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Motivation



Entropy regularized OT

Marginals e−f , e−g densities. Minimize over coupling Π.

W2
2(e

−f , e−g ) := inf
γ∈Π

[∫
∥y − x∥2 dγ

]
.

Monge solutions are highly degenerate; supported on a graph.
Entropy as a measure of degeneracy:

Ent(h) :=

{∫
h(x) log h(x)dx , for density h,

∞, otherwise.

Example: Entropy of N(0, σ2) is − log σ+ constant.



Entropic regularization

Figure: Image by M. Cuturi

Föllmer ’88, Cuturi ’13, Gigli ’19 ... suggested penalizing MK OT
with entropy.

EOTϵ(e
−f , e−g ) = inf

γ∈Π

[∫
∥y − x∥2 dγ + ϵEnt(γ)

]
.



Structure of the solution

The optimal coupling (Rüschendorf & Thomsen ’93) γϵ must be of
the form

γϵ(x , y) = exp

(
− 1

2ϵ
∥y − x∥2 − 1

ϵ
uϵ(x)− 1

ϵ
v ϵ(y)− f (x)− g(y)

)
.

uϵ, v ϵ - Schrödinger potentials. Unique up to constant.
Typically not explicit. Determined by marginal constraints∫

γϵ(x , y)dy = e−f (x),

∫
γϵ(x , y)dx = e−g(y).



Sinkhorn/IPFP algorithm

Initialize arbitrarily. Iteratively fit alternating marginals.
At every odd step the X marginal is e−f .
At every even step the Y marginal is e−g .
Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

How fast does ρϵk converge to e−f ? Cf. Marcel’s talk yesterday for
ϵ > 0 rates.



Our approach

ε→ 0+

µk,ε

Embed the sequence in time steps ϵ.
Find the limiting absolutely continuous curve (ρt , t ≥ 0),

ρt = lim
ϵ→0

ρϵt/ϵ.

Describe this curve as a “gradient flow”.
Use gradient flow techniques to determine exponential rates of
convergence under assumptions.



Euclidean mirror gradient flows



Diffeomorphisms by convex gradients

Figure: Image of a diffeomorphism by G. Peyré

u : Rd → R differentiable strictly convex.
x ↔ xu = ∇u(x) creates mirror coordinates by duality.
Two notions of gradients. F : Rd → R.

∇xF (x), ∇xuF (x) :=
(
∇2u(x)

)−1 ∇xF (x).

Usual case u(x) = 1
2 ∥x∥

2.



Gradient flow ODEs

Mirror gradient flows have two equivalent ODEs. Initialize x0.
Flow of the mirror coordinate.

ẋut = −∇xF (xt).

Flow of the primal coordinate.

ẋt = −∇xuF (xt).

Gradient flow in a Hessian Riemannian manifold with a metric
tensor given by the Hessian(

∇2u(x)
)−1

= ∇2u∗(xu).

Widely used in optimization and ML.



Examples

d = 1, F (x) = x2/2, x0 = 1.
u(x) = x2/2. Usual gradient flow converges exponentially.

ẋt = −xt , xt = e−t .

u(x) = x4. Mirror flow converges in finite time.

ẋt = − 1
12xt

, xt =
√
(1 − t/6)+.

u(x) = 1/x . Mirror flow converges polynomially.

ẋt = −1
2
x4
t , xt = (1 + 3t/2)−1/3.



Polyak-Löjasiewicz condition

When can we guarantee exponential convergence?
Mirror Polyak-Löjasiewicz condition:

2α (f (x)− f (xmin)) ≤ ∥∇f (x)∥2
xu ,

where
∥v∥2

xu = vT
(
∇2u(x)

)−1
v .

Then exponential convergence at rate α.



Wasserstein mirror gradient flows



Wasserstein gradient flow recap

(Otto ’98) Wasserstein space W2(Rd) is a formal Riemannian
manifold.
Tangent space at ρ

{∇ϕ, ϕ ∈ C∞
c }

L2(ρ)
.

F : W2 → R. Wasserstein gradient is a Riemannian gradient.

∇WF (ρ) = ∇
(
δF

δρ

)
.

Wasserstein gradient flow solves continuity equation.

ρ̇t +∇ · (vtρt) = 0, vt = −∇WF (ρt).



Mirror, mirror

Special choice of mirror function on W2. Fix density e−g .

U(ρ) :=
1
2
W2

2
(
ρ, e−g

)
.

(Generalized) Geodesically convex. Generates mirror coordinate:

ρ ⇐⇒ x −∇u(ρ)︸ ︷︷ ︸
Kantorovich potential

= ∇WU(ρ),

where ∇u(ρ) is the Brenier map transporting ρ to e−g



Mirror flow PDE and continuity equations

Mirror gradient flow PDE for the potential. Initialize at u0.

∇u̇t = −∇WF (ρt), (∇ut)#ρt
= e−g .

Mirror gradient flow continuity equation. Initialize at ρ0.

ρ̇t +∇ · (vtρt) = 0, vt = −∇xut

δF

δρ
(ρt) = −

(
∇2ut

)−1 ∇WF (ρt).

where ∇ut is the Brenier map from ρt to e−g .
Unclear if solutions exist.



Example 1

Entropy. F (ρ) =
∫
ρ(x) log ρ(x)dx . Take d = 1.

Take ρ0 = e−g = N(0, 1).
PDE for the Brenier potential

∇u̇t(x) = log ρt(x) + 1.

Solution ρt = N(0, (1 + t)2).
Compare with the heat flow = Wasserstein grad flow.
µt = N(0, 1 + t).
Faster convergence for mirror flow.



Example 2

Kullback-Leibler. Fix density e−f .

F (ρ) = KL(ρ | e−f ).

Geodesically convex if f is convex.
Mirror

U(ρ) =
1
2
W2

2(ρ, e
−g ), ρ ↔ ∇u.

What is the mirror gradient flow of F?
A PDE for the Brenier potentials and a cont.-eq. for the measures.



Parabolic Monge-Ampère

Initialize convex u0.

∇u̇t = ∇f (x) +∇ log ρt(x), where (∇ut)ρt
= e−g .

Simplify

u̇t(x) = f (x)− g (∇ut(x)) + log det∇2ut(x).

Parabolic dynamics added to the Monge-Ampère PDE. (See
Kim-Streets-Warren ’12, Kitagawa ’12). Nice solutions exist under
assumptions.



The Sinkhorn PDE

e−g

ρ1

ρ2
ρ3

u1 u2

u3

The continuity equation is another PDE.

ρ̇t +∇ · (vtρt) = 0, vt = −∇xut (f + log ρt) .

Gives an AC curve on the Wasserstein space. Converges to e−f as
t → ∞.
Curious relation with linearized OT.



The limiting analysis of Sinkhorn iterations



Recap of Sinkhorn

Initialize arbitrarily. Iteratively fit alternating marginals.
At every odd step the X marginal is e−f .
At every even step the Y marginal is e−g .
Extract the sequence of X -marginals from even steps.

(ρϵk , k = 1, 2, 3, . . .) .

Problem: Find the limiting absolutely continuous curve (ρt , t ≥ 0),

ρt = lim
ϵ→0

ρϵt/ϵ.



The limit is a mirror gradient flow

Theorem (DKPS ’23) Under regularity assumptions on the
parabolic MA,

u̇t(x) = f (x)− g (∇ut(x)) + log det∇2ut(x).

the limiting curve of the X marginals is a solution of the Sinkhorn
PDE.

ρ̇t +∇ · (vtρt) = 0, vt = −∇xut (f + log ρt) .

In particular, it is a mirror gradient flow of F (ρ) = KL(ρ | e−f ) with
the mirror given by U(ρ) = 1

2W
2
2(ρ, e

−g ).
A symmetric statement holds for the sequence of Y marginals.



Exponential rate of convergence

Theorem (DKPS ’23) Suppose e−f satisfies logarithmic Sobolev
inequality. Also suppose that the solution of the parabolic MA satisfies

inf
t
inf
x

(
∇2ut(x)

)−1 ≥ λI ,

then exponential convergence for the Sinkhorn PDE.
There are conditions known where our assumptions are satisfied.
See, e.g., Berman ’20.
The proof is a standard gradient flow argument.



Related works

Our work is heavily influenced by two prior works.
Berman ’20. Shows that the sequence of potentials from Sinkhorn
iterations converge to the solution of the PMA.
Our proofs require control of higher order errors than Berman’s.
Léger ’20. Shows that discrete Sinkhorn potentials with positive
ϵ > 0 is a mirror descent of KL.
But one cannot invert the relationship to get any gradient flow
description of the evolution of the measures.



A McKean-Vlasov interpretation

Sinkhorn PDE is the marginal law of the following diffusion.

dXt =

(
−∂f

∂xut
(Xt)−

∂g

∂xut
(X ut

t ) +
∂ht
∂xut

(Xt)

)
dt +

√
2
∂Xt

∂X ut
t

dBt , (1)

where
Xt has density ρt = e−ht .
(∇ut)#ρt = e−g .
Diffusion matrix at time t is

2
∂x

∂xut
= 2

(
∇2ut(x)

)−1
.

For f = g , becomes mirror Langevin diffusion (Ahn-Chewi ’21).
Generalizes Langevin.



Several open questions

Replace KL by another divergence. Does this have any algorithmic
potential?
Other mirror functions than the squared Wasserstein distance.
One can can formally write the resulting Hessian geometry. But
there are singularities.

⟨v1, v2⟩ρ =

∫
vT
1 (x)

(
∇2uρ(x)

)−1
v2(x)ρ(dx).

Build a JKO like scheme for this Hessian geometry. See
Rankin-Wong ’23 for some related constructions of the
Bregman-Wasserstein divergences.
Do particle systems that follow Euclidean mirror gradient flows
converge to Wasserstein mirror gradient flows?

Thank you


