
This lecture series is intended for graduate students in mathematics and economics with an interest 
in optimization and finance. It is given by a pioneer in optimization and convex analysis and takes 
place:

January 8th; 11:oo - 13:oo and 15:00 - 17:oo;
 Erwin Schrödinger Zentrum; Room 0.307.

 
January 9th, 11:00 - 13:oo and 15:00 - 17:oo;

 Johann v. Neumann Haus; Room 1.013.

The lectures cover an array of topics from convex analysis, optimization and risk theory:

• Optimization Modeling with Convexity and Duality
• Risk Measures and Safeguarding in Optimization
• Deviation Measures and Generalized Linear Regression
• Utility, Generalized Entropy and Measures of Liability

There is no registration. For further information and course material, please visit 

www.math.hu-berlin.de/~horst/

Humboldt Distinguished Lecture Series in Applied Mathematics

Risk and Uncertainty in Optimization

R. Tyrrell Rockafellar 

Organizer: 

Ulrich Horst
Deutsche Bank Professor of Applied Financial Mathematics  

Humboldt-Universität zu Berlin
Institut für Mathematik
Unter den Linden 6
D-10099 Berlin

In collaboration with the Berlin Mathematical School and the 
Quantitative Products Laboratory, a joint venture of Deutsche 
Bank AG, Technische Universität Berlin and Humboldt 
Universität zu Berlin.

email: horst@math.hu-berlin.de

R. Tyrrell  Rockafellar is Professor 
Emeritus at the University of 
Washington where he pioneered in 
the mathematics of optimization and 
its many applications. He is 
currently also associated with the 
University of Florida for 
collaborations in the theory of risk. 
His awards include the Dantzig 
Prize (1982), The Lanchester Prize 
(1998), the von Neumann Theory 
Prize (1999), and  honorary doctorates from several 
universities. Among more than 200 publications are his books 
"Convex Analysis" (1970) and "Variational Analysis" (1998) 
which have long become standard references.  

Institut für Mathematik



OPTIMIZATION MODELING
WITH CONVEXITY AND DUALITY

Terry Rockafellar
University of Washington, Seattle
University of Florida, Gainesville

Humboldt University, Berlin —— January, 2009

LECTURE 1



Basic Framework of Optimization

problems of “continuous” rather than “discrete” type

X some linear space, e.g.,IRn or Lp(probability space)
f : X → ĪR = [−∞,∞] some function

dom f =
{
x ∈ X

∣∣ f (x) <∞
}

effective domain
epi f =

{
(x , α) ∈ X × IR

∣∣ f (x) ≤ α
}

epigraph

Abstract model in optimization

(P) minimize f (x) over all x ∈ X
feasible solutions: x ∈ dom f
optimal solutions: x ∈ argmin f argmin(P)
optimal value: inf f inf(P)

convex case: f convex, meaning that epi f is a convex set

f ((1− τ)x ′ + τx”) ≤ (1− τ)f (x ′) + τ f (x”) for τ ∈ (0, 1)



Parametric Embedding and Sensitivity

U = some linear space of perturbations u
F : X × U → ĪR some function with F (x , 0) = f (x)

Parameterized model in optimization

(P(u)) minimize F (x , u) over all x ∈ X
(P(0)) = (P)

convex parameterization: F (x , u) convex in u
full convexity: F (x , u) convex jointly in x and u

Optimal value function

p(u) = inf(P(u)) = infx F (x , u), with p(0) = inf(P)
full convexity =⇒ p is convex

sensitivity to perturbations: generalized derivatives of p at 0



Example of Nonlinear Programming

problem model:
minimize c0(x) over x ∈ S having ci (x) ≤ 0 for i = 1, . . . ,m

S ⊂ X , ci : S → IR for i = 0, 1, . . . ,m

corresponding objective in abstract format:
f (x) = c0(x) if x ∈ S and ci (x) ≤ 0 for i = 1, . . . ,m

but otherwise f (x) = ∞
canonical parameterization: u = (u1, . . . , um)

F (x , u) = c0(x) if x ∈ S and ci (x) + ui ≤ 0 for i = 1, . . . ,m
but otherwise F (x , u) = ∞

Observations:
• f is convex if S = convex set and each ci = convex function
• F (x , u) is always convex in u
• F (x , u) is jointly convex in x and u when f is convex.



Example of Composite Objectives

problem model: minimize θ(g1(x), . . . , gd(x)) over all x ∈ S

S ⊂ X , ci : X → IR, θ : IRd → (−∞,∞] convex nondecreasing

corresponding objective function in abstract format:
f (x) = θ(g1(x), . . . , gd(x)) if x ∈ S

but otherwise f (x) = ∞
canonical parameterization: u = (u1, . . . , ud)

F (x , u) = θ(g1(x) + u1, . . . , gd(x) + ud) if x ∈ SX
but otherwise F (x , u) = ∞

Observations:
• f is convex when S = convex set, each gi = convex function
• F (x , u) is always convex in u
• F (x , u) is jointly convex in x and u when f is convex.



Example of Stochastic Programming

(Ω,F ,P) = probability space of future states ω

One-stage model

minimize Φ(x0) = Eω

{
f (x0, ω)

}
over all x0 ∈ X0

f : X0 × Ω → ĪR incorporates constraints!
Φ(x0) <∞ will require f (x0, ω) <∞ a.s. in ω

(various technicalities involving measurability need attention)

Two-stage model

minimize Φ(x0, x1(·)) = Eω

{
f (x0, x1(ω), ω)

}
over all

x0 ∈ X0 and [measurable] mappings x1(·) : Ω → X1

x1(ω) = recourse decision

The expectation functionals Φ are special integral functionals
Φ inherits convexity from the integrand f



Lagrangians and Dual Problems

primal problem (P): minimize f (x) over x ∈ X

Lagrangian for (P) and a multiplier space Y
any function L on X × Y having

f (x) = supy∈Y L(x , y) for all x ∈ X

let g(y) = infx∈X L(x , y) for all y ∈ Y
dual problem (D): maximize g(y) over all y ∈ Y,

Basic primal-dual relationships

(a) inf(P) ≥ sup(D) always

(b)
[

inf(P) = sup(D), x̄ ∈ argmin(P), ȳ ∈ argmax(D)
]

⇐⇒
[

infx L(x , ȳ) = L(x̄ , ȳ) = supy L(x̄ , y)
]

saddle point

saddle point existence: unlikely unless L(x , y) is convex-concave



Paired Spaces for Developing Duality

linear spaces U and Y, with bilinear form 〈u, y〉 on U × Y

Compatible topologies

the continuous linear functionals on U are u → 〈u, y〉 for y ∈ Y
the continuous linear functionals on Y are y → 〈u, y〉 for u ∈ U

Examples:
• U = IRm, Y = IRm, 〈u, y〉 = u·y =

∑m
i=1 uiyi usual topology

• U = Lp
m(Ω,F ,P), Y = Lq

m(Ω,F ,P), usual pairing,
with 〈u, y〉 = E

{
u·y

}
=

∫
Ω

∑m
i=1 ui (ω)yi (ω)dP(ω)

the norm topologies, except for L∞ the weak∗ topology

• the weak topologies σ(U ,Y) on U and σ(Y,U) on Y
Note: the closed convex sets and lsc convex functions (lower

semicontinuous) are the same in all compatible topologies



Conjugate Convex Functions

U and Y: paired linear spaces with compatible topologies

Legendre-Fenchel transform

ϕ : U → ĪR any function
ϕ∗ : Y → ĪR its conjugate, ϕ∗(y) = supu

{
〈u, y〉 − ϕ(u)

}
ϕ∗∗ : U → ĪR its biconjugate, ϕ∗∗(u) = supy

{
〈u, y〉 − ϕ∗(y)

}
Closed∗ convex functions (lsc and > −∞, unless ≡ −∞)

• ϕ∗ is a closed∗ convex function
• ϕ∗∗ is the largest closed∗ convex function ≤ ϕ

Conjugacy correspondence

The closed∗ convex functions ϕ on U and ψ on Y correspond
one-to-one to each other under: ψ = ϕ∗, ϕ = ψ∗

The constant functions ∞ and −∞ are conjugate to each other



Conjugate Duality Scheme in Optimization

U and Y: paired linear spaces with compatible topologies

For the problem (P) of minimizing f (x) over x ∈ X , consider

• parameterizations F : X × U → ĪR with F (x , ·) closed∗ convex
• Lagrangians L : X × Y → ĪR with −L(x , ·) closed∗ convex

Parameterizations versus Lagrangians

Such F and L correspond to each other one-to-one under
L(x , y) = infu

{
F (x , u)−〈u, y〉

}
, F (x , u) = supu

{
L(x , y)+ 〈u, y〉

}
F (x , u) convex in (x , u) ⇐⇒ L(x , y) concave in y

Nonlinear programming example: u ∈ IRm, y ∈ IRm

F (x , u) = c0(x) if x ∈ S and ci (x) + ui ≤ 0 for i = 1, . . . ,m
but otherwise F (x , u) = ∞

L(x , y) = c0(x) + y1c1(x) + · · ·+ ymcm(x) if x ∈ S , y ≥ 0
and = ∞ if x 6∈ S , y ≥ 0, but = −∞ if y 6≥ 0



Main Results for the Conjugate Duality Scheme

U and Y: paired linear spaces with compatible topologies

Lagrangian L(x , y) ↔ parameterization F (x , u)

(P) minimize f (x) over x ∈ X where f (x) = supy L(x , y)
(D) maximize g(y) over y ∈ Y where g(y) = infx L(x , y)

Optimal value function:
p(u) = infx F (x , u) = inf(P(u)) where F (x , 0) = f (x)

Characterization of primal-dual optimal values and solutions

(a) inf(P) = p(0), sup(D) = p∗∗(0)

(b) (x̄ , ȳ) is a saddle point of L(x , y) if and only if
x̄ ∈ argmin(P) and p(u) ≥ p(0) + 〈u, ȳ〉 for all u ∈ U

Key question: when does there exist ȳ with this relation to p at 0?



Subgradients and Directional Derivatives

Subgradients of convex analysis

For ϕ : U → ĪR, ϕ 6≡ ∞, u ∈ U , y ∈ Y:
y ∈ ∂ϕ(u) means ϕ(u + w) ≥ ϕ(u) + 〈w , y〉 for all w ∈ U

Directional derivatives of convex functions

For ϕ convex on U , finite at ū, bounded above around ū:

(a) ϕ′(ū;w) = lim
τ→0+

ϕ(ū + τw)− ϕ(ū)

τ
is finite, convex in w

(b) ϕ′(ū;w) = max
{
〈w , y〉

∣∣ y ∈ ∂ϕ(ū)
}

(c) for IRn: ∂ϕ(ū) = {ȳ} ⇐⇒ ϕ diff. at ū with ȳ = ∇ϕ(ū)

Relation to conjugacy

For conjugate functions ϕ on U and ψ on V, not ≡ ∞ or ≡ −∞:
(a) ϕ(u) + ϕ(y) ≥ 〈u, y〉 for all u ∈ U and y ∈ Y
(b) equality holds for u, y ⇐⇒ y ∈ ∂ϕ(u) ⇐⇒ u ∈ ∂ψ(y)



Fenchel-Type Duality Schemes

U ↔ Y, X ↔ V: paired linear spaces with compatible topologies
proper lsc convex h on X , k on U , conjugates h∗ on V, k∗ on Y
c ∈ V, b ∈ U , continuous linear A : X → U , adjoint A∗ : Y → V

primal (P) min f (x) = 〈c , x〉+ h(x) + k(b − Ax) over x ∈ X
dual (D) max g(y) = 〈b, y〉 − k∗(y)− h∗(A∗y − c) over y ∈ Y
Lagrangian: L(x , y) = 〈c , x〉+ h(x) + 〈b, y〉 − k∗(y)− 〈Ax , y〉

feasibility in (P) ⇐⇒ b ∈ [Adom h + dom k]
feasibllity in (D) ⇐⇒ c ∈ [A∗ dom k∗ − dom h∗]

Duality Theorem

Suppose U and V are Banach (in the compatible topologies!)
(a) inf(P) = max(D) <∞ if b ∈ int[Adom h + dom k]
(b) min(P) = sup(D) > −∞ if c ∈ int[A∗ dom k∗ − dom h∗]
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DOWNLOADS

website: www.math.washington.edu/∼rtr/mypage.html

Available besides [4] and some other relatively recent papers:

• Course lecture notes on Fundamentals of Optimization
Very introductory material in finite dimensions, which

nonetheless covers geometric nonsmooth analysis and optimality
conditions in terms of normal cones, as well as properties of
polyhedrality

• Course lecture notes on Optimization Under Uncertainty,
The basics of traditional stochastic programming, without use

of “risk measures,” but with duality and a build-up to multistage
models in a framework of scenarious and decomposition
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Uncertainty in Optimization

Decisions (optimal?) must be taken before the facts are all in

A bridge must be built to withstand floods, wind storms or
earthquakes

A portfolio must be purchased with incomplete knowledge of
how it will perform

A product’s design constraints must be viewed in terms of
“safety margins”

What are the consequences for optimization?
How may this affect the way problems are formulated and solved?

How can “risk” properly be taken into account, with attention paid
to the attitudes of the optimizer?

How should the future, where the essential uncertainty resides, be
modeled with respect to decisions and information?



The Fundamental Difficulty Caused by Uncertainty

with simple modeling of the future

A standard form of optimization problem without uncertainty:

minimize c0(x) over all x ∈ S satisfying ci (x) ≤ 0, i = 1, . . . ,m
for a set S ⊂ IRn and functions ci : S 7→ IR

Incorporation of future states ω ∈ Ω in the model:
the decision x must be taken before ω is known

Choosing x ∈ S no longer fixes numerical values ci (x), but only
fixes functions on Ω: c i (x) : ω 7→ ci (x , ω), i = 0, 1, . . . ,m

Optimization objectives and constraints must be reconstrued in
terms of such function, but how? There is no universal answer. . .

Various approaches: old/new? good/bad? yet to be discovered?
Adaptations to attitudes about “risk”?



Example: Linear Programming Context

Problem without uncertainty: ci (x) = ai1x1 + · · · ainxn − bi

minimize a01x1 + · · · a0nxn − b0 over x = (x1, . . . , xn) ∈ S
subject to ai1x1 + · · · ainxn − bi ≤ 0 for i = 1, . . . ,m,
where S =

{
x

∣∣ x1 ≥ 0, . . . , xn ≥ 0 & other conditions?
}

Effect of uncertainty: ci (x , ω) = ai1(ω)x1 + · · · ain(ω)xn − bi (ω)

Portfolio illustration with financial instruments j = 1, . . . , n

rj(ω) = rate of return, xj = weight in the portfolio
portfolio rate of return = x1r1(ω) + · · ·+ xnrn(ω)

Constraints: x ∈ S =
{
(x1, . . . , xn)

∣∣ xj ≥ 0, x1 + · · ·+ xn = 1
}

Uncertain ingredients to incorporate in optimization model:
c0(x , ω) = −[x1r1(ω) + · · ·+ xnrn(ω)]

(conversion to “cost” orientation for minimization)
c1(x , ω) = q(ω)− [x1r1(ω) + · · ·+ xnrn(ω)], q = benchmark

(shortfall below benchmark, desired outcome ≤ 0)



Probabilistic Framework — Random Variables

Future state space Ω modeled with a probability structure:
(Ω,F ,P), P =probability measure

“true”? “subjective”? or merely for reference?

Functions X : Ω→ IR interpreted then as random variables:
cumulative distribution function FX : (−∞,∞)→ [0, 1]

FX (z) = P
{
ω

∣∣ X (ω) ≤ z
}

expected value EX = mean value =µ(X )
variance σ2(X ) = E [ (X − µ(X ))2], standard deviation σ(X )

Technical restriction imposed here: X ∈ L2, meaning E [X 2] <∞
Corresponding convergence criterion as k = 1, 2, . . .∞:

Xk → X ⇐⇒ µ(Xk − X )→ 0 and σ(Xk − X )→ 0

The functions c i (x) : ω → ci (x , ω) are placed now in this picture:
choosing x ∈ S yields random variables c 0(x), c 1(x), . . . , c m(x)



No-Distinction Principle for Objectives and Constraints

Is there an intrinsic reason why uncertainty/risk in an objective
should be treated differently than uncertainty/risk in a constraint?

NO, because of well known, elementary reformulations
Given an optimization problem in standard format:

minimize c0(x) over x ∈ S with ci (x) ≤ 0, i = 1, . . . ,m

augment x = (x1, . . . , xn) by another variable xn+1, and in terms of
x̃ = (x , xn+1) ∈ S̃ = S × IR,
c̃i (x̃) = ci (x) for i = 1, . . . ,m,
c̃0(x̃) = xn+1, c̃m+1(x̃) = c0(x)− xn+1

pass equivalently to the reformulated problem:

minimize c̃0(x̃) over x̃ ∈ S̃ with c̃i (x̃) ≤ 0, i = 1, . . . ,m,m + 1

Uncertainty in c0, c1, . . . , cm will not affect the objective with c̃0.
It will only affect the constraints with c̃1, . . . , c̃m, c̃m+1.



Some Traditional Approaches

Aim: recapturing optimization in the face of c i (x) : ω → ci (x , ω)
each approach followed uniformly, for emphasis in illustration

Approach 1: guessing the future

• identify ω̄ ∈ Ω as the “best estimate” of the future
• minimize over x ∈ S :

c0(x , ω̄) subject to ci (x , ω̄) ≤ 0, i = 1, . . . ,m
• pro/con: simple and attractive, but dangerous—no hedging

Approach 2: worst-case analysis, “robust” optimization

• focus on the worst that might come out of each c i (x):
• minimize over x ∈ S :

sup
ω∈Ω

c0(x , ω) subject to sup
ω∈Ω

ci (x , ω) ≤ 0, i = 1, . . . ,m

• pro/con: avoids probabilities, but expensive—maybe infeasible



Approach 3: relying on means/expected values

• focus on average behavior of the random variables c i (x)
• minimize over x ∈ S :

µ(c 0(x)) = Eωc0(x , ω) subject to
µ(c i (x)) = Eωci (x , ω) ≤ 0, i = 1, . . . ,m

• pro/con: common for objective, but foolish for constraints?

Approach 4: safety margins in units of standard deviation

• improve on expectations by bringing standard deviations into
consideration
• minimize over x ∈ S : for some choice of coefficients λi > 0

µ(c 0(x)) + λ0 σ(c 0(x)) subject to
µ(c i (x)) + λi σ(c i (x)) ≤ 0, i = 1, . . . ,m

• pro/con: looks attractive, but a serious flaw will emerge

The idea here: find the lowest z such that, for some x ∈ S ,
c 0(x)− z , c 1(x), . . . , c m(x) will be ≤ 0 except in λi -upper tails



Approach 5: specifying probabilities of compliance

• choose probability levels αi ∈ (0, 1) for i = 0, 1, . . . ,m
• find lowest z such that, for some x ∈ S , one has

P
{
c 0(x) ≤ z

}
≥ α0, P

{
c i (x) ≤ 0

}
≥ αi for i = 1, . . . ,m

• pro/con: popular and appealing, but flawed and controversial
• no account is taken of the seriousness of violations
• technical issues about the behavior of these expressions

Example: with α0 = 0.5, the median of c 0(x) would be minimized

Additional modeling ideas:
• Staircased variables: c i (x) propagated to c k

i (x) = c i (x)− dk
i

for a series of thresholds dk
i , k = 1, . . . , r with different compliance

conditions placed on having these “subvariables” c k
i (x) be ≤ 0

• Expected penalty expressions like E [ψ(c 0(x)) ]
• Stochastic programming, dynamic programming



Quantification of Risk

How can the “risk” be measured in a random variable X?
orientation: X (ω) stands for a “cost” or loss
negative costs correspond to gains/rewards

• Idea 1: assess the “risk” in X in terms of how uncertain X is:
−→ measures D of deviation from constancy

• Idea 2: capture the “risk” in X by a numerical surrogate for
overall cost/loss: −→ measures R of potential loss

−→ our concentration, for now, will be on Idea 2

A General Approach to Uncertainty in Optimization

In the context of the numerical values ci (x) ∈ IR being replaced by
random variables c i (x) ∈ L2 for i = 0, 1, . . . ,m:
• choose risk measures Ri of potential loss,
• define the functions c̄i on IRn by c̄i (x) = Ri (c i (x)), and then
• minimize c̄0(x) over x ∈ S subject to c̄i (x) ≤ 0, i = 1, . . . ,m.



Basic Guidelines

For a functional R that assigns to each random “cost” X ∈ L2

a numerical surrogate R(X ) ∈ (−∞,∞], what axioms?

Definition of coherency

R is a coherent measure of risk in the basic sense if
(R1) R(C ) = C for all constants C
(R2) R((1− λ)X + λX ′) ≤ (1− λ)R(X ) + λR(X ′)

for λ ∈ (0, 1) (convexity)
(R3) R(X ) ≤ R(X ′) when X ≤ X ′ (monotonicity)
(R4) R(X ) ≤ c when Xk → X with R(Xk) ≤ c (closedness)
(R5) R(λX ) = λR(X ) for λ > 0 (positive homogeneity)

R is a coherent measure of risk in the extended sense when
it satisfies (R1)–(R4), but not necessarily (R5)

(from ideas of Artzner, Delbaen, Eber, Heath 1997/1999)

(R1)+(R2)⇒ R(X +C ) = R(X )+C for all X and constants C
(R2)+(R5) ⇒ R(X + X ′) ≤ R(X ) +R(X ′) (subadditivity)



Associated Criteria for Risk Acceptability

For a “cost” random variable X , to what extent should outcomes
X (ω) > 0, in constrast to outcomes X (ω) ≤ 0, be tolerated?

There is no single answer—this has to depend on preferences!

Preference-based definition of acceptance

Given a choice of a risk measure R:
the risk in X is deemed acceptable when R(X ) ≤ 0

(examples to come will illuminate this concept of Artzner et al.)

Notes:
from (R1): R(X ) ≤ c ⇐⇒ R(X − c) ≤ 0
from (R3): R(X ) ≤ supX for all X ,

so X is always acceptable when sup X ≤ 0
(i.e., when there is no chance of an outcome X (ω) > 0)



Consequences of Coherency for Optimization

For i = 0, 1, . . . ,m let Ri be a coherent measure of risk in the
basic sense, and consider the reconstituted problem:

minimize c̄0(x) over x ∈ S with c̄i (x) ≤ 0 for i = 1, . . . ,m
where c̄i (x) = Ri (c i (x)) for c i (x) : ω → ci (x , ω)

Key properties

(a) (preservation of convexity) If ci (x , ω) is convex with
respect to x , then the same is true for c̄i (x)

(so convex programming models persist)
(b) (preservation of certainty) If ci (x , ω) is a value ci (x)

independent of ω, then c̄i (x) is that same value
(so features not subject to uncertainty are left undistorted)

(c) (insensitivity to scaling) The optimization problem is
unaffected by rescaling of the units of the ci ’s.

(a) and (b) still hold for coherent measures in the extended sense



Coherency or Its Lack in Traditional Approaches

Assessing the risk in each c i (x) as Ri (c i (x)) for a choice of Ri

The case of Approach 1: guessing the future

Ri (X ) = X (ω̄) for a choice of ω̄ ∈ Ω with prob > 0
Ri is coherent—but open to criticism

c i (x) is deemed to be risk-acceptable if merely ci (x , ω̄) ≤ 0

The case of Approach 2: worst case analysis

Ri (X ) = sup X
Ri is coherent—but very conservative

c i (x) is risk-acceptable only if ci (x , ω) ≤ 0 with prob = 1

The case of Approach 3: relying on expectations

Ri (X ) = µ(X ) = EX
Ri is coherent—but perhaps too “feeble”

c i (x) is risk-acceptable as long as ci (x , ω) ≤ 0 on average



The case of Approach 4: standard deviation units as safety margins

Ri (X ) = µ(X ) + λiσ(X ) for some λi > 0
Ri is not coherent: the monotonicity axiom (R3) fails!

=⇒ c i (x) could be deemed more costly than c i (x
′)

even though ci (x , ω) < ci (x
′, ω) with probability 1

c i (x) is risk-acceptable as long as the mean µ(c i (x)) lies
below 0 by at least λi times the amount σ(c i (x))

The case of Approach 5: specifying probabilities of compliance

Ri (X ) = qαi
(X ) for some αi ∈ (0, 1), where

qαi
(X ) = αi -quantile in the distribution of X

(to be explained)
Ri is not coherent: the convexity axiom (R2) fails!

=⇒ for portfolios, this could run counter to “diversification”
c i (x) is risk-acceptable as long as ci (x , ω) ≤ 0 with prob ≥ αi

What further alternatives, remedies?



Quantiles and Conditional Value-at-Risk

α-quantile for X : qα(X ) = min
{
z

∣∣ FX (z) ≥ α
}

value-at-risk: VaRα(X ) same as qα(X )
conditional value-at-risk: CVaRα(X ) = α-tail expectation of X

= 1
1−α

∫ 1
α VaRβ(X )dβ ≥ VaRα(X )

THEOREM R(X ) = CVaRα(X ) is a coherent measure of risk!

CVaRα(X )↗ supX as α↗ 1, CVaRα(X )↘ EX as α↘ 0



CVaR Versus VaR in Modeling

P
{
X ≤ 0

}
≤ α ⇐⇒ qα(X ) ≤ 0 ⇐⇒ VaRα(X ) ≤ 0

Approach 5 recast: specifying probabilities of compliance

• focus on value-at-risk for the random variables c i (x)
• minimize VaRα0(c 0(x)) over x ∈ S subject to

VaRαi (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: seemingly natural, but “incoherent” in general

Approach 6: safeguarding with conditional value-at-risk

• conditional value-at-risk instead of value-at-risk for each c i (x)
• minimize CVaRα0(c 0(x)) over x ∈ S subject to

CVaRαi (c i (x)) ≤ 0, i = 1, . . . ,m
• pro/con: coherent! also more cautious than value-at-risk

extreme cases: “αi = 0” ∼ expectation, “αi = 1” ∼ supremum



Some Elementary Portfolio Examples

securities j = 1, . . . , n with rates of return r j and weights xj

S =
{
x = (x1, . . . , xn)

∣∣ xj ≥ 0, x1 + · · ·+ xn = 1
}

rate of return of x-portfolio: r (x) = −[x1r 1 + · · ·+ xnr n]
c 0(x) = −r (x), c 1(x) = q − r (x) with q ≡ −0.04 here

Problems 1(a)(b)(c): expectation objective, CVaR constraints

(a) minimize E [c 0(x)] over x ∈ S
(b) minimize E [c 0(x)] over x ∈ S subject to CVaR0.8(c 1(x)) ≤ 0
(c) minimize E [c 0(x)] over x ∈ S subject to CVaR0.9(c 1(x)) ≤ 0

Problems 2(a)(b)(c): CVaR objectives, no benchmark constraints

(a) minimize E [c 0(x)] over x ∈ S E [c 0(x)] = CVaR0.0(c 0(x))
(b) minimize CVaR0.8(c 0(x)) over x ∈ S
(c) minimize CVaR0.9(c 0(x)) over x ∈ S



Portfolio Rate-of-Loss Contours, Problems 1(a)(b)(c)

Solutions computed with Portfolio Safeguard software, available
for evaluation from American Optimal Decisions www.AOrDa.com

Results for Problem 1(a)

Solution vector: the portfolio weights for four different stocks
Note that in this case all the weight goes to the risky fourth stock



Results for Problems 1(b) and 1(c)



Portfolio Rate-of-Loss Contours, Problems 2(a)(b)(c)

Solutions computed with Portfolio Safeguard software, available
for evaluation from American Optimal Decisions www.AOrDa.com

Results for Problem 2(a), same as Problem 1(a)

Solution vector: the portfolio weights for four different stocks
Again, in this case all the weight goes to the risky fourth stock



Results for Problems 2(b) and 2(c)



Minimization Formula for VaR and CVaR

CVaRα(X ) = min
C∈IR

{
C + 1

1−αE
[
max{0,X − C}

]}
VaRα(X ) = lowest C in the interval giving the min

min values behave better parametrically than minimizing points!

Application to CVaR optimization: convert a problem like
minimize CVaRα0(c 0(x)) over x ∈ S subject to

CVaRαi (c i (x)) ≤ 0, i = 1, . . . ,m

into a problem for x ∈ S and auxiliary variables C0,C1, . . . ,Cm:

minimize C0 + 1
1−α0

E
[
max{0, c 0(x)− C0}

]
while requiring

Ci + 1
1−αi

E
[
max{0, c i (x)− Ci}

]
≤ 0, i = 1, . . . ,m

Important case: this converts to linear programming when
(1) each ci (x , ω) depends linearly on x ,
(2) the future state space Ω is finite

(as is common in financial modeling, for instance)



Further Modeling Possibilities

additional sources of coherent measures of risk

Coherency-preserving combinations of risk measures

(a) If R1, . . . ,Rr are coherent and λ1 > 0, . . . , λr > 0 with
λ1 + · · ·+ λr = 1, then
R(X ) = λ1R1(X ) + · · ·+ λrRr (X ) is coherent

(b) If R1, . . . ,Rr are coherent, then

R(X ) = max
{
R1(X ), . . . ,Rr (X )

}
is coherent

Example: R(X ) = λ1CVaRα1(X ) + · · ·+ λrCVaRαr (X )

Approach 7: safeguarding with CVaR mixtures

The CVaR approach already considered can be extended by
replacing single CVaR expressions with weighted combinations



Continuous CVaR Mixtures and Risk Profiles

For any nonnegative weighting measure λ on (0, 1), a coherent
measure of risk (in the basic sense) is given by

R(X ) =
∫ 1
0 CVaRα(X ) dλ(α)

Spectral representation

Associate with λ the profile function. ϕ(α) =
∫ α
0 [1− β]−1 dλ(β)

Then, as long as ϕ(1) <∞, the above R has the expression

R(X ) =
∫ 1
0 VaRβ(X )ϕ(β) dβ

The functions ϕ arising this way as profiles are the nondecreasing,
right-continuous functions ϕ : [0, 1]→ IR with ϕ(0) = 0

finite discrete mixtures correspond to step functions ϕ



Risk Measures From Subdividing the Future

“robust” optimization modeling revisited with Ω subdivided

λk > 0 for k = 1, . . . , r , λ1 + · · ·+ λr = 1

R(X ) = λ1 sup
ω∈Ω1

X (ω) · · ·+ λr sup
ω∈Ωr

X (ω) is coherent

Approach 8: distributed worst-case analysis

Extend the ordinary worst-case model
minimize sup

ω∈Ω
c0(x , ω) subject to sup

ω∈Ω
ci (x , ω) ≤ 0 , i = 1, . . . ,m

by distributing each supremum over subregions of Ω, as above



Risk Envelope Characterization of Coherency

for coherent risk measures in the basic sense

A subset Q of L2 is a coherent risk envelope if it is nonempty,
closed and convex, and Q ∈ Q =⇒ Q ≥ 0, EQ = 1

Interpretation: Any such Q is the “density” relative to the
probability measure P on Ω of an alternative probability
measure P ′ on Ω : EP′ [X ] = E [XQ], Q = dP ′/dP

[specifying Q] ←→ [specifying a comparison set of measures P ′]

THEOREM: There is a one-to-one correspondence R↔ Q
between coherent measures of risk R (in the basic sense) and
coherent risk envelopes Q, which is furnished by the relations
R(X ) = sup

Q∈Q
E [XQ], Q =

{
Q

∣∣ E [XQ] ≤ R(X ) for all X
}



Examples and Extensions

R(X ) = EX ↔ Q = {1}

R(X ) = sup X ↔ Q =
{

all Q ≥ 0, EQ = 1
}

R(X ) = CVaRα(X ) ↔ Q =
{
Q ≥ 0, EQ = 1, Q ≤ (1− α)−1

}
For coherent risk measures in the extended sense (not positively
homogeneous) the corresponding representation is

R(X ) = supQ

{
E [XQ]− I(Q)

}
, I = R∗

where I is an lsc convex functional such that

cl(dom I) is a risk envelope Q and min I = 0 = I(1)

Example: R(X ) = log E
{
eX

}
↔ I(Q) = E

{
Q log Q

}
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Quantification of Uncertainty

Framework for random variables X as before: X ∈ L2(Ω,F ,P)
orientation: X (ω) stands for a “cost” or loss

Axioms for deviation from constancy

D is a measure of deviation in the basic sense if
(D1) D(X ) = 0 for X ≡ C constant, D(X ) > 0 otherwise
(D2) D((1− λ)X + λX ′) ≤ (1− λ)D(X ) + λD(X ′)

for λ ∈ (0, 1) (convexity)
(D3) D(X ) ≤ c when Xk → X with D(Xk) ≤ c (closedness)
(D4) D(λX ) = λD(X ) for λ > 0 (positive homogeneity)

It is a coherent measure of deviation if it also satisfies
(D5) D(X ) ≤ supX − EX for all X

Deviation measures in the extended sense: (D4) dropped

=⇒ D actually has D(X + C ) = D(X ) for all constants C



Initial Examples of Deviation Measures

notation: X = X+ − X− for X+ = max{X , 0}, X− = max{−X , 0}

Standard deviation and semideviations

• σ(X ) = ||X − EX ||2
• σ+(X ) = ||[X − EX ]+||2 and σ−(X ) = ||[X − EX ]−||2

Range-based deviation measures

• D(X ) = sup X − inf X
• D(X ) = sup X − EX and D(X ) = EX − inf X

Recall that the Lp norms on L2(Ω,F ,P) are well defined

Lp deviations and semideviations

• D(X ) = ||X − EX ||p
• D(X ) = ||[X − EX ]+||p and D(X ) = ||[X − EX ]−||p



Risk Measures Paired With Deviation Measures

R is an averse measure of risk if it satisfies (R1), (R2), (R4) and

(R6) R(X ) > EX for all nonconstant X (aversity)

basic sense: homogeneity (R5) yes, extended sense: (R5) no

Note: monotonicity axiom (R3) relinquished for this purpose

deviation measures versus risk measures

A one-to-one correspondence D ↔ R between deviation measures
D and averse measures R is furnished by

R(X ) = EX +D(X ), D(X ) = R(X − EX )
and moreover R is coherent ⇐⇒ D is coherent

Example of CVaR deviation measures

• D(X ) = CVaRα(X − EX ) is coherent

• D(X ) =
∫ 1
0 CVaRα(X − EX )dλ(α) is coherent

for any weighting measure λ on (0, 1)



Safety Margins Revisited

Recall the traditional approach to EX being “safely” below 0:
EX + λσ(X ) ≤ 0 for some λ > 0 scaling the “safety”

but R(X ) = EX + λσ(X ) is not coherent
Can the coherency be restored if σ(X ) is replaced by some D(X )?

Yes! R(X ) = EX + λD(X ) is coherent when D is coherent

Safety margin modeling with coherency

In the safeguarding problem model
minimize c̄0(x) over x ∈ S with c̄i (x) ≤ 0 for i = 1, . . . ,m

where c̄i (x) = Ri (c i (x)) for c i (x) : ω → ci (x , ω)
coherency is obtained with

Ri (X ) = EX + λiDi (X ) for λi > 0 and Di coherent



Generalized Deviations in Portfolio Optimization

financial instruments i = 0, 1, . . . ,m with rates of return ri
r0 fixed, r1, . . . , rm random variables

Portfolio: given by “weights” x0, x1, . . . , xm, yielding
∑m

i=0 xi ri

Fundamental problem, generalized

minimize D(−
∑m

i=0 xi ri ) for
∑m

i=0 xi = 1, E
{ ∑m

i=0 xi ri
}

= r0 + ∆

Substituting x0 = 1− x1 − · · · − xm makes
x0r0 +

∑m
i=1 xi ri = r0 +

∑m
i=1 xi [ri − r0]

Reformulations of the problem

In terms of Y (x) = Y (x1, . . . , xm) = −
∑m

i=1 xi [ri − r0]

minimize D(Y (x)) over all x ∈ IRn with E [Y (x)] = −∆

or for the associated risk measure R(X ) = EX +D(X )

minimize R(Y (x)) over all x ∈ IRn with E [Y (x)] = −∆



Linear Regression

Approximation of a random variable Y by a linear combination of
other random variables X1, . . . ,Xn and a constant term:

Y ≈ c0 + c1X1 + c2X2 + · · ·+ cnXn

Classical regression . . .
Quantile regression . . .
Other approaches? Why?

Should “risk preferences” dictate the form of approximation?

Underestimates worse than overestimates for Y = loss/cost!



Quantification of Error in Approximation

orientation: X (ω) refers to an outcome desired to be 0

Error measures E : L2 → [0,∞]
E(X ) quantifies the overall “nonzero-ness” in X

Error axioms

E is a measure of error in the basic sense if
(E1) E(0) = 0, E(X ) > 0 when X 6= 0,

E(C ) < ∞ for all constants C
(E2) E((1− λ)X + λX ′) ≤ (1− λ)E(X ) + λE(X ′)

for λ ∈ (0, 1) (convexity)
(E3) E(X ) ≤ c when Xk → X with E(Xk) ≤ c (closedness)
(E4) ∃ δ > 0 with E(X ) ≥ δ|EX | for all X (nondegeneracy)
(E5) E(λX ) = λE(X ) for λ > 0 (positive homogeneity)

Error measures in the extended sense: (E5) dropped

Note: the nondegeneracy in (E4) is automatic in finite dimensions



Some Examples of Error Measures

E : L2 → [0,∞], basic if positively homogeneous

A broad class of error messages in the basic sense

E(X ) = ||a[X ]+ + b[X ]−||p with a > 0, b > 0, p ∈ [1,∞]

Some specific instances:
E(X ) = ||X ||p for a = 1 and b = 1
E(X ) = E

{
(1− α)−1X+ − X

}
for a = (1− α)−1, b = 1

Koenker-Basset error relative to α ∈ (0, 1)



Generalized Regression

Let Y ,X1, . . . ,Xn be random variables in L2

assume no linear combination of X1, . . . ,Xn is constant

Regession problem

For a measure E of error in the basic sense, with E(Y ) < ∞,
choose c0, c1, . . . , cn to

minimize E
{
Y − [c0 + c1X1 + · · ·+ cnXn]

}
minimizing a convex function of (c0, c1, . . . , cn) ∈ IRn+1

Existence of solutions

Optimal regression coefficient vectors (c̄0, c̄1, . . . , c̄n) exist and
they form a compact convex set: C(Y ) ⊂ IRn+1

Observe through axiom E5: C(λY ) = λC(Y ) for λ > 0



Portfolio Motivation

Y1, . . . ,Ym = rates of return of various instruments
x1, . . . , xm = weights of these instruments in portfolio

Y (x1, . . . , xm) = x1Y1 + · · ·+ xmYm = portfolio rate of return

Optimization context

Minimize some R or D aspect of Y (x1, . . . , xm) under some
constraints on various other R or D aspects

Factor models

Simplication via “factors” X1, . . . ,Xn:
each Yi approximated by Ŷi = ci0 + ci1X1 + · · ·+ cinXn

Y (x1, . . . , xm) replaced in optimization by Ŷ (x1, . . . , xm)

Should the “risks” under consideration influence the approach
taken to regression? Different regression for different R or D?



Error Projection

E = any measure of error in the basic sense

Deviation measures from error measures

In terms of constants C ∈ IR, let
D(X ) = inf

C
E(X − C ), S(X ) = argmin

C
E(X − C )

• D is a deviation measure in the basic sense
• S(X ) is, for every X , a nonempty closed interval in IR

(reducing typically to a single value, but not always)

S(X ) is the associated “statistic”

Classical regression (“least squares”)

E(X ) = λ||X ||2 for some λ > 0
S(X ) = µ(X ) = EX
D(X ) = λσ(X )



Nonclassical Examples of Regression

Regression with range deviation

E(X ) = λ||X ||∞ for some λ > 0

S(X ) = 1
2 [supX + inf X ] center of range

D(X ) = λ
2 [supX − inf X ] radius of range, scaled

Regression with mean absolute deviation

E(X ) = λ||X ||1 = λE |X | for some λ > 0
S(X ) = medX median
D(X ) = λE [dist(X ,medX ) ]

Note that medX = [med− X ,med+ X ], is an interval in general!
D(X ) = λE [X −medX ] when med− X = med+ X



Quantiles and Quantile Regression

recall: FX = c.d.f. for X , FX (x) = P(X ≤ x)

Quantile interval for α ∈ (0, 1):
qα(X ) = [q−α (X ), q+

α(X )], where

q−α (X ) = inf
{
x

∣∣ FX (x) ≥ α
}
,

q+
α(X ) = sup

{
x

∣∣ FX (x) ≤ α
}

Quantile regression

E(X ) = E
{

(1− α)−1[X ]+ − X
}

Koenker-Basset error
S(X ) = qα(X ) α-quantile
D(X ) = CVaRα(X − EX )



Regression Analysis

Approximation goal: Y ≈ c0 + c1X1 + · · ·+ cnXn

Z (c0, c1, . . . , cn) = Y − [c0 + c1X1 + · · ·+ cnXn]
Z0(c1, . . . , cn) = Y − [c1X1 + · · ·+ cnXn]

REGRESSION PROBLEM for error measure E :
minimize E( Z (c0, c1, . . . , cn) ) over c0, c1, . . . , cn

THEOREM Error-shaping decomposition
The coefficients c̄0, c̄1, . . . , c̄n are optimal if and only if

(c̄1, . . . , c̄n) ∈ argmin
c1,...,cn

D( Z0(c1, . . . , cn) )

c̄0 ∈ S( Z0(c1, . . . , cn) )

COROLLARY Equivalent interpretation of regression
Choose (c0, c1, . . . cn) to minimize D(Z (c0, c1, . . . , cn))
subject to the requirement that 0 ∈ S(Z (c0, c1, . . . , cn))



Regression Interpreted in Examples

Approximation goal: Y ≈ c0 + c1X1 + · · ·+ cnXn

Regression error being shaped:
Z = Z (c0, c1, . . . , cn) = Y − [c0 + c1X1 + · · ·+ cnXn]

1. Classical regression “least squares”
minimize σ(Z ) subject to EZ = 0

2. Range regression
minimize breadth of range of Z subject to center being 0

3. Median regression
minimize E |Z | subject to “median of Z being 0”

4. Quantile regression at quantile level α ∈ (0, 1)
minimize E [ (1− α)−1|Z |+ − Z ] subject to “qα(Z ) = 0”

5. Mixed quantile regression . . . further illustrations



Portfolio Application

Y1, . . . , Ym = rates of return, x1, . . . , xm = weights

Portfolio rate of return:
Y (x) = x1Y1 + · · ·+ xmYm for x = (x1, . . . , xn)

Risk aspects of portfolio: in objective or constraints
fD(x) = D(Y (x)) or fR(x) = R(Y (x)) for various D, R

Factor model with factors X1, . . . , Xn:
Yi ≈ Ŷi(ci) = ci0 + ci1X1 + · · ·+ cinXn for each i

Y (x) ≈ Ŷ (x , c1, . . . , cm) = x1Ŷ1(c1) + · · ·+ xmŶm(cm)

Consequence for risk expressions:
fD(x) = D(Y (x)) ≈ f̂D(x , c1, . . . , cm) = D(Ŷ (x , c1, . . . , cm))

fR(x) = R(Y (x)) ≈ f̂R(x , c1, . . . , cm) = R(Ŷ (x , c1, . . . , cm))
How will these approximation errors affect optimization?

Complication: the errors must be treated parametrically in x!



Parametric Bounds: D Type

Factor approximation errors:
Zi(ci0, ci1, . . . , cin) = Yi − [ci0 + ci1X1 + · · ·+ cinXn]

coefficient vectors ci = (ci0, ci1, . . . , cin)

Targeted inequality: with a coefficient vector a ≥ 0

fD(x) ≤ f̂D(x , c1, . . . , cm) + a · x for all x ≥ 0

What is the “best” that can be achieved through the control
of the factor approximation errors? lowest a = (a1, . . . , an)?

auxiliary notation: Zi0(ci1, . . . , cin) = Yi − [ci1X1 + · · ·+ cinXn]

THEOREM The lowest a = (a1, . . . , an) is achieved by

determining c̄i = (c̄i0, c̄i1, . . . , c̄in) through generalized
regression using an error measure E that projects onto D
taking ai = D(Zi0(c̄i1, . . . , c̄in)) note: c̄i0 has no role



Parametric Bounds: R Type

Targeted inequality: with a coefficient vector a ≥ 0

fR(x) ≤ f̂R(x , c1, . . . , cm) + a · x for all x ≥ 0

What is the “best” that can be achieved through the control
of the factor approximation errors? lowest a = (a1, . . . , an)?

THEOREM The lowest a = (a1, . . . , an) is achieved actually
with a = 0! by

determining c̄i = (c̄i0, c̄i1, . . . , c̄in) through generalized
regression using an error measure E that projects onto the
deviation measure D corresponding to the risk measure R
replacing c̄i by c̄∗i , with

c̄∗i0 = R(Zi0(c̄i1, . . . , c̄in)), but c̄∗ij = c̄ij for j = 1, . . . , n.

Acceptability consequence:
R(Ŷ (x , c̄∗1 , . . . , c̄∗m)) ≤ 0 =⇒ R(Y (x)) ≤ 0
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Integral Functionals

(Ω,F ,P) = some probability space

A closed-set-valued mapping S : Ω → IRn is measurable when{
ω

∣∣ S(ω) ∩ C
}
∈ F for all closed sets C ⊂ IRn

A function f : IRn × Ω → ĪR is a normal integrand when
f (x , ω) is lsc in x and S : ω → epi f (·, ω) is measurable

Consequence: f (x(ω), ω) is measurable when x(ω) is measurable

Conjugacy on paired spaces Lp
n(Ω,F ,P) and Lq

n(Ω,F ,P)

For a normal integrand f , the integral functional
If (x(·) = E

{
f (x(·), ·)

}
=

∫
Ω f (x(ω), ω)dP(ω)

is (with minor assumption) well-defined for x(·) ∈ Lp
n(Ω,F ,P), and

I ∗f = If ∗ on Lq
n(Ω,F ,P), I ∗∗f = If ∗∗ on Lp

n(Ω,F ,P)

Note: If is convex when f (x , ω) is convex in x , and then
v(·) ∈ ∂If (x(·)) ⇐⇒ v(ω) ∈ ∂f (x(ω), ω) almost surely



Utility Maximization in Finance

Instruments: i = 0, 1, . . . ,m with returns Xi , risk-free for i = 0
prices πi with π0 = 1, rates of return ri = Xi/πi − 1, r0 constant

Yi = Xi/[1 + r0]− πi gives net return in present money

Portfolios: weights ξi yielding
∑m

i=0 ξiXi at cost
∑m

i=0 ξiπi , or
in present money yielding

∑m
i=1 ξiYi + w from investment w

Monetary utility, normalized:
u(x) = the amount of present money deemed acceptable

in lieu of receiving the future amount [1 + r0]x

u is concave, nondecreasing, with u(0) = 0, u(x) ≤ x

Utility maximization problem

maximize E
{
u(

∑m
i=1 ξiYi + w )

}
over ξ = (ξ1, . . . , ξm)

U(X ) = E
{
u(X )

}
assesses present worth of future gain [1 + r0]X



Reformulation to Minimization in Loss Context

v(x) = −u(−x) = the liability exposure associated with x
= the amount of present money deemed necessary as

compensation for losing [1 + r0]x in the future

v is convex, nondecreasing, with v(0) = 0, v(x) ≥ x

Liability minimization problem

minimize E
{
v(

∑m
i=1 ξi [−Yi ]− w )

}
over ξ = (ξ1, . . . , ξm)

V(X ) = E
{
v(X )

}
= Iv (X ) = integral functional on Lp(Ω,F ,P)

V is convex, nondecreasing, with V(0) = 0, V(X ) ≥ EX

Conjugate: V∗(Q) = Iv∗(Q) = E
{
v∗(Q)

}
on Lq(Ω,F ,P)

V∗ is convex, V∗(Q) ≥ 0, V∗(1) = 0, and V∗(Q) < ∞⇒ Q ≥ 0

Insurance interpretation: V(X ) is the premium to be charged
(relative to v) for covering the uncertain future loss [1 + r0]X



Lagrangian and Dual Problem

V(X ) = E
{
v(X )

}
, V∗(Q) = E

{
v∗(Q)

}
Lagrangian for the minimization problem:

L(ξ1, . . . , ξm;Q) = E
{
(
∑m

i=1 ξi [−Yi ] + [−w ] )Q
}
− V∗(Q)

Derivation of the dual objective:

g(Q) = infξ1,...,ξm L(ξ1, . . . , ξm;Q)
= [−w ]EQ − V∗(Q) if Q ≥ 0 and E [YiQ] = 0,

but = −∞ otherwise

Dual problem

maximize [−w ]EQ − E
{
v∗(Q)

}
subject to

Q ≥ 0 and E [YiQ] = 0 for i = 1, . . . ,m

−w = the money extracted from the market in the present
for taking on the future losses associated with

∑m
i=0 ξi [−Xi ]



Application of Duality Criteria

These primal and dual problems fit the extended Fenchel format:

(P) minimize
{
〈c , ξ〉+ h(ξ) + k(b − Aξ)

}
,

(D) maximize
{
〈b,Q〉 − k∗(Q)− h∗(A∗Q − c)

}
,

with ξ ∈ IRm and Q ∈ Lq, paired with Lp, p < ∞, by taking
c = 0, h ≡ 0, h∗ = δ0, k = V, k∗ = V∗, b = −w ,

A : ξ →
∑m

i−1 ξiYi , A∗ : Q → ( E [Y1Q], . . . ,E [YmQ] )

Criteria to be specialized:
b ∈ int[A(dom h) + dom k], c ∈ int[A∗(dom k∗)− dom h∗]

Duality theorem

(a) inf(P) = max(D) if −w ∈ int
{
X ∈ Lp

∣∣ E
{
v(X )

}
< ∞

}
(b) min(P) = sup(D) if

0 ∈ int
{

( E [Y1Q], . . . ,E [YmQ] )
∣∣ Q ∈ Lq, E

{
v∗(Q)

}
< ∞

}
It is possible also to work with X ∈ L∞ and Q ∈ (L∞)∗. Further
analysis then relates the results to known conditions in finance.



Valuations of Liability Generalized

functionals V(X ), not just of form Iv (X ), for potential losses X

Liability measures

Call V a measure of liability if: (V1) V(0) = 0, V(X ) ≥ EX ,
(V2) V convex, (V3) V nondecreasing, (V4) V lsc

Conjugate characterization:
V∗ convex, lsc, V∗(Q) ≥ 0, V∗(1) = 0, V∗(Q) < ∞⇒ Q ≥ 0

Consider a trade-off: minimize C + V(X − C ) over C ∈ IR
charge C up front, reducing uncertain future losses accordingly

Derivation of associated risk measure and entropy

(a) R(X ) = min
C

{
C + V(X − C )

}
is a coherent measure of risk

(b) R∗(Q) = V∗(Q) if EQ = 1, but R∗(Q) = ∞ otherwise

R∗(Q) is thus an entropy functional I(Q), −I(Q) = the entropy



Minimization of Portfolio Risk

V = measure of liability, R = associated risk, I = R∗ entropy

R(
∑m

i=1 ξi [−Yi ]− w) = R(
∑m

i=1 ξi [−Yi ])− w

Portfolio risk minimization problem

minimize R(
∑m

i=1 ξi [−Yi ] ) over ξ = (ξ1, . . . , ξm)

Lagrangian function:
L(ξ1, . . . , ξm;Q) = E

{ ∑m
i=1 ξi [−Yi ]Q

}
− I(Q)

=
∑m

i=1 ξiE
{
[−Yi ]Q

}
− V∗(Q) if Q ≥ 0, EQ = 1

but = −∞ otherwise

Corresponding dual problem in entropy

maximize −I(Q) subject to E [YiQ] = 0 for i = 1, . . . ,m

⇒ Q is a risk neutral probability density, Q = dP∗/dP

an “entropic distance” of P∗ from the nominal P is minimized



Aversity in Liability Valuation

Call a liability measure V averse if V(X ) > EX when X 6= 0

Associated measures of error and deviation

Let V be an averse measure of liability, and let R(X ) be the
associated measure of risk, R(X ) = minC

{
C + V(X − C )

}
(a) R(X ) is an averse measure of risk and coherent
(b) E(X ) = V(X )− EX is a measure of error
(c) D(X ) = minC

{
E(X −C )

}
agrees with D(X ) = R(X −EX )

Integral functional case: V(X ) = E
{
v(X )

}
v convex, nondecreasing, with v(0) = 0, v(x) ≥ x

V(X ) = E
{
v(X )

}
is averse when v(x) > x for x 6= 0

E(X ) = E
{
ε(X )

}
for the function ε(x) = v(x)− x



CVaR Revisited

Consider the liability measure V(X ) = E
{
v(X )

}
and associated

error measure E(X ) = E
{
ε(X )

}
= E

{
v(X )− X

}
, deviation

measure D(X ) = minC

{
E(X − C )

}
and coherent risk measure

R(X ) = minC

{
C + V(X − C )

}
in the case of

v(x) = (1− α)−1 max{x , 0} (averse), with
ε(x) = v(x)− x = [(1− α)−1 − 1] max{x , 0}+ max{−x , 0}

where 0 < α < 1, so that (1− α)−1 > 1. Then

(a) V(X ) = (1− α)−1E [X+]

(b) E(X ) = [(1−α)−1− 1]E [X+]+E [X−] Koenker-Basset error

(c) R(X ) = CVaRα(X )

(d) D(X ) = CVaRα(X − EX );

For “utility” version of this, see paper of Ben-Tal and Teboulle
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