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Abstract

Primal and dual problems of optimal control in the format of convex problems of Bolza can
simultaneously be solved by a specialized application of the progressive decoupling algorithm by
translating them to a linkage problem format. Although explained and justified here only in
pure form, the procedure has the unprecedented feature that, in each iteration, the minimization
subproblem decomposes into a separate proximal minimization subproblem at each instant of time,
along with another proximal minimization concerning a trajectory’s initial point and terminal point.
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1 Introduction

The idea of solving a large-scale problem of optimization by reducing it to solving much smaller
problems in a sequence of iterations is age-old. In a common version, the given problem is comprised
of separate “components” that might be solved independently of each other, but can’t because of
“linkages” between them which require attention. A scheme might succeed, however, if it could
proceed by iterations in which the linkages are temporarily decoupled.

Such a scheme is the progressive decoupling algorithm (PDA) put forward in [16]. Here we explain
how it can be applied to problems in a dynamical format in which the “decoupling” means that in each
iteration a separate optimization problem is solved for each instance in time. The results from this
dynamical decoupling are projected to produce a sequence of trajectories that converges eventually to
an optimal trajectory.

This is a novel approach which could be articulated on many levels with different degrees of
detail and numerical sophistication, but here, in a first presentation, we focus just on the basics. In
particular, we emphasize convexity and the help from duality that comes with it. What comes out
is an “ideal procedure” only, because important practical details for its execution, such as stopping
criteria for inexactly computed iterations, aren’t addressed. But that could be a beacon for further
analysis and experimentation.

The general linkage problem behind this concerns a Hilbert space H, a closed subspace S ⊂ H and
a closed (lower semicontinuous) convex functional Φ : H → IR = [−∞,∞] that is proper (not ≡ ∞
and never taking on −∞), with the set domΦ = { z |Φ(z) < ∞} then being convex and nonempty,
although not necessarily closed. The task is to

(Plink) minimize Φ(z) over z ∈ S,

where the feasibility of z is tied not only to z being in S, but also to its belonging to domΦ.
The progressive decoupling algorithm for solving this problem emerges from the optimality condi-

tion associated with it in terms of the closed subspace S⊥ orthogonal to S in H and the subgradients
of Φ in the sense of convex analysis, namely

z ∈ S and ∃w ∈ S⊥ with w ∈ ∂Φ(z), or
equivalently, z ∈ argminz{Φ(z)− ⟨w, z⟩}. (1.1)

This is sufficient not only for z to solve (P) as the primal problem, but at the same time for w to solve
the dual problem for the convex functional Φ∗ conjugate to Φ,

(Dlink) maximize − Φ∗(w) over w ∈ S⊥,

and then
minimum value in (Plink) = maximum value in (Dlink) (1.2)

The condition in (1.1) is furthermore necessary for the optimality of z under a constraint qualification,2

but here we will always be working in a setting where we already know from the outset that some z
and w satisfying (1.1) do exist.

The progressive decoupling algorithm exploits the minimization form of the subgradient relation
in (1.1) while stabilizing it with a proximal term. The kth iteration begins with some zk ∈ S and
wk ∈ S⊥ (the initial z0 and w0 in these subspaces can be chosen arbitrarily) and determines

ẑk = argminz

{
Φ(z)− ⟨wk, z⟩+ r

2
||z − zk||2

}
, where r > 0. (1.3)

2For example, if the projection of domΦ on S⊥ has the property that no ray emanating from the origin of S⊥

immediately exits from it; see [9, Theorem 18(c)].
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It then updates by

zk+1 = projS ẑk, wk+1 = wk − r[ẑk − zk+1] = wk − r projS⊥ ẑk. (1.4)

where projS is the mapping that projects elements of H onto the subspace S. The generated sequence
{(zk, wk)} is guaranteed to converge in the weak topology of H to some particular (z̄, w̄) satisfying
(1.1) as long as at least one such pair exists [16, Theorem 1]. The “decoupling” is brought about by
the absence of the linkage constraint z ∈ S in (1.3).

The problems of optimal control that we propose to solve by this procedure are the generalized
problems of Bolza introduced in [5] and underpinned with existence theorems and duality theorems in
[8]. They concern trajectories of states over time represented by arcs as functions x(·) : [t0, t1] → IRn

such that the derivative ẋ(t) exists almost everywhere and x(t) = x(t0)+
∫ t
t0
ẋ(s)ds. The fundamental

problem is to

(Parcs) minimize JL,l(x(·)) =
∫ t1

t0
L(x(t), ẋ(t))dt+ l(x(t0), x(t1)),

where L and l are closed proper convex functions on IRn× IRn. Constraints are captured implicitly in
this neoclassical format by ∞ values of L and l. Again there is a dual problem, which is to

(Darcs) maximize − J
L̃,̃l

(p(·)) = −
∫ t1

t0
L̃(p(t), ṗ(t))dt− l̃(p(t0), p(t1))

in which L̃ and l̃ are obtained from the convex functions L∗ and l∗ conjugate to L and l by

L̃(p, q) = L∗(q, p), l̃(p0, p1) = l∗(p0,−p1). (1.5)

Controls, just like constraints, are implicit in these statements through the ways that L might be
specified. For instance, in the case where

L(x, y) = minu {K(Cx, u) |Ax+Bu = y} (1.6)

for a closed proper convex function K, problem (Parcs) would in effect seek a control function u(·) to

minimize

∫ t1

t0
K(Cx(t), u(t))dt+ l(x(t0), x(t1)) with ẋ(t) = Ax(t) +Bu(t). (1.7)

The choice of K could enforce by ∞ values a constraint like u(t) ∈ U or u(t) ∈ U(x(t)), say. The
associated dual problem, determined from (1.5) and (1.6), seeks instead to

maximize −
∫ t1

t0
K̃(B∗p(t), v(t))dt− l̃(p(t0), p(t1)) with ṗ(t) = −A∗p(t) + C∗v(t), (1.8)

where
K̃(B∗p, v) = K∗(v,B∗p), (1.9)

and thus brings in dual control variables along with the primal control variables. All the technical
details behind this, like measurable selections, are worked out in [5], where control models are explored
directly, as they are also [12] and [14].

Theorems in [8] provide constraint qualifications under which both (Parcs) and (Darcs) have solu-
tions, and the minimum value in (Parcs) equals the maximum value in (Darcs). But this is in the case
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where the arcs x(·) and p(·) are only asked to be absolutely continuous, that is, with their derivatives
ẋ(·) and ṗ(·) being L1 functions. Our aim of applying the progressive decoupling algorithm to solve
them requires, because of the Hilbert space context of the method, that ẋ(·) and ṗ(·) be L2 functions.
We must therefore adapt the existence and duality theory in [8] to operate for L2 derivatives instead
of L1 derivatives, in addition to managing to reformulate the primal and dual problems of Bolza as
primal and dual problems in the linkage scheme.

That’s the agenda for Section 2. In the L2 adaptation there we build on growth conditions on the
Hamiltonian function

H(x, p) = supy { p·y − L(x, y)}, with L(x, y) = supp { p·y −H(x, p)}, (1.10)

that were introduced in the development of a Hamilton-Jacobi theory in [21], [22], to be able to cover
convex value functions like

V (τ, ξ) = min
x(·)

{ ∫ T

τ
L(x(t), ẋ(t))dt+ g(x(T ))

∣∣∣x(τ) = ξ
}
. (1.11)

The standard conditions for getting “viscosity” Hamilton-Jacobi solutions turned out to be incom-
patible with the convex duality, so growth had to be somehow calibrated differently. Note that the
defining minimization in (1.11) is an example of (Parcs) with [t0, t1] replaced by [τ, T ] and with (τ, ξ)
treated as a parameter element. A method for solving (Parcs), as proposed here, might therefore have
implications also for solving Hamilton-Jacobi equations.

In Section 3 the progressive decoupling algorithm returns to center stage for application to the
control problems in their linkage re-expressions. A key issue is developing a formula for the projection
mapping in the update (1.4) in that particular context.

Finally, in Section 4, the potential for extensions to broader classes of control problems is surveyed
along with extra features that might be added to the dynamical decoupling procedure and its ways of
implementation.

2 Translating the control problems to the linkage format

The interval [t0, t1] is fixed in what follows, so we let Lp
n stand for Lp([t0, t1], IR

n). Likewise, we let Ap
n

stand then for the space of arcs x(·) : [t0, t1] → IRn such that the derivative function ẋ(·) belongs to
Lp
n. In the existence theory in [8] for solutions to problems (Parcs) and (Darcs), the minimization was

over all x(·) and p(·) in A1
n. It’s important for our purposes, however, to be able to restrict the arcs

to lie in A2
n without jeapardizing the results that were obtained without that restriction.

Quadratic aspects of growth conditions can be brought in to achieve that. It will be convenient to
express them in terms of the function

j(z) = 1
2 |z|2, where | · | is the canonical norm when z ∈ IRn, (2.1)

this being the only convex function that is self-conjugate, j∗ = j. The growth conditions will first be
imposed on the Hamiltonian function H in (1.10), where a primal-dual symmetry is evident, but their
effect on L and L̃ will afterward be clarified.

Assumption 2.1 (primal-dual growth conditions on the Hamilitonian).
(a) There are constants σ > 0, α > 0, β > 0, γ, such that

H(x, p) ≤ σj(p) + (α|p|+ β)|x|+ γ. (2.2)
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(b) There are constants σ̃ > 0, α̃ > 0, β̃ > 0, γ̃, such that

H(x, p) ≥ −σ̃j(x)− (α̃|x|+ β̃)|p| − γ̃. (2.3)

In general, the Hamiltonian expression H(x, p), as obtained in (1.1) by taking the partial conjugate
of the convex function L, is concave in x and convex in p, and could take on both ∞ and −∞. These
conditions require, however, that −∞ < H(x, p) < ∞ for all x and p. The dual Hamiltonian associated
instead with L̃, namely

H̃(p, x) = supq { q·x− L̃(p, q)}, with L̃(p, q) = supx { q·x− H̃(p, x)}, (2.4)

comes out then as
H̃(p, x) = −H(x, p), (2.5)

whereas otherwise closure operations might have to be brought in [7, Sec. 34]. The finite concave-
convex function H is not just continuous but locally Lipschitz continuous everywhere on IRn × IRn [7,
Theorem 35.1]. The relationship in (2.5) makes clear that the primal effect on L of the assumptions
on H is completely reflected in their dual effect on L̃.

Proposition 2.2 (growth assumption equivalences). Condition (a) in Assumption 2.1 is equivalent
to having

L(x, y) ≥ σ−1j
(
max{0, |y| − α|x|}

)
− β|x| − γ, (2.6)

while condition (b) is equivalent to having

L̃(p, q) ≥ σ̃−1j
(
max{0, |q| − α̃|p|}

)
− β̃|p| − γ̃. (2.7)

Proof. To establish the first claim, we take conjugates on both sides of (2.2). We see that

L(x, y) + β|x|+ γ ≥ sup
p
{ p·y − σj(p)− α|x||p|} = sup

π≥0

{
sup
|p|=π

{ p·y − σj(p)− α|x||p|}
}

= sup
π≥0

{π·|y| − σj(π)− α|x|π}
}
= σ−1j

(
max{0, |y| − α|x|}

)
,

because the conjugate of the convex function on IR that’s the sum of j and the indicator of [0,∞) is
the function that equals j on [0,∞) and 0 on (−∞, 0]. The truth of the second claim follows then by
the symmetry in (2.4) and (2.5).

Corollary 2.3 (feasibility implication). Under Assumption 2.1, an arc x(·) for which the integral
component of the functional JL,l in problem (Parcs) is not ∞ must be in A2

n. Likewise, an arc p(·) for
which the integral component of the functional J

L̃,̃l
in problem (Darcs) is not ∞ must be in A2

n.

Proof. The finiteness of
∫ t1
t0

L(x(t), ẋ(t))dt necessitates that of
∫ t1
t0

j(max{0, |ẋ(t)| − α|x(t)|})dt and
implies the existence of a nonnegative function µ(·) ∈ L2

1 such that |ẋ(t)| ≤ µ(t) + α|x(t)|. Since x(·)
is bounded over [t0, t1], the function µ(·) + αx(·) likewise belongs to L2

1, and the same then holds for
|ẋ(·)|, so that ẋ(·) ∈ L2

n. Similarly for L̃.

This feasibility result allows us to apply the main result of [8] to the primal and dual problems of
Bolza even when the arcs in them are restricted from the beginning to lie in A2

n. The constraint quali-
fications utilized in this result are conditions on attainability in being concerned with the relationship
between the convex sets

Cl = dom l = { (x0, x1) | l(x0, x1) < ∞},
CL =

{
(x0, x1)

∣∣∣ ∃x(·) with ∫ t1
t0

L(x(t), ẋ(t))dt < ∞, (x(t0), x(t1)) = (x0, x1)
}
,

(2.8)
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in the primal problem and, in parallel, the relationship between the convex sets

C
l̃
= dom l̃ = { (p0, p1) | l̃(p0, p1) < ∞},

C
L̃
=

{
(p0, p1)

∣∣∣ ∃p(·) with ∫ t1
t0

L̃(p(t), ṗ(t))dt < ∞, (p(t0), p(t1)) = (p0, p1)
}
,

(2.9)

in the dual problem. We denote the relative interior of a convex set C by riC, as usual.

Theorem 2.4 (solution existence and duality [8, Theorem 1]). Suppose under Assumption 2.1 that

riCL ∩ riCl ̸= ∅ and riC
L̃
∩ riC

l̃
̸= ∅. (2.10)

Then solutions exist to both (Parcs) and (Darcs) as problems articulated in A2
n, and

minimum value in (Parcs) = maximum value in (Darcs). (2.11)

This is supplemented by results from the Hamilton-Jacobi theory in [21] that exploit the role of
the “max” terms in the growth conditions in Assumption 2.1, in understanding the possibilities for
the sets CL and C

L̃
.

Theorem 2.5 (special existence criterion [21, Corollary 4.4, Theorem 4.5]). Under Assumption 2.1,
the projection of the set CL in either the x0 component or the x1 component is all of IRn; likewise,
the projection of the set C

L̃
in either the p0 component or the p1 component is all of IRn.

Therefore, the constraint qualification conditions in (2.10) are sure to be satisfied if one condition
out of each of the following is fulfilled:

(a) Either there exists x0 such that the function l(x0, ·) is finite, or there exists x1 such that the
function l(·, x1) is finite,

(b) Either there exists p0 such that the function l̃(p0, ·) is finite, or there exists p1 such that the
function l̃(·, p1) is finite.

The conditions in (2.10) of Theorem 2.4 and in Theorem 2.5(b) in terms of L̃ and l̃ can instead
be expressed as conditions of another sort on L and l. We refer back to the cited papers behind these
theorems for the details.

We are also able in our translation project to draw on the optimality conditions for problems
(Parcs) and (Darcs) that were developed in [5] in terms of the subgradients of the convex functions that
are involved. The transversality condition

(p(t0),−p(t1)) ∈ ∂l(x(t0), x(t1)), (2.12)

which can be written dually as

(x(t0),−x(t1)) ∈ ∂l̃(p(t0), p(t1)), (2.13)

is important along with the Euler-Lagrange condition

(ṗ(t), p(t)) ∈ ∂L(x(t), ẋ(t)) a.e., (2.14)

which can be written dually as

(ẋ(t), x(t)) ∈ ∂L̃(p(t), ṗ(t)) a.e.. (2.15)

And as an alternative to the Euler-Lagrange conditions there is the Hamiltonian condition

ẋ(t) ∈ ∂pH(x(t), p(t)), ṗ(t) ∈ ∂x[−H](x(t), p(t)), a.e. (2.16)

where it should be recalled that the function −H(·, p) is convex, as is the function H(x, ·).
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Theorem 2.6 (characterizations of optimality [5, Theorems 5 and 6]). The following are equivalent
for a pair of arcs x(·) and p(·):

(a) x(·) solves (Parcs), p(·) solves (Darcs), and the optimal values are equal as in (2.11).
(b) The transversality condition (2.12) holds along with the Euler-Lagrange condition (2.14).
(c) The transversality condition (2.13) holds along with the Euler-Lagrange condition (2.15).
(d) Either transversality condition holds along with the Hamiltonian condition (2.16).

With the assurance that the arcs in the primal and dual problems (Parcs) and (Darcs) can be
restricted harmlessly to A2

n, and that these facts about existence and optimality will nonetheless
persist, we can proceed next to pose the problems equivalently in the mold of (Plink) and (Dlink). For
this we take the Hilbert space to be

H = L2
n × L2

n × IRn × IRn (2.17)

with the inner product and norm being given by〈
(z(·), w(·), c0, c1), (z′(·), w′(·), c′0, c′1)

〉
=

∫ t1
t0
z(t)·z′(t)dt+

∫ t1
t0
w(t)·w′(t)dt+ c0·c′0 + c1·c′1,

||(z(·), w(·), c0, c1)||2 =
∫ t1
t0
|z(t)|2dt+

∫ t1
t0
|w(t)|2dt+ |c0|2 + |c1|2.

(2.18)

We take the convex function Φ on H to be

Φ(z(·), w(·), c0, c1) =
∫ t1

t0
L(z(t), w(t))dt+ l(c0, c1) (2.19)

and the linkage subspace S of H to be

S = { (x(·), ẋ(·), x(t0), x(t1)) |x(·) ∈ A2
n}. (2.20)

Proposition 2.7 (linkage format verification). The convex function Φ is closed and proper, with its
conjugate given by

Φ∗(z′(·), w′(·), c′0, c′1) =
∫ t1

t0
L∗(z′(t), w′(t))dt+ l∗(c′0, c

′
1). (2.21)

The subspace S is closed, with its complement given by

S⊥ = { (ṗ(·), p(·), p(t0),−p(t1)) | p(·) ∈ A2
n}. (2.22)

Proof. The conjugate Φ∗ is calculated by maximimizing ⟨(z(·), w(·), c0, c1), (z′(·), w′(·), c′0, c′1)⟩ −
Φ(z(·), w(·), c0, c1) over all (z(·), w(·), c0, c1) ∈ H. That separates into a maximization over (c0, c1),
yielding the conjugate expression l∗(c′0, c

′
1), and the maximization producing the conjugate of the

integral functional associated with the integrand L. That’s known from [4] to be the integral functional
associated with the conjugate integrand L∗ under elementary conditions that are satisfied here, because
L is autonomous (independent of time t), and the space L2

n × L2
n = L2

2n contains all the constant
functions from [t0, t1] to IR

2n. Specifically, from the properness of L and L∗ there exist (ζ, ω) and (ζ ′, ω′)
in IRn×IRn such for (z0(·), w0(·)) ≡ (ζ, ω) and (z′0(·), w′

0(·)) ≡ (ζ ′, ω′) we have
∫ t1
t0

L(z0(t), w0(t))dt < ∞
and

∫ t1
t0

L∗(z′0(t), w
′
0(t))dt < ∞, and that fulfills the requirement.

In the same way, then, the conjugate of Φ∗ as calculated from (2.21) comes out as Φ, since L∗∗ = L
and l∗∗ = l. Conjugate functions are by nature always closed, so this confirms that Φ is closed, like
Φ∗. In other words, the lower level sets of these convex functions are closed — in the norm topology
and the weak topology of H, since for convex sets closedness is the same in those two topologies.
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As for the claim about S⊥, that subspace certainly does include the elements indicated on the
right side of (2.22), inasmuch as〈

(x(·), ẋ(·), x(t0), x(t1)), (ṗ(·), p(·), p(t0),−p(t1))
〉

=

∫ t1

t0
[x(t)·ṗ(t) + ẋ(t)·p(t)]dt+ x(t0)·p(t0)− x(t1)·p(t1) = 0.

Suppose now, on the other hand, that (z(·), w(·), c0, c1) ∈ S⊥, or in other words, that

0 =

∫ t1

t0
[x(t)·z(t) + ẋ(t)·w(t)]dt+ x(t0)·c0 + x(t1)·c1 for all x(·) ∈ A2

n. (2.23)

Define p(·) by p(t) = −c1 −
∫ t1
t z(s)ds, so that p(·) ∈ A2

n with c1 = −p(t1) and z(·) = ṗ(·). Then∫ t1

t0
x(t)·z(t)dt+ x(t1)·c1 =

∫ t1

t0
x(t)·ṗ(t)dt− x(t1)·p(t1) = −

∫ t1

t0
ẋ(t)·p(t)dt− x(t0)·p(t0),

and in consequence from (2.23)

0 =

∫ t1

t0
ẋ(t)·[w(t)− p(t)]dt+ x(t0)·[c0 − p(t0)] for all x(·) ∈ A2

n.

But for x(·) ∈ A2
n, ẋ(·) can be any function in L2

n, and x(t0) can be any element of IRn. Hence,
both w(·) − p(·) = 0 and c0 − p(t0) = 0. This shows that (z(·), w(·), c0, c1) must be of the form
(ṗ(·), p(·), p(t0),−p(t1)) indicated in (2.22). The argument also establishes that the formula in (2.22)
defines a closed subspace of H, and that confirms that the formula for S itself, being of the same type,
defines a closed subspace.

Theorem 2.8 (control problems as linkage problems). With H, Φ and S chosen as in (2.17), (2.19),
(2.20), the control problems (Parcs) and (Darcs) are equivalently posed as linkage problems (Plink)
and (Dlink). Criteria for the existence of solutions to these specialized linkage problems are provided
accordingly by Theorems 2.4 and 2.5. Moreover the joint optimality condition for them in (1.1) can
be identified with the optimality conditions for the control problems in Theorem 2.6.

Proof. It’s clear from (2.19) and (2.20) that Φ reduces to the Bolza functional JL,l on S, and we
now know also from Proposition 2.7, via (1.5), that Φ∗ reduces to the Bolza functional J

L̃,̃l
on S⊥.

The subgradients of Φ on H are given by

(z′(·), w′(·), c′0, c′1) ∈ ∂Φ(z(·), w(·), c0, c0) ⇐⇒
(z′(t), w′(t)) ∈ ∂L(z(t), w(t)) a.e, and (c′0, c

′
1) ∈ ∂l(c0, c1),

(2.24)

where the part of the subgradient formula concerning the integral is known from [4]. But when
(z(·), w(·), c0, c1) belongs to S and (z′(·), w′(·), c′0, c′1) belongs to S⊥, those subspaces being described
by arcs x(·) and p(·) as in (2.20) and (2.22), the relations in (2.24) turn into the Euler-Lagrange
condition and transversality condition in (b) of Theorem 2.6.
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3 Applying the progressive decoupling algorithm

In the framework furnished by Theorem 2.8, the progressive decoupling algorithm in (1.3) and (1.4)
with parameter r > 0 can be applied to find solutions simultateously to (Parcs) and (Darcs). At first
pass, that comes out as the following procedure.

Algorithm 3.1 (specialized PDA, preliminary version). Iteration k begins with a pair of arcs xk(·)
and pk(·) in A2

n. (For k = 0, they can be taken arbitrarily.) For the convex function Φ in (2.19)
determine

(zk(·), wk(·), ck0, ck1) = unique minimizer over (z(·), w(·), c0, c1) ∈ H of

Φ(z(·), w(·), c0, c1)−
〈
(z(·), w(·), c0, c1), (ṗk(·), pk(·), pk(t0),−pk(t1))

〉
+
r

2

∥∥∥(z(·), w(·), c0, c1)− (xk(·), ẋk(·), xk(t0), xk(t1))
∥∥∥2. (3.1)

Then, with respect to the subspaces S in (2.20) and S⊥ in (2.22), update by

(xk+1(·), ẋk+1, xk+1(t0), x
k+1(t1)) = projS (zk(·), wk(·), ck0, ck1),

(ṗk+1(·), pk+1(·), pk+1(t0),−pk+1(t1)) =
(ṗk(·), pk(·), pk(t0),−pk(t1))− r projS⊥ (zk(·), wk(·), ck0, ck1).

(3.2)

The details in the steps of this algorithm must next examined to bring out their meaning and shed
light on their practicality.

Theorem 3.2 (decoupling in time). The minimization step (3.1) decomposes into calculating

(ck0, c
k
1) = argmin

(c0,c1)

{
l(c0, c1)− c0·pk(t0) + c1·pk(t1) +

r

2
|c0 − xk(t0)|2 +

r

2
|c1 − xk(t1)|2

}
(3.3)

and for (almost every) t ∈ [t0, t1]

(zk(t), wk(t)) = argmin
(z,w)∈IRn×IRn

{
L(z, w)− z·pk(t)− w·ṗk(t) + r

2
|z − xk(t)|2 + r

2
|w − ẋk(t)|2

}
. (3.4)

Proof. This separability is immediately seen from inserting the formulas for the inner product and
norm in (2.18) and Φ in (2.19) into (3.1). The minimization of the integral functional reduces to a
minimization for each instant in time through the decomposability rule in [4]; see also [20, 14.60].

The subproblems of minimization in Theorem 3.2 are proximal steps in the language of numerical
optimization, because they can be rewritten in the pattern of finding the unique minimizer with respect
to u of f(u) + 1

2 |u − v|2 for some convex function f . The associated mapping proxf from v to u is
nonexpansive (Lipschitz continuous with norm ≤ 1). That might help in coping with t parameterically
in (3.4) in a numerical scheme of approximation.

Understanding how to execute the projections in (3.2) is another challenge, but one that turns
out to be have a closed-form answer obtainable from the elementary theory of ordinary differential
equations in terms of hyperbolic sines and cosines,

cosh t = 1
2 [e

t + e−t], sinh t = 1
2 [e

t − e−t], (3.5)

which are the derivatives of each other. The 2n× 2n matrices

J =

[
0 I
I 0

]
, etJ =

[
(cosh t)I (sinh t)I
(sinh t)I (cosh t)I

]
, (3.6)

have a central role in this.

9



Theorem 3.3 (arc projections). The arcs x(·) and p(·) that correspond to the projections of a given
(z(·), w(·), c0, c1) ∈ H onto the spaces S and S⊥ in (2.20) and (2.22) can be calculated as follows.
Determine ξ : [t0, t1] → IRn and π : [t0, t1] → IRn by[

ξ(t)
π(t)

]
=

∫ t

t0
e(s−t0)J

[
w(s)
z(s)

]
dt. (3.7)

Then take [
x(t)
p(t)

]
= e−(t−t0)J

[
x0 + ξ(t)
p0 + π(t)

]
where, for τ = t1 − t0,

x0 =
1
2 [c0 + e−τ c1 − ξ(t1) + π(t1)], p0 =

1
2 [c0 − e−τ c1 + ξ(t1)− π(t1)].

(3.8)

Proof. Any element of H can be represented uniquely as a sum of elements of S and S⊥, and those
elements are its projections on those subspaces. Thus, we are looking for the unique arcs x(·) and p(·)
in A2

n such that

(z(·), w(·), c0, c1) = (x(·), ẋ(·), x(t0), x(t1)) + (ṗ(·), p(·), p(t0),−p(t1)),

or in other words, such that[
ẋ(t)
ṗ(t)

]
= −J

[
x(t)
p(t)

]
+

[
w(t)
z(t)

]
with

[
x(t0) + p(t0)
x(t1)− p(t1)

]
=

[
c0
c1

]
. (3.9)

The solution to this linear differential equation is known to be given by[
x(t)
p(t)

]
= e−(t−t0)J

([
x0
p0

]
+

∫ t

t0
e(s−t0)J

[
w(t)
z(t)

])
,

[
x(t0)
p(t0)

]
=

[
x0
p0

]
, (3.10)

where x0 and p0 must be gleaned from (3.9) along with x1 = x(t1) and p1 = p(t1). In the notation
(3.7), we have from (3.10) with τ = t1 − t0 that[

x(t1)
p(t1)

]
= e−τJ

([
x0
p0

]
+

[
ξ(t1)
π(t1)

])
=

[
(cosh τ)I −(sinh τ)I
−(sinh τ)I (cosh τ)I

] [
x0 + ξ(t1)
p0 + π(t1)

]
and therefore [

x1
p1

]
=

[
cosh τ [x0 + ξ(t1)]− sinh τ [p0 + π(t1)]
− sinh τ [x0 + ξ(t1)] + cosh τ [p0 + π(t1)]

]
.

Because cosh τ + sinh τ = eτ , if follows that e−τ [x1 − p1] = x0 − p0 + ξ(t1)− π(t1). From the second
part of (3.9) we then have

x0 + p0 = c0, x0 − p0 = e−τ c1 − ξ(t1) + π(t1),

and this leads at once to the designation of x0 and p0 in (3.8).

Theorem 3.3 reveals that the challenge in the projections comes down entirely to the challenge of
integrating expressions of the form θ(t)e±t over bounded t intervals and handling that parametrically.

These details about the implementing the steps in Algorithm 3.1 enable us to redescribe the
procedure the following manner.
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Algorithm 3.4 (specialized PDA, ultimate version). Initiate with any arcs x0(·) and p0(·) in A2
n. In

iteration k, having arcs xk(·) and pk(·) in A2
n,

(a) calculate (ck0, c
k
1) from (3.3) and (zk(t), wk(t)) for t ∈ [t0, t1] from (3.4),

(b) determine ξk(·) and πk(·) next from (3.7),
(c) get arcs x̂k(·) and p̂k(·) from (3.8),
(c) then update by taking xk+1(·) = x̂k(·) and pk+1(·) = pk(·)− rp̂k(·).

Theorem 3.5 (convergence of the algorithm). Suppose solutions to both (Parcs) and (Darcs) exist
under the criteria in Theorem 2.4, or Theorem 2.5. Then Algorithm 3.4 will produce sequences of arcs
xk(·) and pk(·) in A2

n that converge to particular solutions x̄(·) and p̄(·) to these problems.
The convergence is in the sense that the derivative functions ẋk(·) and ṗk(·) converge weakly in

L2
n to ˙̄x(·) and ˙̄p(·), while xk(t) → x̄(t) and pk(t) → p̄(t) for every t ∈ [t0, t1].

Proof. The convergence is assured by the general theory of the progressive decoupling algorithm in
[16], but that’s weak convergence in the Hilbert space H. According to the structure of H in (2.17),
that would seem to mean just that xk(·) and ẋk(·) converge weakly to x̄(·) and ˙̄x(·) in L2

n while the
endpoints xk(t0) and xk(t1) converge in IRn to x̄(t0) and x̄(t1), and likewise for the dual arcs. But for
any t ∈ (t0, t1),

xk(t) = xk(t0) + ⟨ẋk(·), χ[t0,t](·)⟩ for the characteristic function χ[t0,t](·) ∈ L2
n,

so the weak convergence of ẋk(·) to ˙̄x(·) along with the convergence of xk(t0) to x̄(t0) implies the
convergence of xk(t) to x̄(t).

4 Refinements and Extensions

The dynamical decoupling procedure that has been presented has to be seen more as a template for
designing computations than as a numerical algorithm already implementable on problems in practice.
That’s true at a fundamental level because it deals with elements of infinite-dimensional spaces that
generally can’t be represented by finite arrays of numbers. But it’s also true because the procedure
asks for its steps to be carried out with precision. Instead there should be stopping criteria which
allow errors to some extent, keeping them adequately in check, and theory to guarantee that a solution
will nevertheless be attained — in a limit. There should also be information about when the rate of
such convergence might be linear with respect to some norm, and so forth.

Such a framework for inexact computation does already exist for the progressive decoupling algo-
rithm itself, but so far only in finite-dimensional implementations. It has recently been worked out in
[18, Sec. 4] along with results about how linear convergence is tied to whether a property of metric
subregularity holds at the solution being approached by the generated sequence. That property is
generic in a sense, and its modulus is revealed in [18] to dictate the rate of linear convergence as a
function of the proximal parameter r in the algorithm. The main insight is that there’s no ideal choice
of r, but rather a trade-off: higher r makes the dual elements converge faster at the expense of the
primal elements, while lower r has the opposite influence.

But again all that theory is finite-dimensional, although some aspects of the primal-dual trade-off
with respect to the choice or r were earlier revealed in [16, Theorem 1]. Perhaps an infinite-dimensional
extension is in the offing, but that has not, so far, been pursued.

Of course, problems in continuous time are often approximated effectively by problems in discrete
time. There’s no barrier to doing that with convex problems of Bolza, and such discretizations can
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even be seen for instance in [13] and [19]. The template here might serve, in adaptation, for finding
solutions to such finite-dimensional problems, and then all features of the algorithm’s theory would
be available.

Many problems of such kind may anyway arise directly in discrete time because they model control
by way of “management decisions,” which naturally are consecutive in stages. There is not yet,
however, any worked-out theory that relates the solutions to discretized versions of continuous-time
convex problems of Bolza to those of the undiscretized problems. But variational analysis offers much
that could be helpful along those lines.

A topic of interest in connection with these considerations is whether the decoupling procedure in
its specialization laid out in Algorithm 3.4 can implemented successfully without having to resort to
general arcs xk(·) and pk(·) in A2

n. The optimal arcs x̄(·) and p̄(·) in the limit will satisfy, according
to Theorem 2.8, the Hamiltonian condition in (2.16) as a differential inclusion, so they will actually
be in A∞

n , not just A2
n. That’s because the set-valued mapping from IRn × IRn to IRn × IRn in

the differential inclusion is locally bounded, due to the Hamiltonian function being locally Lipschitz
continuous. Could arcs in A∞

n instead of A2 be utilized from the start? The answer is yes. From
(3.4), it can be seen that if xk(·) and pk(·) are in A∞

n , then zk(·) and wk(·) will be in L∞
n . In the

projection operation in Theorem 3.3, which rests on solving the differential equation (3.9) in the case
of zk(·) and wk(·), the arcs in the solution will again have their derivatives in L∞

n , and when those
projections enter the update, the resulting arcs xk+1(·) and pk+1(·) will be once more in A∞

n . Thus,

if the algorithm is initiated with arcs x0(·) and p0(·) in A∞
n ,

then all subsequent arcs xk(·) and pk(·) will also be in A∞
n .

(4.1)

Whether that would affect the description of convergence, however, is unclear. The key would be
showing that the L∞

n norms of the derivatives stay bounded in the process. If so, because arcs in A∞
n

are Lipschitz continuous, the pointwise convergence of xk(t) to x̄(t) and pk(t) to p̄(t) would turn into
uniform convergence of these functions over the interval [t0, t1].

Problems (Parcs) and (Darcs) could be extended to have time-dependent L(t, x, y) and correspond-
ingly a time-dependent Hamiltonian function H(t, x, y). There is plenty of theory to support that
already in the original papers [5] and [8]. We have kept from it to avoid the extra complication of
the many considerations of measurability and measurable selections that are necessarily involved in
that (although all are fully manageable), and also for the convenience of working with the growth
conditions in Assumption 2.1, which come from a paper [21] where L is time-independent. This had
the advantage on the side of providing us with Theorem 2.5 as well.

A notable limitation of all the Bolza problem theory so far discussed is hidden in the finiteness
of the Hamiltonian H, which our growth conditions push even further. This finiteness is effectively
equivalent to the exclusion of state constraints, both in the primal problem and the dual problem.
Could an extension be made to allow them? It can, but a serious technical threshold must then be
crossed. State constraints in the primal problem require admitting in the dual problem arcs p(·) that
aren’t even in A1

n, but are only of bounded variation; roughly this means replacing ṗ(t)dt by a more
general IRn-valued signed measure on the interval [t0, t1]. Symmetry then suggests allowing the arcs
x(·) in the primal problem likewise the freedom to be only of bounded variation; see [10], [11]. All
surely interesting, but daunting for an extension of the Hilbert-space-based methodology of progressive
decoupling.

What more might be done when control functions are made explicit, as they are in (1.7) through
the structure of L in (1.6)? In the algorithm, as it stands, the consequence of this is that in each
iteration the minimization in (3.4) is replaced by obtaining (zk(t), uk(t)) from the minimization with
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respect to z and u of

K(Cz, u)− z·pk(t)− w·ṗk(t) + r

2
|z − xk(t)|2 + r

2
|Az +Bu− ẋk(t)|2,

followed by setting
wk(t) = Azk(t) +Buk(t).

The procedure would go forward with zk(·) and wk(·) as before, but a sequence of control functions
uk(·) producing the arcs xk(·) would be maintained on the side. Dual control functions could be
generated along the way through the dual expression in (1.9).

Another approach to explicit controls might be to pass to a different linkage formulation with
a different space H and subspace S that incorporates the A, B and C matrices and functions u(·)
alongside of the others. That would help to guide the sequence of control functions uk(·), posing it
as weak L2-type convergence, say, but there would be a drawback. Projections onto the different
subspace S and its complement S⊥ would need to be executed, and they wouldn’t be as simple as the
projections in Theorem 3.3. The matrices J and etJ in (3.6) would be replaced by matrices that take
A, B and C into account and are far more complex to handle.

To conclude this discussion, it’s important to note that the decoupling of dynamics proposed
here isn’t necessarily limited to convex problems of optimal control. The theory of the progressive
decoupling algorithm allows application to nonconvex objective functions Φ in the linkage problem
through “elicitation” of convexity. This amounts to supposing that a newly formulated sufficient
condition for local optimality, called strong variational sufficiency , holds with respect to the primal-
dual solution pair to which the sequence generated by the basic algorithm in (1.3) and (1.4) converges,
and choosing an “elicitation parameter” along side r that is high enough in relation to that parameter.
Convergence of the sequence is guaranteed then, despite the nonconvexity in underlying the problem,
as long as the algorithm is initiated near enough to local optimality and the minimization steps are
executed locally in that respect, too.

The locally sufficient condition in question has been shown in [17] to exactly replicate classical
sufficient conditions in nonlinear programming and at least some of its generalizations. But what
counterpart might it have for nonconvex problems of Bolza? All that lies in unexplored territory, as
of this writing. Where first-order conditions for optimality are concerned, though, there is already a
solid platform; see [1], [2], [3], [15].
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