports.
- Can be used from data to fit portfolios.

A tabular comparison

Group	$\left(\mathbb{R}^{n},+\right)$	$\left(\Delta_{n}, \odot\right)$		
Id	0	$e=(1 / n, \ldots, 1 / n)$		
Cost	$\\|y-x\\|^{2}$	$H\left(e \mid q \odot p^{-1}\right)$		
Potential	convex	\exp-concave		
Monge solution	$y=\nabla \phi(x)$	$q=\widetilde{\nabla} \varphi(p)$		
Displacement	$y-x$	$\pi(p)=q \circ p^{-1}$.		

Computations from discrete data

Big interest in statistics

- Transport of discrete probabilities. Atoms $\left(x_{1}, x_{2}, \ldots, x_{N}\right),\left(y_{1}, y_{2} \ldots, y_{N}\right)$.
- $p=\left(p_{1}, \ldots, p_{N}\right) \mapsto q=\left(q_{1}, \ldots, q_{N}\right)$.
- OT is a linear program. $O\left(N^{3}\right)$ steps.
- (Cuturi '13) "Entropic regularization" can be computed in about $O\left(N^{2} \log N\right)$ steps.
- Sinkhorn algorithm - discrete IPFP.
- What about explicit approximate solutions?

Stochastic processes and OT

- Define transition kernel of Brownian motion with diffusion h :

$$
p_{h}(x, y)=(2 \pi h)^{-d / 2} \exp \left(-\frac{1}{2 h}\|x-y\|^{2}\right),
$$

and joint distribution $\mu_{h}(x, y)=\rho_{0}(x) p_{h}(x, y)$ of a particle initially sampled from ρ_{0} and evolving as BM.

- Imagine large N many Brownian particles - temperature $h \approx 0$.

Schrödinger's problem

- Condition on initial configuration $\approx \rho_{0}$ and terminal configuration $\approx \rho_{1}$.
- Exponentially rare. On this rare event what do particles do?

■ Schrödinger '31, Föllmer '88, Léonard '12.

- There is a coupling between initial and terminal configurations.
- Given $X_{0}=x_{0}$ and $X_{1}=x_{1}$, the path is a Brownian bridge with diffusion h.
- As $h \rightarrow 0+$, straight lines joining MK optimal coupling (ρ_{0}, ρ_{1}).
- Schrödinger's bridge.

Explicit solution

- Suppose distinct data.

$$
L_{0}=\frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}}, \quad L_{1}=\frac{1}{N} \sum_{j=1}^{N} \delta_{y_{j}}
$$

- Conditional coupling is explicit. \mathcal{S}_{N} - set of permutations.
- Then

$$
\nu_{N}^{*}=\sum_{\sigma \in \mathcal{S}_{N}} q(\sigma) \frac{1}{N} \sum_{i=1}^{N} \delta_{\left(x_{i}, y_{\sigma_{i}}\right)} .
$$

- Gibbs measure on \mathcal{S}_{N} :

$$
q(\sigma)=\frac{\exp \left(-\frac{1}{2 h} \sum_{i}\left\|x_{i}-y_{\sigma_{i}}\right\|^{2}\right)}{\sum_{\rho \in \mathcal{S}_{N}} \exp \left(-\frac{1}{h} \sum_{i}\left\|x_{i}-y_{\rho_{i}}\right\|^{2}\right)}
$$

Back to the Dirichlet transport

- If $p, q \in \Delta_{n}$, then

$$
(p \odot q)_{i}=\frac{p_{i} q_{i}}{\sum_{j=1}^{n} p_{j} q_{j}}, \quad\left(p^{-1}\right)_{i}=\frac{1 / p_{i}}{\sum_{j=1}^{n} 1 / p_{j}} .
$$

- $H(q \mid p)=\sum_{i=1}^{n} q_{i} \log \left(q_{i} / p_{i}\right)$.
- MK OT with cost

$$
c(p, q)=H\left(e \mid p^{-1} \odot q\right)=\log \left(\frac{1}{n} \sum_{i=1}^{n} \frac{q_{i}}{p_{i}}\right)-\frac{1}{n} \sum_{i=1}^{n} \log \frac{q_{i}}{p_{i}} \geq 0 .
$$

- What is the corresponding picture for the Schrödinger bridge?

Dirichlet distribution

- Symmetric Dirichlet distribution Diri (λ), density $\propto \prod_{j=1}^{n} p_{j}^{\lambda / n-1}$.

■ Probability distribution on the unit simplex. If $U \sim \operatorname{Diri}(\cdot)$,

$$
\mathrm{E}(U)=e=(1 / n, \ldots, 1 / n), \quad \operatorname{Var}\left(U_{i}\right)=O\left(\frac{1}{\lambda}\right) .
$$

Dirichlet transition

- Haar measure on $\left(\Delta_{n}, \odot\right)$ is $\operatorname{Diri}(0), \nu(p)=\prod_{i=1}^{n} p_{i}^{-1}$.
- Consider transition probability: $p \in \Delta_{n}, U \sim \operatorname{Diri}(\lambda), Q=p \odot U$.

$$
f_{\lambda}(p, q)=c \nu(q) \exp (-\lambda c(p, q)), \quad(\text { P.-Wong '18). }
$$

- Compare with Brownian transition. Temperature: $h=\frac{1}{\lambda}$.
- As $\lambda \rightarrow \infty, f_{\lambda} \rightarrow \delta_{p}$. As $\lambda \rightarrow 0+, f_{\lambda} \rightarrow \operatorname{Diri(0)}$.

Multiplicative Schrödinger problem

■ Given discrete i.i.d. samples $p_{1}, \ldots, p_{N} \sim \rho_{0}$

- $q_{1}, \ldots, q_{N} \sim \rho_{1}$.
- \mathcal{S}_{N} - set of permutations.
- Define "Schrödinger bridge":

$$
\nu_{N}^{*}=\sum_{\sigma \in \mathcal{S}_{n}} q(\sigma) \frac{1}{N} \sum_{i=1}^{N} \delta_{\left(x_{i}, y_{\sigma_{i}}\right)}
$$

- Gibbs measure on \mathcal{S}_{N} :

$$
q(\sigma)=\frac{\prod_{i=1}^{N} f_{\lambda}\left(x_{i}, y_{\sigma_{i}}\right)}{\sum_{\rho \in \mathcal{S}_{N}} \prod_{i=1}^{N} f_{\lambda}\left(x_{i}, y_{\rho_{i}}\right)} .
$$

Pointwise convergence

Theorem (P.-Wong '18)
Let $\lambda=\lambda_{N}=N^{2 / n}$. Then, almost surely,

$$
\mathbb{W}_{2}^{2}\left(\nu_{N}^{*}, \text { Monge }\right)=O\left(N^{-1 / n} \log N\right)
$$

where Monge is the optimal Monge coupling between ρ_{0}, ρ_{1}.

The explicit Schrödinger coupling is an approximate solution to the OT for discrete large data.

On the difference between entropic cost and the optimal transport cost arxiv math.PR:1905.12206

Multiplicative Schrödinger problem and the Dirichlet transport (With Leonard Wong) 1806.05649. To appear in PTRF.

Exponentially concave functions and a new information geometry (With Leonard Wong) AOP ' 18.

The geometry of relative arbitrage (With Leonard Wong) Mathematics and Financial Economics '15

All Kinds of Transport

A Lift-the-Flap Book

Merci beaucoup et Thank you very much

