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Uncertainty in Optimization

Decisions (optimal?) must be taken before the facts are all in:

A bridge must be built to withstand floods, wind storms or
earthquakes

A portfolio must be purchased with incomplete knowledge of
how it will perform

A product’s design constraints must be viewed in terms of
“safety margins”

What are the consequences for optimization?
How may this affect the way problems are formulated?



The Fundamental Difficulty Caused by Uncertainty

A standard form of optimization problem without uncertainty:

minimize c0(x) over all x ∈ S satisfying ci (x) ≤ 0, i = 1, . . . ,m
for a set S ⊂ IRn and functions ci : S 7→ IR

Incorporation of future states ω ∈ Ω in the model:
the decision x must be taken before ω is known

Choosing x ∈ S no longer fixes numerical values ci (x), but only
fixes functions on Ω: c i (x) : ω 7→ ci (x , ω), i = 0, 1, . . . ,m



Example: Linear Programming Context

minimize c0(x) over all x ∈ S satisfying ci (x) ≤ 0, i = 1, . . . ,m

Linear programming problem:
ci (x) = ai1x1 + · · · ainxn − bi

minimize a01x1 + · · · a0nxn − b0 over x = (x1, . . . , xn) ∈ S
subject to ai1x1 + · · · ainxn − bi ≤ 0 for i = 1, . . . ,m,
where S =

{
x
∣∣ x1 ≥ 0, . . . , xn ≥ 0 & other conditions?

}
Effect of uncertainty:

ci (x , ω) = ai1(ω)x1 + · · · ain(ω)xn − bi (ω)

There is no single clear answer to the question of how then to
reconstitute the optimization objective and the constraints!



Stochastic Framework — Random Variables

Future state space Ω modeled with a probability structure:
(Ω,F ,P), P = some probability measure

Functions X : Ω→ IR are interpreted as random variables:
cumulative distribution function FX : (−∞,∞)→ [0, 1]

FX (z) = prob
{
ω
∣∣X (ω) ≤ z

}
expected value EX = mean value = µ(X )

variance σ2(X ) = E [ (X − µ(X ))2], standard deviation σ(X )

technical restriction imposed here: X ∈ L2 meaning E [X 2] <∞

The functions c i (x) : ω → ci (x , ω) are placed now in this picture:

choosing x ∈ S yields random variables c 0(x), c 1(x), . . . , c m(x)



Some Traditional Approaches

Recapturing optimization in the face of c i (x) : ω → ci (x , ω)

Approach 1: guessing the future

• identify ω̄ ∈ Ω as the “best estimate” of the future
• minimize over x ∈ S :

c0(x , ω̄) subject to ci (x , ω̄) ≤ 0, i = 1, . . . ,m
• pro/con: simple and attractive, but dangerous—no hedging

Approach 2: worst-case analysis, “robust” optimization

• focus on the worst that might come out of each c i (x):
• minimize over x ∈ S :

sup
ω∈Ω

c0(x , ω) subject to sup
ω∈Ω

ci (x , ω) ≤ 0, i = 1, . . . ,m

• pro/con: avoids probabilities, but expensive—maybe infeasible



Approach 3: relying on means/expected values

• focus on average behavior of the random variables c i (x)
• minimize over x ∈ S :

µ(c 0(x)) = Eωc0(x , ω) subject to
µ(c i (x)) = Eωci (x , ω) ≤ 0, i = 1, . . . ,m

• pro/con: common for objective, but foolish for constraints?

Approach 4: safety margins in units of standard deviation

• improve on expectations by bringing standard deviations into
consideration
• minimize over x ∈ S : for some choice of coefficients λi > 0

µ(c 0(x)) + λ0 σ(c 0(x)) subject to
µ(c i (x)) + λi σ(c i (x)) ≤ 0, i = 1, . . . ,m

• pro/con: looks attractive, but a serious flaw will emerge



Approach 5: specifying probabilities of compliance

• choose probability levels αi ∈ (0, 1) for i = 0, 1, . . . ,m
• find lowest z such that, for some x ∈ S , one has

prob
{
c 0(x) ≤ z

}
≥ α0,

prob
{
c i (x) ≤ 0

}
≥ αi for i = 1, . . . ,m

• pro/con: popular and appealing, but flawed and controversial
• no account is taken of the seriousness of violations
• technical issues about the behavior of these expressions

Example: with α0 = 0.5, the median of c 0(x) would be minimized

Traditional usage: problems of reliable design in engineering



Quantification of Risk

How can the “risk” be measured in a random variable X?
orientation: X (ω) stands for a “cost” or loss
negative costs correspond to gains/rewards

The idea to be pursued here:
capture the “risk” in X by a numerical surrogate R(X )

This leads to considering
functionals R : X → R(X ) on the space of random variables

R = “risk quantifier” = “risk measure”

A Systematic Approach to Uncertainty in Optimization

When numerical values ci (x) become random variables c i (x):

• choose risk quantifiers Ri for i = 0, 1, . . . ,m

• define the functions c̄i on IRn by c̄i (x) = Ri (c i (x)), and then

• minimize c̄0(x) over x ∈ S subject to c̄i (x) ≤ 0, i = 1, . . . ,m.



Basic Guidelines

What axioms for numerical surrogates R(X ) ∈ (−∞,∞]?

Definition of coherency

R is a coherent measure of risk in the basic sense if
(R1) R(C ) = C for all constants C
(R2) R((1− λ)X + λX ′) ≤ (1− λ)R(X ) + λR(X ′)

for λ ∈ (0, 1) (convexity)
(R3) R(X ) ≤ R(X ′) when X ≤ X ′ (monotonicity)
(R4) R(X ) ≤ c when Xk → X with R(Xk) ≤ c (closedness)
(R5) R(λX ) = λR(X ) for λ > 0 (positive homogeneity)

R coherent in the extended sense: axiom (R5) dropped

(from ideas of Artzner, Delbaen, Eber, Heath 1997/1999)

(R1)+(R2)⇒ R(X +C ) = R(X ) +C for all X and constants C
(R2)+(R5) ⇒ R(X + X ′) ≤ R(X ) +R(X ′) (subadditivity)



Associated Criteria for Risk Acceptability

For a “cost” random variable X , to what extent should outcomes
X (ω) > 0, in constrast to outcomes X (ω) ≤ 0, be tolerated?

preferences must be articulated!

Preference-based definition of acceptance

Given a choice of a risk measure R:
the risk in X is deemed acceptable when R(X ) ≤ 0

from (R1): R(X ) ≤ c ⇐⇒ R(X − c) ≤ 0
from (R3): R(X ) ≤ supX for all X ,

so X is always acceptable when supX ≤ 0



The Role of Coherency in Optimization

Reconstituted optimization problem:
minimize c̄0(x) over x ∈ S with c̄i (x) ≤ 0 for i = 1, . . . ,m

where c̄i (x) = Ri (c i (x)) for c i (x) : ω → ci (x , ω)

Assumption for now: each Ri is coherent in the basic sense

Key properties associated with coherency

(a) (preservation of convexity)
ci (x , ω) convex in x =⇒ c̄i (x) convex in x

(b) (preservation of certainty)
ci (x , ω) independent of ω =⇒ c̄i (x) has that same value

(c) (insensitivity to scaling)
optimization is unaffected by rescaling of the units of the ci ’s

(a) and (b) still hold for coherent measures in the extended sense



Coherency or Its Lack in Traditional Approaches

The case of Approach 1: guessing the future

Ri (X ) = X (ω̄) for a choice of ω̄ ∈ Ω with prob > 0
Ri is coherent—but open to criticism

c i (x) is deemed to be risk-acceptable if merely ci (x , ω̄) ≤ 0

The case of Approach 2: worst case analysis

Ri (X ) = supX
Ri is coherent—but very conservative

c i (x) is risk-acceptable only if ci (x , ω) ≤ 0 with prob = 1

The case of Approach 3: relying on expectations

Ri (X ) = µ(X ) = EX
Ri is coherent—but perhaps too “feeble”

c i (x) is risk-acceptable as long as ci (x , ω) ≤ 0 on average



The case of Approach 4: standard deviation units as safety margins

Ri (X ) = µ(X ) + λiσ(X ) for some λi > 0
Ri is not coherent: the monotonicity axiom (R3) fails!

=⇒ c i (x) could be deemed more costly than c i (x
′)

even though ci (x , ω) < ci (x
′, ω) with probability 1

c i (x) is risk-acceptable as long as the mean µ(c i (x)) lies
below 0 by at least λi times the amount σ(c i (x))

The case of Approach 5: specifying probabilities of compliance

Ri (X ) = qαi
(X ) for some αi ∈ (0, 1), where

qαi
(X ) = αi -quantile in the distribution of X

(to be explained)
Ri is not coherent: the convexity axiom (R2) fails!

=⇒ for portfolios, this could run counter to “diversification”
c i (x) is risk-acceptable as long as ci (x , ω) ≤ 0 with prob ≥ αi



Quantiles and Conditional Value-at-Risk

α-quantile for X : qα(X ) = min
{
z
∣∣FX (z) ≥ α

}
value-at-risk: VaRα(X ) same as qα(X )
conditional value-at-risk: CVaRα(X ) = α-tail expectation of X

= 1
1−α

∫ 1
α VaRβ(X )dβ ≥ VaRα(X )

THEOREM R(X ) = CVaRα(X ) is a coherent measure of risk!

CVaRα(X )↗ supX as α↗ 1, CVaRα(X )↘ EX as α↘ 0



CVaR Versus VaR in Modeling

prob
{
X ≤ 0

}
≤ α ⇐⇒ qα(X ) ≤ 0 ⇐⇒ VaRα(X ) ≤ 0

Approach 5 recast: specifying probabilities of compliance

• focus on value-at-risk for the random variables c i (x)
• minimize VaRα0(c 0(x)) over x ∈ S subject to

VaRαi (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: seemingly natural, but “incoherent” in general

Approach 6: safeguarding with conditional value-at-risk

• conditional value-at-risk instead of value-at-risk for each c i (x)
• minimize CVaRα0(c 0(x)) over x ∈ S subject to

CVaRαi (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: coherent! also more cautious than value-at-risk

extreme cases: “αi = 0” ∼ expectation, “αi = 1” ∼ supremum



Minimization Formula for VaR and CVaR

CVaRα(X ) = min
C∈IR

{
C + 1

1−αE
[

max{0,X − C}
]}

VaRα(X ) = lowest C in the interval giving the min

Application to CVaR optimization: convert a problem like

minimize CVaRα0(c 0(x)) over x ∈ S subject to
CVaRαi (c i (x)) ≤ 0, i = 1, . . . ,m

into a problem for x ∈ S and auxiliary variables C0,C1, . . . ,Cm:

minimize C0 + 1
1−α0

E
[

max{0, c 0(x)− C0}
]

while requiring

Ci + 1
1−αi

E
[

max{0, c i (x)− Ci}
]
≤ 0, i = 1, . . . ,m



Further Modeling Possibilities

Coherency-preserving combinations of risk measures

(a) If R1, . . . ,Rr are coherent and λ1 > 0, . . . , λr > 0 with
λ1 + · · ·+ λr = 1, then
R(X ) = λ1R1(X ) + · · ·+ λrRr (X ) is coherent

(b) If R1, . . . ,Rr are coherent, then

R(X ) = max
{
R1(X ), . . . ,Rr (X )

}
is coherent

Example: R(X ) = λ1CVaRα1(X ) + · · ·+ λrCVaRαr (X )

Approach 7: safeguarding with CVaR mixtures

The CVaR approach already considered can be extended by
replacing single CVaR expressions with weighted combinations



Continuous CVaR Mixtures and Risk Profiles

For any nonnegative weighting measure λ on (0, 1), a coherent
measure of risk (in the basic sense) is given by

R(X ) =
∫ 1

0 CVaRα(X ) dλ(α)

Spectral representation

Associate with λ the profile function ϕ(α) =
∫ α

0 [1− β]−1 dλ(β)
Then, as long as ϕ(1) <∞, the above R has the expression

R(X ) =
∫ 1

0 VaRβ(X )ϕ(β) dβ



Risk Measures From Subdividing the Future

“robust” optimization modeling revisited with Ω subdivided

λk > 0 for k = 1, . . . , r , λ1 + · · ·+ λr = 1

R(X ) = λ1 sup
ω∈Ω1

X (ω) · · ·+ λr sup
ω∈Ωr

X (ω) is coherent

Approach 8: distributed worst-case analysis

Extend the ordinary worst-case model
minimize sup

ω∈Ω
c0(x , ω) subject to sup

ω∈Ω
ci (x , ω) ≤ 0 , i = 1, . . . ,m

by distributing each supremum over subregions of Ω, as above
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Building Further in the Stochastic Framework

Probability space: (Ω,F ,P), elements ω are “future states”

random variables: X : Ω→ IR, X ∈ L2(Ω,F ,P)
typical orientation: X (ω) = some “cost” or “loss”

Quantification of risk: R(X ) = numerical surrogate for X
R : L2 → (−∞,∞] is then a “risk measure”

Complementary idea: D(X ) = assessment of nonconstancy of X
D : L2 → [0,∞] is then a “deviation measure”

standard deviation as a basic example: D(X ) = σ(X )

Why generalize? motivations in finance, in particular

• asymmetry could be beneficial, D(−X ) 6= D(X )?
• promotion of coherency in risk (connections will emerge)

Closely related notion: E(X ) = assessment of nonzeroness of X
E : L2 → [0,∞] is then an “error measure”



Quantification of Uncertainty

functionals D : X → D(X ) ∈ [0,∞] for X ∈ L2(Ω,F ,P)

Axioms for deviation from constancy

D is a measure of deviation in the basic sense if

(D1) D(X ) = 0 for X ≡ C constant, D(X ) > 0 otherwise

(D2) D((1− λ)X + λX ′) ≤ (1− λ)D(X ) + λD(X ′)
for λ ∈ (0, 1) (convexity)

(D3) D(X ) ≤ c when Xk → X with D(Xk) ≤ c (closedness)

(D4) D(λX ) = λD(X ) for λ > 0 (positive homogeneity)

Deviation measures in the extended sense: (D4) dropped

=⇒ D actually has D(X + C ) = D(X ) for all constants C



Initial Examples of Deviation Measures

notation: X = X+ − X− for X+ = max{X , 0}, X− = max{−X , 0}

Standard deviation and semideviations

• σ(X ) = ||X − EX ||2
• σ+(X ) = ||[X − EX ]+||2 and σ−(X ) = ||[X − EX ]−||2

Range-based deviation measures

• D(X ) = supX − inf X
• D(X ) = supX − EX and D(X ) = EX − inf X

Recall that the Lp norms on L2(Ω,F ,P) are well defined

Lp deviations and semideviations

• D(X ) = ||X − EX ||p
• D(X ) = ||[X − EX ]+||p and D(X ) = ||[X − EX ]−||p



Motivations Coming From Finance

Y1, . . . ,Ym = rates of return of various financial instruments
x1, . . . , xm = weights of these instruments in a portfolio

weighting constraints: (x1, . . . , xm) ∈ S (various versions)
Y (x1, . . . , xm) = x1Y1 + · · ·+ xmYm = portfolio rate of return

Classical portfolio problem

Choose the weighting vector (x1, . . . , xm) ∈ S so as to minimize
σ(Y (x1, . . . , xm) ) subject to having µ(Y (x1, . . . , xm) ) ≥ c
c = some target level of return, treated parametrically

Issues of contention:
• σ penalizes above-average returns like below-average returns
• the µ constraint may be inappropriately feeble

Innovations to explore: with a switch from gains to losses
• replace σ(Y (x1, . . . , xm) ) by D(−Y (x1, . . . , xm) )
• replace µ(Y (x1, . . . , xm) ) = c by R(−Y (x1, . . . , xm) ) ≤ −c



Estimation Through Linear Regression

Theme: linear approximation of a random variable Y by some
other random variables X1, . . . ,Xn and a constant term

Y ≈ c0 + c1X1 + c2X2 + · · ·+ cnXn

“best” coefficients c0, c1, . . . , cn are to be determined

Existing approaches:

Classical regression (“least-squares” method)
Quantile regression (for estimating quantiles/percentiles)
Modified least squares (Huber approach to outliers)

Issues motivating additional work :

Should “risk preferences” dictate the form of approximation?
Underestimates worse than overestimates for Y = loss/cost?



Quantification of Error in Approximation

Orientation: X (ω) now refers to an outcome desired to be 0

Error measures: E : L2 → [0,∞]
E(X ) quantifies the overall “nonzero-ness” in X

Error axioms

E is a measure of error in the basic sense if

(E1) E(0) = 0, E(X ) > 0 when X 6= 0,
E(C ) <∞ for all constants C

(E2) E((1− λ)X + λX ′) ≤ (1− λ)E(X ) + λE(X ′)
for λ ∈ (0, 1) (convexity)

(E3) E(X ) ≤ c when Xk → X with E(Xk) ≤ c (closedness)

(E4) E(λX ) = λE(X ) for λ > 0 (positive homogeneity)

Error measures in the extended sense: (E4) dropped



Some Examples of Error Measures

E : L2 → [0,∞], basic if positively homogeneous

A broad class of error messages in the basic sense

E(X ) = ||a[X ]+ + b[X ]−||p with a > 0, b > 0, p ∈ [1,∞]

Some specific instances:

E(X ) = ||X ||p when a = 1 and b = 1

E(X ) = E
{

(1− α)−1X+ − X
}

when a = (1− α)−1, b = 1

= Koenker-Basset error relative to α ∈ (0, 1)



Formulation of Generalized Regression

Let Y ,X1, . . . ,Xn be random variables in L2(Ω,F ,P)
assume no linear combination of X1, . . . ,Xn is constant

Regession problem

For a measure E of error in the basic sense, with E(Y ) <∞,
choose c0, c1, . . . , cn in order to

minimize E
{
Y − [c0 + c1X1 + · · ·+ cnXn]

}
= minimizing a convex function of (c0, c1, . . . , cn) ∈ IRn+1

Existence of solutions

Optimal regression coefficient vectors (c̄0, c̄1, . . . , c̄n) always
exist, and they form a compact convex subset of IRn+1



Portfolio Motivations Revisited

Y1, . . . ,Ym = rates of return of various instruments
x1, . . . , xm = weights of these instruments in a portfolio

Y (x1, . . . , xm) = x1Y1 + · · ·+ xmYm = portfolio rate of return

Optimization context

Minimize some R or D aspect of Y (x1, . . . , xm) under
some constraints on various other R or D aspects

Factor models

Simplication via “factors” X1, . . . ,Xn:
each Yi approximated by Ŷi = ci0 + ci1X1 + · · ·+ cinXn

Y (x1, . . . , xm) thus replaced in optimization by Ŷ (x1, . . . , xm)

Serious issue: (ci0, ci1, . . . , cin) can’t depend on (x1, . . . , xm)!
Should “preferences” therefore influence the mode of regression?



Error Projection

for E = any measure of error (satisfying the axioms)

THEOREM: deviation measures from error measures

In terms of constants C ∈ IR, let

D(X ) = inf
C
E(X − C ), S(X ) = argmin

C
E(X − C )

Then • D is a deviation measure (satisfying the axioms)
• S(X ) is a nonempty closed interval (singleton?)

S(X ) is the associated “statistic”

Inverse question: Is every D the projection of some E?
Yes! but without uniqueness e.g. E(X ) = D(X ) + |EX |

Mixture result:
Suppose D = λ1D1 + · · ·+ λrDr with Dk projected from Ek .
Then ∃ “natural” E built from the Ek ’s that projects onto D

but E 6= λ1E1 + · · ·+ λrEr



Some Examples of Regression

Classical regression (“least squares”)

E(X ) = λ||X ||2 for some λ > 0
S(X ) = µ(X ) = EX mean
D(X ) = λσ(X ) standard deviation, scaled

Regression with range deviation

E(X ) = λ||X ||∞ for some λ > 0
S(X ) = 1

2 [supX + inf X ] center of range

D(X ) = λ
2 [supX − inf X ] radius of range, scaled

Regression with mean absolute deviation

E(X ) = λ||X ||1 = λE |X | for some λ > 0
S(X ) = medX median
D(X ) = λE [ dist(X ,medX ) ] median deviation, scaled



Quantiles and Quantile Regression

recall: FX = c.d.f. for X , FX (z) = prob(X ≤ z)

Quantile interval for α ∈ (0, 1): qα(X ) = [q−
α(X ), q+

α(X )],

q−
α(X ) = inf

{
x
∣∣FX (x) ≥ α

}
, q+

α(X ) = sup
{
x
∣∣FX (x) ≤ α

}
Pure quantile regression

E(X ) = 1
1−αE [X ]+ − EX Koenker-Basset error

S(X ) = qα(X ) α-quantile
D(X ) = CVaRα(X − EX ) α-CVaR deviation

Mixed quantile regression (levels αk , weights λk > 0,
∑

k λk = 1)

E(X ) = min
{∑r

k=1
λk

1−αk
E [X − Ck ]+ − EX

∣∣∣ ∑r
k=1 Ck = 0

}
S(X ) =

∑r
k=1 λkqαk

(X ) mixed quantile
D(X ) =

∑r
k=1 λkCVaRαk

(X − EX ) mixed CVaR deviation



Regression Analysis

Approximation goal: Y ≈ c0 + c1X1 + · · ·+ cnXn

Z (c0, c1, . . . , cn) = Y − [c0 + c1X1 + · · ·+ cnXn]
Z0(c1, . . . , cn) = Y − [c1X1 + · · ·+ cnXn] (c0 omitted)

Regression problem for error measure E :

minimize E(Z (c0, c1, . . . , cn) ) over c0, c1, . . . , cn

THEOREM: error-shaping decomposition

The coefficients c̄0, c̄1, . . . , c̄n are optimal if and only if

(c̄1, . . . , c̄n) ∈ argmin
c1,...,cn

D(Z0(c1, . . . , cn) )

c̄0 ∈ S(Z0(c1, . . . , cn) )

COROLLARY: equivalent view of regression

Choose (c0, c1, . . . cn) to minimize D(Z (c0, c1, . . . , cn))
subject to the requirement that 0 ∈ S(Z (c0, c1, . . . , cn))



Regression Interpreted in Examples

Regression error being shaped: through c0, c1, . . . , cn
Z = Z (c0, c1, . . . , cn) = Y − [c0 + c1X1 + · · ·+ cnXn]

1. Classical regression
minimize σ(Z ) subject to µ(Z ) = 0

2. Range regression
minimize breadth of range of Z subject to the center being 0

3. Median regression
minimize E |Z | subject to “the median of Z being 0”

4. Quantile regression
minimize Dα(Z ) subject to “qα(Z ) = 0”

Dα(Z ) = CVaRα(Z − EZ )

5. Mixed quantile regression
minimize

∑
k λkDαk

(Z ) subject to “
∑

k λkqαk
(Z ) = 0”



Portfolio Application

Y1, . . . ,Ym = rates of return, x1, . . . , xm = weights

Portfolio rate of return:
Y (x) = x1Y1 + · · ·+ xmYm for x = (x1, . . . , xm)

Risk aspects of portfolio: in objective or constraints
fD(x) = D(Y (x)) or fR(x) = R(Y (x)) for various D, R

Factor model with factors X1, . . . ,Xn

Yi ≈ Ŷi(ci) = ci0 + ci1X1 + · · ·+ cinXn for each i

Y (x) ≈ Ŷ (x , c1, . . . , cm) = x1Ŷ1(c1) + · · ·+ xmŶm(cm)

Consequence for risk expressions:
fD(x) = D(Y (x)) ≈ f̂D(x , c1, . . . , cm) = D(Ŷ (x , c1, . . . , cm))

fR(x) = R(Y (x)) ≈ f̂R(x , c1, . . . , cm) = R(Ŷ (x , c1, . . . , cm))

How will these approximation errors affect optimization?
Complication: errors must be treated parametrically in x!



Parametric Bounds: D Type

Factor approximation errors:
Zi(ci0, ci1, . . . , cin) = Yi − [ci0 + ci1X1 + · · ·+ cinXn]

coefficient vectors ci = (ci0, ci1, . . . , cin)

Targeted inequality: with a coefficient vector a ≥ 0

fD(x) ≤ f̂D(x , c1, . . . , cm) + a · x for all x ≥ 0

What is the “best” that can be achieved through the control
of the factor approximation errors? lowest a = (a1, . . . , an)?

auxiliary notation: Zi0(ci1, . . . , cin) = Yi − [ci1X1 + · · ·+ cinXn]

THEOREM: prescription for best D approximation

The lowest a = (a1, . . . , an) is achieved by
determining c̄i = (c̄i0, c̄i1, . . . , c̄in) through generalized
regression using an error measure E that projects onto D
taking ai = D(Zi0(c̄i1, . . . , c̄in)) note: c̄i0 has no role



Parametric Bounds: R Type

Targeted inequality: with a coefficient vector a ≥ 0

fR(x) ≤ f̂R(x , c1, . . . , cm) + a · x for all x ≥ 0

What is the “best” that can be achieved through the control
of the factor approximation errors? lowest a = (a1, . . . , an)?

THEOREM: prescription for best R approximation

The lowest a = (a1, . . . , an) is achieved actually with a = 0 by
determining c̄i = (c̄i0, c̄i1, . . . , c̄in) through generalized
regression using an error measure E that projects onto the
deviation measure D corresponding to the risk measure R
replacing c̄i by c̄∗i , with
c̄∗i0 = R(Zi0(c̄i1, . . . , c̄in)), but c̄∗ij = c̄ij for j = 1, . . . , n.

Acceptability consequence:
R(Ŷ (x , c̄∗1 , . . . , c̄

∗
m)) ≤ 0 =⇒ R(Y (x)) ≤ 0



New Insights For Regression

Different approaches to generalized linear regression are
deeply connected with different preferences about which
approximation error “statistic” should be fixed at 0, and
how the deviation from that “statistic” should be shaped

In a portfolio optimization problem recast in terms of factors,
each D or R expression naturally suggests its own choice of
regression, if the aim is to keep the substitute problem as
close as possible to the given problem

The common practice of generating factor approximations

Yi ≈ ci0 + ci1X1 + · · ·+ +cinXn i = 1, . . . ,m,

only by “least-squares” regression may lead, when applied in
problems of optimization, to risks that are “unacceptable”
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THE FUNDAMENTAL QUADRANGLE OF RISK

relating quantifications of various aspects of a random variable

risk R ←→ D deviation

optimization ↑ S ↑ estimation

regret V ←→ E error

Lecture 1: optimization, the role of R
Lecture 2: estimation, the roles of E , D, S
Lecture 3: tying both together along with V and duality
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Aversity in Risk

toward a fundamental connection with deviation measures

Recall axioms for coherent measures of risk

(R1) R(C ) = C for all constants C
(R2) R((1− λ)X + λX ′) ≤ (1− λ)R(X ) + λR(X ′)

for λ ∈ (0, 1) (convexity)
(R3) R(X ) ≤ R(X ′) when X ≤ X ′ (monotonicity)
(R4) R(X ) ≤ c when Xk → X with R(Xk) ≤ c (closedness)
(R5) R(λX ) = λR(X ) for λ > 0 (positive homogeneity)

basic sense:(R5) yes, extended sense:(R5) no

Another important category of risk measures

R is an averse measure of risk if it satisfies (R1), (R2), (R4) and

(R6) R(X ) > EX for all nonconstant X (aversity)

basic sense: (R5) yes, extended sense: (R5) no



Risk Measures Paired With Deviation Measures

• Many risk measures are both coherent and averse
R(X ) = CVaRα(X ), R(X ) = supX

• Some risk measures are coherent but not averse
R(X ) = EX , R(X ) = X (ω̄)

• Some risk measures are averse but not coherent
R(X ) = EX + λσ(X ) (to be seen shortly)

Coherency in deviation: require D(X ) ≤ supX − EX for all X

THEOREM: deviation versus risk

A one-to-one correspondence D ←→ R between deviation
measures D and averse risk measures R is furnished by

R(X ) = EX +D(X ), D(X ) = R(X − EX ),

where moreover R is coherent ⇐⇒ D(X ) is coherent

Note: coherency fails for deviation measures D(X ) = λσ(X )!
=⇒ risk measures R(X ) = µ(X ) + λσ(X ) aren’t coherent



Safety Margins Revised

Recall the traditional approach to µ(X ) being “safely” below 0:

µ(X ) + λσ(X ) ≤ 0 for some λ > 0 scaling the “safety”

but R(X ) = µ(X ) + λσ(X ) is not coherent

Can the coherency be restored if σ(X ) is replaced by some D(X )?

Yes! R(X ) = µ(X ) + λD(X ) is coherent when D is coherent

Safety margin modeling with coherency

In the safeguarding problem model

minimize c̄0(x) over x ∈ S with c̄i (x) ≤ 0 for i = 1, . . . ,m
where c̄i (x) = Ri (c i (x)) for c i (x) : ω → ci (x , ω)

coherency is obtained with
Ri (X ) = µ(X ) + λiDi (X ) for λi > 0 and Di coherent



Risk Envelope Characterization of Coherency

for coherent risk measures in the basic sense

A subset Q of L2 is a coherent risk envelope if it is nonempty,
closed and convex, and Q ∈ Q =⇒ Q ≥ 0, EQ = 1

Interpretation: Any such Q is the “density” relative to the
probability measure P on Ω of an alternative probability
measure P ′ on Ω : EP′ [X ] = E [XQ], Q = dP ′/dP

[specifying Q] ←→ [specifying a comparison set of measures P ′]

Theorem: basic dualization

∃ one-to-one correspondence R ←→ Q between coherent risk
measures R in the basic sense and coherent risk envelopes Q:

R(X ) = sup
Q∈Q

E [XQ], Q =
{
Q
∣∣E [XQ] ≤ R(X ) for all X

}
Conclusion: basic coherency = “customized” worst-case analysis



Some Risk Envelope Examples

recall that “1” = density Q of underlying P with respect to itself

R(X ) = EX ←→ Q = {1}

R(X ) = supX ←→ Q =
{

all Q ≥ 0, EQ = 1
}

R(X ) = CVaRα(X )←→ Q =
{
Q ≥ 0, EQ = 1, Q ≤ (1− α)−1

}
R(X ) =

∑r
k=1 λkRk(X )←→ Q =

{∑r
k=1 λkQk

∣∣Qk ∈ Qk

}
Dual characterization of aversity:
• R ←→ Q as before, but Q ∈ Q =⇒/ Q ≥ 0
• must have 1 ∈ Q “strictly”



Entropic Characterization of Extended Coherency

what happens for coherent R without positive homogeneity?

Generalized entropy

Call a functional I on L2 an entropic distance when
(I1) I is convex and lower semicontinuous
(I2) I(Q) <∞ =⇒ Q ≥ 0, EQ = 1
(I3) inf I = 0 =⇒ cl(dom I) is a risk envelope Q

Theorem: extended dualization with conjugacy

∃ one-to-one correspondence R ←→ I between coherent risk
measures R in the extended sense and entropic distances I:

R(X ) = sup
Q

{
E [XQ]− I(Q)

}
, I(Q) = sup

X

{
E [XQ]−R(X )

}
Previous correspondence: I = “indicator” of Q
Aversity: (I3) demands I(1) = 0 with 1 ∈ Q “strictly”



A Particularly Interesting Example

A pairing with Bolzmann-Shannon entropy

R(X ) = log E [eX ] coherent and averse corresponds to

I(Q) = E [Q logQ] when Q ≥ 0, EQ = 1 but =∞ otherwise

How does this fit into the fundamental quadrangle?

• D(X ) = log E [ e(X−EX ) ] deviation measure paired with R
• E(X ) = E [eX − X − 1] error measure projecting to D
• S(X ) = log[eX ] = R(X ) ! the “statistic” associated with E

−→ some development to be pursued in regression?



Expected Utility

Utility in finance: having a big role in traditional theory
X = incoming money in future, random variable
u(x) = “utility” (in present terms ) of getting future amount x

u generally concave, nondecreasing
u(X (ω)) = utility of amount received in state ω ∈ Ω
E [u(X )] = expected utility, something to consider maximizing

Importance of a threshold: X = gain/loss against benchmark
incrementally, people hate losses more than they love gains!

Normalization of utility: x > 0 rel. gain, x < 0 rel. loss
u(0) = 0, u′(0) = 1 for differentiable u, but the latter is
equivalent without differentiability to u(x) ≤ x for all x

Resulting interpretation:
u(x) = the amount of present money deemed to be

acceptable in lieu of getting the future amount x



Translation to Minimization Framework

Utility replaced by regret: v(x) = −u(−x)
v(x) = the regret in contemplating a future loss x

= the amount of present money deemed necessary as
compensation for a relative loss x in the future

v is convex, nondecreasing, with v(0) = 0, v(x) ≥ x

Converted context:
X = relative loss in future, random variable
E [v(X )] = expected regret something to consider minimizing

Insurance interpretation:
E [v(X )] = the amount to charge (with respect to v)

for covering the uncertain future loss X

Observations: about V(X ) = E [v(X )] as a functional on L2

V is convex, nondecreasing, with V(0) = 0, V(X ) ≥ EX



Quantifications of Regret in General

expressions V(X ) for potential losses X , not just of form E [v(X )]

Coherency in regret

Call V a coherent measure of regret if
(V1) V(0) = 0
(V2) V((1− λ)X + λX ′) ≤ (1− λ)V(X ) + λV(X ′) (convexity)
(V3) V(X ) ≤ V(X ′) when X ≤ X ′ (monotonicity)
(V4) V(X ) ≤ c when Xk → X with V(Xk) ≤ c (closedness)
(V5) V(λX ) = λV(X ) for λ > 0 (positive homogeneity)

Aversity in regret

Call V an averse measure of regret if (V3) is relinquished, but

(V6) V(X ) > EX for all nonconstant X (aversity)

basic sense: (V5) yes, extended sense:(V5) no



A Trade-off That Identifies Risk

For V = some measure of regret consider the expression:

C + V(X − C ) for a future loss X and constants C

Interpretation: accept a certain loss C , thereby shifting the
threshold and only regetting a residual future loss X − C

Theorem: derivation of risk from regret

Given an averse regret measure V, define R and S by

R(X ) = min
C

{
C + V(X − C )

}
, S(X ) = argmin

C

{
C + V(X − C )

}
Then • R is an averse risk measure (coherent for V coherent)

• S(X ) is a nonempty closed interval (singleton?)

CVaR example: V(X ) = E [ 1
1−αX+]

R(X ) = min
C

{
C + 1

1−αE [X − C ]+
}

= CVaRα(X )

−→ the key minimization rule with argmin = VaRα(X ) = qα(X )



Completing the Fundamental Quadrangle of Risk

Error versus regret

The simple relations
E(X ) = V(X )− EX , V(X ) = EX + E(X ),

provide a one-to-one correspondence between error measures E
and averse regret measures V (with V (C ) <∞?), where

V is coherent ⇐⇒ E(−X ) ≤ EX when X ≥ 0

Moreover, the R from V is paired with the D from E , and in the
minimization formulas giving statistics S,

the S(X ) from V → R = the S(X ) from E → D

Expectation version:
V(X ) = E [v(X )] ←→ E(X ) = E [ε(X )]
ε(x) = v(x)− x , v(x) = x + ε(x)



Further Development From an Engineering Perspective

Uncertain “cost”: X = c(x1, . . . , xn;Y1, · · · ,Yr )
x1, . . . , xn =design variables, Y1, . . . ,Yr =stochastic parameters

Probability of failure: pf = prob
{
X > 0

}
• How to compute or at least estimate?
• How to cope with dependence on x1, . . . , xn in optimization?

Both pf and the threshold shift with changes in x1, . . . , xn



Buffered Failure — Enhanced Safety

Uncertain “cost”: X = c(x1, . . . , xn;Y1, · · · ,Yr )

Buffered probability of failure: Pf = prob
{
X > q

}
q determined so as to make E [X |X > q ] = 0

Suggestion: adjust failure modeling to Pf in place of pf
safer by integrating tail information, and
easier also to work with in optimization!



Quantiles and “Superquantiles”

quantile: qp(X ) = F−1X (p) = VaRp(X )
superquantile: Qp(X ) = E [X |X > qp(X ) ] = CVaRp(X )
terms in finance: value-at-risk and conditional value-at-risk



Diagram of Relationships

qp(X ) = F−1X (p), Qp(X ) = 1
1−p

∫ 1
p qs(X ) ds

qp(X ) can depend poorly on p, but Qp(X ) depends smoothly on p

failure modeling: pf determined by qp(X ) = 0, p = 1− pf
Pf determined by Qp(X ) = 0, p = 1− Pf



Comparison of Roles in Optimization

Key fact: R(X ) = Qp(X ) is coherent but R(X ) = qp(X ) is not!

Constraint pf ( c(x1, . . . , xn,Y1, . . . ,Ym) ) ≤ 1− p corresponds to
qp( c(x1, . . . , xn,Y1, . . . ,Ym) ) ≤ 0

Constraint Pf ( c(x1, . . . , xn,Y1, . . . ,Ym) ) ≤ 1− p corresponds to
Qp( c(x1, . . . , xn,Y1, . . . ,Ym) ) ≤ 0

Minimizing qp( c(x1, . . . , xn,Y1, . . . ,Ym) ) corresponds to
finding x1, . . . , xn with lowest C such that
c(x1, . . . , xn,Y1, . . . ,Ym) ≤ C with probability < 1− p

Minimizing Qp( c(x1, . . . , xn,Y1, . . . ,Ym) ) corresponds to
finding x1, . . . , xn with lowest C such that, even in the 1− p

worst fraction of cases, c(x1, . . . , xn,Y1, . . . ,Ym) ≤ C on average
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