508 HOMEWORK WINTER 2006

Always k will denote a field. I will frequently write x_{0}, \ldots, x_{n} for a system of homogeneous coordinates on \mathbb{P}^{n} and write $S=k\left[x_{0}, \ldots, x_{n}\right]$ for the associated polynomial ring.
(1) Let $R=k\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring. If I is an ideal in R show that R / I has finite length if and only if it has finite dimension.
(2) Let \mathcal{S} and \mathcal{T} be multiplicatively closed sets in the rings A and R respectively, and let $\theta: A \rightarrow R$ be a ring homomorphism such that $\theta(\mathcal{S}) \subset \mathcal{T}$. Show that θ extends to a homomorphism $A\left[\mathcal{S}^{-1}\right] \rightarrow R\left[\mathcal{T}^{-1}\right]$.
(3) Let \mathcal{S} be a multiplicatively closed set in R and \mathcal{T} its image in R / I where $I=\{a \in R \mid$ as $=0$ for some $s \in \mathcal{S}\}$. Show that the natural map $R\left[\mathcal{S}^{-1}\right] \rightarrow$ $(R / I)\left[\mathcal{T}^{-1}\right]$ is an isomorphism.
(4) Let \mathcal{S} be a multiplicatively closed set in R and suppose that every element of \mathcal{S} is a unit in R. Show that the map $R \rightarrow R\left[\mathcal{S}^{-1}\right]$ is an isomorphism.
(5) Suppose I and J are ideals in a ring R. Give an example to show that $I \cap J=0 \nRightarrow \sqrt{I} \cap \sqrt{J}=0$. Show that if $I+J=R$ and $I \cap J=0$ then $\sqrt{I} \cap \sqrt{J}=0$. Hence show that if $R=I \oplus J$, then $R=\sqrt{I} \oplus \sqrt{J}$.
(6) Let C and D be degree two curves in \mathbb{P}^{2}. Show that their scheme theoretic image can not be contained in line.
(7) Let \mathbb{Z}_{2} act on $\mathbb{C}^{2} \times \mathbb{C}^{2}$ by having the non-identity element σ act by $\sigma(p, q)=$ (q, p). Thus \mathbb{Z}_{2} acts on $R=\mathcal{O}\left(\mathbb{C}^{2} \times \mathbb{C}^{2}\right)$ by automorphisms. Determine the ring of invariants $R^{\mathbb{Z}_{2}}:=\left\{f \in R \mid f^{\sigma}=f\right\}$. You might try to do this by placing a grading on R such that each homogenous component R_{n} is finite dimensional and stable under \mathbb{Z}_{2}. If you make the right choice it should not be hard to compute $R_{n}^{\mathbb{Z}_{2}}$. Now write $R=S / I$ where I is an ideal in a polynomial ring S and find a set of generators for I.

How will you show that I is the whole kernel of the map $S \rightarrow R$? One way to do this is to use Hilbert series. If V is a graded vector space such that $\operatorname{dim} V_{n}<\infty$ for all n and $V_{n}=0$ for $n \ll 0$ its Hilbert series is the formal Laurent series

$$
H_{V}(t):=\sum\left(\operatorname{dim} V_{n}\right) t^{n}
$$

If $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ is an excat sequence of graded vector spaces in which the arrows preserve degree then

$$
H_{V}(t)=H_{U}(t)+H_{W}(t)
$$

so, in particular, if S is a graded k-algebra and $f \in S_{n}$ is a regular element then $H_{S / f S}(t)=\left(1-t^{n}\right) H_{S}(t)$. Also, a surjective degree-preserving map $V \rightarrow W$ is an isomorphism if and only if $H_{V}(t)=H_{W}(t)$.

Finally, show that Spec R is singular (using the Jacobian criterion perhaps). What is the singular locus of $\left(\mathbb{C}^{2} \times \mathbb{C}^{2}\right) / \mathbb{Z}_{2}$?
(8) Show that the localization $A\left[\mathcal{S}^{-1}\right]=0$ if and only if $0 \in \mathcal{S}$.
(9) Let $A=k\left[x_{1}, \ldots, x_{n}\right]$ and $S=k\left[x_{0}, \ldots, x_{n}\right]$. Give S its standard grading, $\operatorname{deg} x_{i}=1$ for all i. View S as the homogeneous coordinate ring of \mathbb{P}^{n} and A as the coordinate ring of the copy of \mathbb{A}^{n} that consists of the points $\left(1, a_{1}, \ldots, a_{n}\right) \in \mathbb{P}^{n}$. Give both \mathbb{A}^{n} and \mathbb{P}^{n} their Zariski topologies. Show that the Zariski topology on \mathbb{A}^{n} is the restriction of the Zariski topology on \mathbb{P}^{n}. If J is a graded ideal in S and $V(J)$ its zero locus in \mathbb{P}^{n}, what is "the" ideal I in A for which $V(I)=V(J) \cap \mathbb{A}^{n}$?

Consider the homogenization map

$$
A \rightarrow S_{\text {homog }}, \quad f \mapsto f^{*}:=x_{0}^{\operatorname{deg} f} f\left(x_{1} / x_{0}, \ldots, x_{n} / x_{0}\right) .
$$

If I is an ideal in A, define $I^{*}:=\left(\left\{f^{*} \mid f \in I\right\}\right)$. Show that
(a) I^{*} is a graded ideal in S by proving the more general result that an ideal generated by homogeneous elements is graded;
(b) $V\left(I^{*}\right)$ is the closure in \mathbb{P}^{n} of $V(I)$, the zero locus of I in \mathbb{A}^{n}.
(10) Give either a proof or a counter example to the following statement: if I is a homogeneous ideal in S and $X \subset \mathbb{P}^{n}$ its zero locus, then the minimal primes over I are homogeneous and their zero loci are the irreducible components of X.
(11) Let X and Y be subvarieties of \mathbb{P}^{n} cut out by the homogeneous ideals I and J respectively. Suppose that $X \cap Y$ does not meet the hyperplane at infinity, $x_{0}=0$. So we can think of X and Y as subvarieties of $\mathbb{A}^{n}=\mathbb{P}^{n}-\left\{x_{0}=0\right\}$. Determine their scheme-theoretic intersection in terms of I and J. Does this result suggest a definition of a projective scheme? Does it suggest a way to define the scheme-theoretic intersection of two projective varieties that does not involve using the affine definition?
(12) Suppose that I and J are homogeneous ideals in S. Find an algebraic condition on I and J that is equivalent to the condition that the projective varieties $V(I)$ and $V(J)$ are equal. Hint: Look first at when $V(I)=\phi$ and also do the case $I \subset J$ first. Is there a largest ideal J such that $V(I)=V(J)$? If so, what is J in terms of I ?
(13) Let k be an algebraically closed field and R a finitely generated commutative k-algebra. Show there is no k-algebra homomorphism $\theta: k[x, y] \rightarrow R$ such that the induced map $\operatorname{Max} R \rightarrow \operatorname{Max} k[x, y]$ between the sets of maximal ideals sends $\operatorname{Max} R$ homeomorphically onto $\operatorname{Max}(k[x, y])-\{(x, y)\}$. This shows that $\mathbb{A}^{2}-\{0\}$ is not an affine scheme.
(14) Let $S=k\left[x_{0}, \ldots, x_{n}\right]$ be the homogeneous coordinate ring of \mathbb{P}^{n}. Suppose that $I \subset J$ are homogeneous ideals in S. Find an algebraic condition on I and J that is equivalent to the condition that the natural morphism $\operatorname{Proj}(S / J) \rightarrow \operatorname{Proj}(S / I)$ is an isomorphism. In other words, find conditions that are equivalent to the condition that the maps

$$
\frac{S}{I}\left[x_{i}^{-1}\right]_{0} \rightarrow \frac{S}{J}\left[x_{i}^{-1}\right]_{0}
$$

are isomorphisms for $i=0, \ldots, x_{n}$.
(15) Let I and J be graded ideals in a graded ring S. Assume $S_{0}=k$ and S is generated by S_{1} as a k-algebra. Let $z \in S_{1}$ and define $R=S\left[z^{-1}\right]_{0}$. Define $I_{*}:=I\left[z^{-1}\right]_{0}$ and J_{*} similarly. Either give proofs or counter-examples to the following statements: $I_{*}+J_{*}=(I+J)_{*}, I_{*} J_{*}=(I J)_{*}, I_{*} \cap J_{*}=(I \cap J)_{*}$.
(16) Now let z, S, and R be as in the previous question and define

$$
R_{\leq n}:=S_{n} z^{-n}
$$

If $f \in R_{\leq n}-R_{\leq n-1}$ let $f^{*} \in S_{n}$ be the unique element such that $f=f^{*} z^{-n}$. Let I and J be ideals in R and define I^{*} to be the ideal generated by $\left\{f^{*} \mid f \in I\right\}$. Either give proofs of, or counter-examples to, the following statements: $I^{*}+J^{*}=(I+J)^{*}, I^{*} J^{*}=(I J)^{*}, I^{*} \cap J^{*}=(I \cap J)^{*}$.
(17) Let k be an algebraically closed field and $k[x, y]$ the polynomial ring in 2 variables. Let f be an irreducible polynomial, C the curve in \mathbb{A}^{2} it cuts out, $p \in C$, and \mathfrak{m}_{p} the maximal ideal in $\mathcal{O}(C)$ vanishing at p.

Terminology. We call p a simple point of C if either

$$
\frac{\partial f}{\partial x}(p) \neq 0 \quad \text { or } \quad \frac{\partial f}{\partial y}(p) \neq 0 .
$$

If p is not a simple point it is called a multiple point and its multiplicity is defined as the minimal n such that $f \in \mathfrak{m}_{p}^{n}$. We write $m_{p}(C)$ for the multiplicity of $p \in C$.

Thus p is a singular point of C if and only if $m_{p}(C) \geq 2$.
(a) Show that p is a simple point if and only if $\operatorname{dim}_{k}\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}\right)=1$. Hint: expand f in a Taylor series around p. It might make the notation simpler to assume that p is chosen so that $p=(0,0)$.
(b) How can the Taylor series expansion of f at p be used to compute $m_{p}(C)$? Is there a more algebraic way of saying this if we choose coordinates such that $p=(0,0)$?
(18) (Continuation of the previous exercise.) Let L be a line in \mathbb{A}^{2} passing though p. Suppose that $p=(\alpha, \beta)$ is a simple point of C. Show that $I(L, C, p)>1$ if and only if L is the line given by

$$
\frac{\partial f}{\partial x}(p)(x-\alpha)+\frac{\partial f}{\partial y}(p)(y-\beta)=0
$$

In other words, the tangent line to C at p is given by this equation.
(19) (Continuation of the previous exercises.) Show for every line L through p that $I(C, L, p) \geq m_{p}(C)$.
(20) (Continuation of the previous exercises.) Show for every other curve D through p that $I(C, D, p) \geq m_{p}(C) m_{p}(D)$.
(21) Let $C \subset \mathbb{P}^{2}$ be the zero locus of a positive degree irreducible homogeneous polynomial $F \in k[X, Y, Z]$. Show that p is a simple point of C if and only if at least one of the partial derivatives of F does not vanish at p, and in that case the line

$$
\frac{\partial F}{\partial X}(p) X+\frac{\partial F}{\partial Y}(p) Y+\frac{\partial F}{\partial Z}(p) Z=0
$$

is the tangent line to C at p.
(22) (char $k=0$) This is a rather open-ended question. Let $f \in k[t]$. There is a simple criterion for whether or not f has a multiple zero: it has no multiple zeroes if and only if $\operatorname{gcd}\left\{f, f^{\prime}\right\}=1$. Is there a similar simple criterion for whether or not a form $F \in k[x, y]$ has a multiple zero on \mathbb{P}^{1}. You might need to think about (i) the relation between $\operatorname{gcd}\{F, G\}$ and $\operatorname{gcd}\left\{F_{*}, G_{*}\right.$); (ii) the relation between derivatives of F with respect to x and y and derivatives of f_{*} with respect to t where t is a ratio of two linear forms.

