508 HOMEWORK WINTER 2006

Always k will denote a field. I will frequently write x_0, \ldots, x_n for a system of homogeneous coordinates on \mathbb{P}^n and write $S = k[x_0, \ldots, x_n]$ for the associated polynomial ring.

- (1) Let $R = k[x_1, \ldots, x_n]$ be the polynomial ring. If I is an ideal in R show that R/I has finite length if and only if it has finite dimension.
- (2) Let S and T be multiplicatively closed sets in the rings A and R respectively, and let $\theta : A \to R$ be a ring homomorphism such that $\theta(S) \subset T$. Show that θ extends to a homomorphism $A[S^{-1}] \to R[T^{-1}]$.
- (3) Let S be a multiplicatively closed set in R and T its image in R/I where $I = \{a \in R \mid as = 0 \text{ for some } s \in S\}$. Show that the natural map $R[S^{-1}] \to (R/I)[T^{-1}]$ is an isomorphism.
- (4) Let S be a multiplicatively closed set in R and suppose that every element of S is a unit in R. Show that the map $R \to R[S^{-1}]$ is an isomorphism.
- (5) Suppose I and J are ideals in a ring R. Give an example to show that $I \cap J = 0 \not\Rightarrow \sqrt{I} \cap \sqrt{J} = 0$. Show that if I + J = R and $I \cap J = 0$ then $\sqrt{I} \cap \sqrt{J} = 0$. Hence show that if $R = I \oplus J$, then $R = \sqrt{I} \oplus \sqrt{J}$.
- (6) Let C and D be degree two curves in \mathbb{P}^2 . Show that their scheme theoretic image can not be contained in line.
- (7) Let \mathbb{Z}_2 act on $\mathbb{C}^2 \times \mathbb{C}^2$ by having the non-identity element σ act by $\sigma(p,q) = (q,p)$. Thus \mathbb{Z}_2 acts on $R = \mathcal{O}(\mathbb{C}^2 \times \mathbb{C}^2)$ by automorphisms. Determine the ring of invariants $R^{\mathbb{Z}_2} := \{f \in R \mid f^{\sigma} = f\}$. You might try to do this by placing a grading on R such that each homogenous component R_n is finite dimensional and stable under \mathbb{Z}_2 . If you make the right choice it should not be hard to compute $R_n^{\mathbb{Z}_2}$. Now write R = S/I where I is an ideal in a polynomial ring S and find a set of generators for I.

How will you show that I is the whole kernel of the map $S \to R$? One way to do this is to use Hilbert series. If V is a graded vector space such that dim $V_n < \infty$ for all n and $V_n = 0$ for $n \ll 0$ its Hilbert series is the formal Laurent series

$$H_V(t) := \sum (\dim V_n) t^n.$$

If $0\to U\to V\to W\to 0$ is an excat sequence of graded vector spaces in which the arrows preserve degree then

$$H_V(t) = H_U(t) + H_W(t)$$

so, in particular, if S is a graded k-algebra and $f \in S_n$ is a regular element then $H_{S/fS}(t) = (1 - t^n)H_S(t)$. Also, a surjective degree-preserving map $V \to W$ is an isomorphism if and only if $H_V(t) = H_W(t)$.

Finally, show that Spec R is singular (using the Jacobian criterion perhaps). What is the singular locus of $(\mathbb{C}^2 \times \mathbb{C}^2)/\mathbb{Z}_2$?

(8) Show that the localization $A[\mathcal{S}^{-1}] = 0$ if and only if $0 \in \mathcal{S}$.

HOMEWORK

(9) Let $A = k[x_1, \ldots, x_n]$ and $S = k[x_0, \ldots, x_n]$. Give S its standard grading, deg $x_i = 1$ for all *i*. View S as the homogeneous coordinate ring of \mathbb{P}^n and A as the coordinate ring of the copy of \mathbb{A}^n that consists of the points $(1, a_1, \ldots, a_n) \in \mathbb{P}^n$. Give both \mathbb{A}^n and \mathbb{P}^n their Zariski topologies. Show that the Zariski topology on \mathbb{A}^n is the restriction of the Zariski topology on \mathbb{P}^n . If J is a graded ideal in S and V(J) its zero locus in \mathbb{P}^n , what is "the" ideal I in A for which $V(I) = V(J) \cap \mathbb{A}^n$?

Consider the homogenization map

$$A \to S_{homog}, \qquad f \mapsto f^* := x_0^{\deg f} f(x_1/x_0, \dots, x_n/x_0).$$

If I is an ideal in A, define $I^* := (\{f^* \mid f \in I\})$. Show that

- (a) I^* is a graded ideal in S by proving the more general result that an ideal generated by homogeneous elements is graded;
- (b) $V(I^*)$ is the closure in \mathbb{P}^n of V(I), the zero locus of I in \mathbb{A}^n .
- (10) Give either a proof or a counter example to the following statement: if I is a homogeneous ideal in S and $X \subset \mathbb{P}^n$ its zero locus, then the minimal primes over I are homogeneous and their zero loci are the irreducible components of X.
- (11) Let X and Y be subvarieties of \mathbb{P}^n cut out by the homogeneous ideals I and J respectively. Suppose that $X \cap Y$ does not meet the hyperplane at infinity, $x_0 = 0$. So we can think of X and Y as subvarieties of $\mathbb{A}^n = \mathbb{P}^n \{x_0 = 0\}$. Determine their scheme-theoretic intersection in terms of I and J. Does this result suggest a definition of a projective scheme? Does it suggest a way to define the scheme-theoretic intersection of two projective varieties that does not involve using the affine definition?
- (12) Suppose that I and J are homogeneous ideals in S. Find an algebraic condition on I and J that is equivalent to the condition that the projective varieties V(I) and V(J) are equal. Hint: Look first at when $V(I) = \phi$ and also do the case $I \subset J$ first. Is there a largest ideal J such that V(I) = V(J)? If so, what is J in terms of I?
- (13) Let k be an algebraically closed field and R a finitely generated commutative k-algebra. Show there is no k-algebra homomorphism $\theta : k[x, y] \to R$ such that the induced map $\operatorname{Max} R \to \operatorname{Max} k[x, y]$ between the sets of maximal ideals sends $\operatorname{Max} R$ homeomorphically onto $\operatorname{Max}(k[x, y]) \{(x, y)\}$. This shows that $\mathbb{A}^2 \{0\}$ is not an affine scheme.
- (14) Let $S = k[x_0, \ldots, x_n]$ be the homogeneous coordinate ring of \mathbb{P}^n . Suppose that $I \subset J$ are homogeneous ideals in S. Find an algebraic condition on I and J that is equivalent to the condition that the natural morphism $\operatorname{Proj}(S/J) \to \operatorname{Proj}(S/I)$ is an isomorphism. In other words, find conditions that are equivalent to the condition that the maps

$$\frac{S}{I}[x_i^{-1}]_0 \to \frac{S}{J}[x_i^{-1}]_0$$

are isomorphisms for $i = 0, \ldots, x_n$.

(15) Let I and J be graded ideals in a graded ring S. Assume $S_0 = k$ and S is generated by S_1 as a k-algebra. Let $z \in S_1$ and define $R = S[z^{-1}]_0$. Define $I_* := I[z^{-1}]_0$ and J_* similarly. Either give proofs or counter-examples to the following statements: $I_* + J_* = (I+J)_*$, $I_*J_* = (IJ)_*$, $I_* \cap J_* = (I \cap J)_*$.

 $\mathbf{2}$

HOMEWORK

(16) Now let z, S, and R be as in the previous question and define

$$R_{\leq n} := S_n z^{-n}.$$

If $f \in R_{\leq n} - R_{\leq n-1}$ let $f^* \in S_n$ be the unique element such that $f = f^* z^{-n}$. Let I and J be ideals in R and define I^* to be the ideal generated by $\{f^* \mid f \in I\}$. Either give proofs of, or counter-examples to, the following statements: $I^* + J^* = (I + J)^*$, $I^* J^* = (IJ)^*$, $I^* \cap J^* = (I \cap J)^*$.

(17) Let k be an algebraically closed field and k[x, y] the polynomial ring in 2 variables. Let f be an irreducible polynomial, C the curve in \mathbb{A}^2 it cuts out, $p \in C$, and \mathfrak{m}_p the maximal ideal in $\mathcal{O}(C)$ vanishing at p.

Terminology. We call p a simple point of C if either

$$\frac{\partial f}{\partial x}(p) \neq 0 \quad \text{or} \quad \frac{\partial f}{\partial y}(p) \neq 0.$$

If p is not a simple point it is called a multiple point and its multiplicity is defined as the minimal n such that $f \in \mathfrak{m}_p^n$. We write $m_p(C)$ for the multiplicity of $p \in C$.

Thus p is a singular point of C if and only if $m_p(C) \ge 2$.

- (a) Show that p is a simple point if and only if $\dim_k(\mathfrak{m}_p/\mathfrak{m}_p^2) = 1$. Hint: expand f in a Taylor series around p. It might make the notation simpler to assume that p is chosen so that p = (0, 0).
- (b) How can the Taylor series expansion of f at p be used to compute $m_p(C)$? Is there a more algebraic way of saying this if we choose coordinates such that p = (0, 0)?
- (18) (Continuation of the previous exercise.) Let L be a line in \mathbb{A}^2 passing though p. Suppose that $p = (\alpha, \beta)$ is a simple point of C. Show that I(L, C, p) > 1 if and only if L is the line given by

$$\frac{\partial f}{\partial x}(p)(x-\alpha) + \frac{\partial f}{\partial y}(p)(y-\beta) = 0.$$

In other words, the tangent line to C at p is given by this equation.

- (19) (Continuation of the previous exercises.) Show for every line L through p that $I(C, L, p) \ge m_p(C)$.
- (20) (Continuation of the previous exercises.) Show for every other curve D through p that $I(C, D, p) \ge m_p(C)m_p(D)$.
- (21) Let $C \subset \mathbb{P}^2$ be the zero locus of a positive degree irreducible homogeneous polynomial $F \in k[X, Y, Z]$. Show that p is a simple point of C if and only if at least one of the partial derivatives of F does not vanish at p, and in that case the line

$$\frac{\partial F}{\partial X}(p)X + \frac{\partial F}{\partial Y}(p)Y + \frac{\partial F}{\partial Z}(p)Z = 0$$

is the tangent line to C at p.

(22) (char k = 0) This is a rather open-ended question. Let $f \in k[t]$. There is a simple criterion for whether or not f has a multiple zero: it has no multiple zeroes if and only if $gcd\{f, f'\} = 1$. Is there a similar simple criterion for whether or not a form $F \in k[x, y]$ has a multiple zero on \mathbb{P}^1 . You might need to think about (i) the relation between $gcd\{F, G\}$ and $gcd\{F_*, G_*\}$; (ii) the relation between derivatives of F with respect to x and y and derivatives of f_* with respect to t where t is a ratio of two linear forms.