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Introduction: portfolio theory



Stochastic portfolio theory

Market weights for n stocks: µ = (µ1, . . . , µn) in ∆n, unit simplex

∆n =

{
(p1, . . . , pn) : pi > 0,

∑
i

pi = 1

}
.

µi = Proportion of the total capital that belongs to ith stock.
Process in time, µ(t), t = 0, 1, 2, . . ..
Portfolio: π = (π1, . . . , πn) ∈ ∆n.
Portfolio weights: πi=Proportion of the total value that belongs to
ith stock.
π(t), t = 0, 1, 2, . . . is another process in the unit simplex.



Actively managed portfolios vs. passive index portfolios
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Portfolio map

π : ∆n → ∆n. π(t) ≡ π(µ(t)).
Start by investing $1 in portfolio and compare with index.
Relative value process: V (·) = ratio of growth of $1.

µ(t) = p

µ(t + 1) = q

π(p)

market weight portfolio weight

π

Vπ(t + 1)

Vπ(t)
=

n∑
i=1

πi (p)
qi
pi

Constant-weighted portfolio: π(p) ≡ π ∈ ∆n



Relative value and MCM portfolios
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Figure: A market cycle

Suppose we make no statistical assumptions, but are confident on
the support S ⊆ ∆n of the future market weights.
Given ε > 0, want lim inft→∞ V (t) > ε, irrespective of market paths.
Are there portfolio maps π that guarantee that. No transac cost.
(Multiplicative cyclical monotonicity) Necessary that after any
market cycle: V (m + 1) ≥ 1.



Definition

ϕ : ∆n → R ∪ {−∞} is exponentially concave if eϕ is concave.

Hess(ϕ) +∇ϕ (∇ϕ)′ ≤ 0.

Examples: p, π ∈ ∆n, 0 < λ < 1.

ϕ(p) =
1
n

∑
i

log pi , ϕ(p) =
∑
i

πi log pi ,

ϕ(p) = log

(∑
i

πipi

)
, ϕ(p) =

1
λ

log

(∑
i

pλi

)
.

Also called (K ,N) convexity by Erbar, Kuwada, and Sturm ’15.
Statistics, optimization, machine learning.
Cesa-Bianchi and Lugosi ’06, Mahdavi, Zhang, and Jin ’15.
Compare log-concave functions.



Gradients of e-concave functions

Fact 1: Gradients of exp-concave functions are probabilities.
(Fernholz ’02, P. and Wong ’15). ϕ, exp-concave on ∆n.
Define π by

πi = pi
(
1 + De(i)−pϕ(p)

)
.

Then π ∈ ∆n. e(i) is ith standard basis vector.
Portfolio map: π : ∆n → ∆n.
Example: ϕ(p) = 1

n

∑
i log pi . Then π(p) ≡ (1/n, . . . , 1/n).



Theorem (P.-Wong ’15, Fernholz ’02)
Assume S ⊆ ∆n convex. π is MCM portfolio map on S if and only if
∃ ϕ : ∆→ (0,∞), exponentially concave:
1. ∃ε > 0 s.t. infp∈S ϕ(p) ≥ log ε.
2. And

πi (p)

pi
= 1 + De(i)−pϕ(p).

The ‘if’ part was essentially shown by Fernholz.
Functionally generated portfolios.
We show the ‘only if’ part.



Optimal Transportation



The Monge problem 1781

P,Q - probabilities on X = Rd = Y.
c(x , y) - cost of transport. E.g., c(x , y) = ‖x − y‖ or
c(x , y) = 1

2 ‖x − y‖2.
Monge problem: minimize among T : Rd → Rd , T#P = Q,∫

c (x ,T (x)) dP.



Kantorovich relaxation 1939

Figure: by M. Cuturi

Π(P,Q) - couplings of (P,Q) (joint dist. with given marginals).
(Monge-) Kantorovich relaxation: minimize among ν ∈ Π(P,Q)

inf
ν∈Π(P,Q)

[∫
c (x , y) dν

]
.

Linear optimization in ν over convex Π(P,Q).



Example: quadratic Wasserstein

Consider c(x , y) = 1
2 ‖x − y‖2.

Assume P,Q has densities ρ0, ρ1.

W2
2(P,Q) = W2

2(ρ0, ρ1) = inf
ν∈Π(ρ0,ρ1)

[∫
‖x − y‖2 dν

]
.

Theorem (Y. Brenier ’87)
There exists convex φ such that T (x) = ∇φ(x) solves both Monge and
Kantorovich OT problems for (ρ0, ρ1) uniquely.
Idea: Rockafellar’s cyclical monotonicity.



A MK optimal transport problem

Unit simplex is an abelian group. If p, q ∈ ∆n, then

(p � q)i =
piqi∑n
j=1 pjqj

,
(
p−1)

i
=

1/pi∑n
j=1 1/pj

.

e = (1/n, . . . , 1/n).
K-L divergence or relative entropy as “distance”:

H(q | p) =
n∑

i=1

qi log(qi/pi ).

Take X = Y = ∆n.

c(p, q) = H
(
e | p−1 � q

)
= log

(
1
n

n∑
i=1

qi
pi

)
− 1

n

n∑
i=1

log
qi
pi
≥ 0.



An optimal transport description of mcm portfolios

Theorem (P.-Wong ’15, ’18)
Given density (ρ0, ρ1) on ∆n, there exists an exp concave function ϕ such
that the map

q = T (p) ∝ 1 + De(·)−pϕ(p) ∈ ∆n

solves the Monge and MK transport problem uniquely.

The portfolio map is

π(p) = T (p)� p−1, T (p) = p � π(p).

Conversely all MCM portfolios are given this way.
Transport maps are smooth MTW (Khan & Zhang ’19).



Models parametrized by probabilities

What do ρ0, ρ1 signify in portfolio theory?
Roughly ρ0 is the distribution of the market weights.
ρ1 is the distribution of the proportions of shares held in portfolio.
They affect solely by their supports.
Can be used from data to fit portfolios.



A tabular comparison

Group (Rn,+) (∆n,�)
Id 0 e = (1/n, . . . , 1/n)

Cost ‖y − x‖2 H(e | q � p−1)
Potential convex exp-concave

Monge solution y = ∇φ(x) q = ∇̃ϕ(p)
Displacement y − x π(p) = q ◦ p−1.



Computations from discrete data



Big interest in statistics

Transport of discrete probabilities. Atoms
(x1, x2, . . . , xN), (y1, y2 . . . , yN).
p = (p1, . . . , pN) 7→ q = (q1, . . . , qN).
OT is a linear program. O(N3) steps.
(Cuturi ’13) “Entropic regularization” can be computed in about
O(N2 logN) steps.
Sinkhorn algorithm - discrete IPFP.
What about explicit approximate solutions?



Stochastic processes and OT

Define transition kernel of Brownian motion with diffusion h:

ph(x , y) = (2πh)−d/2 exp

(
− 1
2h
‖x − y‖2

)
,

and joint distribution µh(x , y) = ρ0(x)ph(x , y) of a particle initially
sampled from ρ0 and evolving as BM.
Imagine large N many Brownian particles - temperature h ≈ 0.



Schrödinger’s problem

Condition on initial configuration ≈ ρ0 and terminal configuration
≈ ρ1.
Exponentially rare. On this rare event what do particles do?
Schrödinger ’31, Föllmer ’88, Léonard ’12.
There is a coupling between initial and terminal configurations.
Given X0 = x0 and X1 = x1, the path is a Brownian bridge with
diffusion h.
As h→ 0+, straight lines joining MK optimal coupling (ρ0, ρ1).
Schrödinger’s bridge.



Explicit solution

Suppose distinct data.

L0 =
1
N

N∑
i=1

δxi , L1 =
1
N

N∑
j=1

δyj .

Conditional coupling is explicit. SN - set of permutations.
Then

ν∗N =
∑
σ∈SN

q(σ)
1
N

N∑
i=1

δ(xi ,yσi
).

Gibbs measure on SN :

q(σ) =
exp

(
− 1

2h

∑
i ‖xi − yσi‖

2
)

∑
ρ∈SN exp

(
− 1

h

∑
i ‖xi − yρi‖

2
) .



Back to the Dirichlet transport

If p, q ∈ ∆n, then

(p � q)i =
piqi∑n
j=1 pjqj

,
(
p−1)

i
=

1/pi∑n
j=1 1/pj

.

H(q | p) =
∑n

i=1 qi log(qi/pi ).
MK OT with cost

c(p, q) = H
(
e | p−1 � q

)
= log

(
1
n

n∑
i=1

qi
pi

)
− 1

n

n∑
i=1

log
qi
pi
≥ 0.

What is the corresponding picture for the Schrödinger bridge?



Dirichlet distribution

Symmetric Dirichlet distribution Diri(λ), density ∝
∏n

j=1 p
λ/n−1
j .

Probability distribution on the unit simplex. If U ∼ Diri(·),

E (U) = e = (1/n, . . . , 1/n), Var(Ui ) = O

(
1
λ

)
.



Dirichlet transition

Haar measure on (∆n,�) is Diri (0), ν(p) =
∏n

i=1 p
−1
i .

Consider transition probability: p ∈ ∆n, U ∼ Diri(λ), Q = p � U.

fλ(p, q) = cν(q) exp (−λc(p, q)) , (P.-Wong ’18).

Compare with Brownian transition. Temperature: h = 1
λ .

As λ→∞, fλ → δp. As λ→ 0+, fλ → Diri(0).



Multiplicative Schrödinger problem

Given discrete i.i.d. samples p1, . . . , pN ∼ ρ0

q1, . . . , qN ∼ ρ1.
SN - set of permutations.
Define “Schrödinger bridge”:

ν∗N =
∑
σ∈Sn

q(σ)
1
N

N∑
i=1

δ(xi ,yσi
).

Gibbs measure on SN :

q(σ) =

∏N
i=1 fλ(xi , yσi )∑

ρ∈SN
∏N

i=1 fλ(xi , yρi )
.



Pointwise convergence

Theorem (P.-Wong ’18)
Let λ = λN = N2/n. Then, almost surely,

W2
2(ν∗N ,Monge) = O

(
N−1/n logN

)
,

where Monge is the optimal Monge coupling between ρ0, ρ1.

The explicit Schrödinger coupling is an approximate solution to the OT
for discrete large data.



On the difference between entropic cost and the optimal transport cost
arxiv math.PR:1905.12206

Multiplicative Schrödinger problem and the Dirichlet transport
(With Leonard Wong) 1806.05649. To appear in PTRF.

Exponentially concave functions and a new information geometry
(With Leonard Wong) AOP ’18.

The geometry of relative arbitrage
(With Leonard Wong) Mathematics and Financial Economics ’15
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