
Variational Convexity and Prox-Regularity

R. Tyrrell Rockafellar1

Abstract

Variationally convex functions and prox-regular functions are placed in a single framework that
coordinates and enhances the many connections between them. Their characterization in terms
of monotonicity properties of subgradient mappings is confirmed by a more informative argument
than has previously been offered, which yields more a definitive result.

Keywords: variational convexity, prox-regularity, local subdifferential monotonicity,
uniform quadratic growth, second-order variational analysis

Version of 18 March 2024

Dedicated to the memory of Hedy Attouch

1University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195-4350;
E-mail: rtr@uw.edu, URL: sites.math.washington.edu/∼rtr/mypage.html

1



1 Introduction and statement of results

Prox-regular functions, since their introduction in [8] in 1996, have been prominent in studies of
stability of solutions in problems of optimization as in [9], [3], [7], [4], [5] and [1], and also in second-
order calculus in variational analysis more broadly, such as in [6] and [14, 13F]. Variationally convex
functions, having subgradient mappings that are primal-dual-locally indistinguishable from those of
convex functions, emerged much more recently in [10] in being motivated by algorithmic needs in
[11], [13], and the study of local optimization duality in [12]. The two concepts, although developed
independently for different reasons, have very much in common. The aim here is to place them in
a single framework where their interactions are revealed in greater detail and can be more clearly
appreciated.

Prox-regularity builds on the notion of a proximal subgradient. Let f : IRn → (−∞,∞] be closed
(lower semicontinuous) and proper, and let x ∈ dom f . A vector v is a proximal subgradient of f at
x, written v ∈ ∂pf(x), if for some r the inequality

f(x′) ≥ f(x) + ⟨v, x′ − x⟩ − r

2
|x′ − x|2 (1.1)

holds when x′ is near enough to x and f(x′) is near enough to f(x). In particular then, v is a regular
subgradient, written v ∈ ∂̂f(x), meaning that

f(x′) ≥ f(x) + ⟨v, x′ − x⟩+ o(|x′ − x|). (1.2)

Subgradients v ∈ ∂f(x) in general are defined by taking limits of regular subgradients: there is a
sequence xν → x with f(xν) → f(x) and vν ∈ ∂̂f(xν) such that vν → v [14, 8B]. But regular
subgradients vν ∈ ∂̂f(xν) can be restricted to being proximal subgradients vν ∈ ∂pf(x

ν) [14, 8.5]
without affecting the limits obtained. Prox-regularity of f refers in this setting to a local reduction of
the general subgradient mapping ∂f : IRn →→ IRn to the proximal subgradient mapping ∂pf in which
the proximal parameter is kept at a uniform level. The localization is primal-dual in restricting both
x and v, as well as f -attentive in also controlling f(x) in the absence of f being continuous.

Although prox-regularity is usually described just in terms of the existence of a proximal parameter
r fitting the requirements, with r treated as positive, there are good reasons to look more closely at
the level of r and also allow it to be negative. That way, the perspective of “growth properties” can
be brought in. Rewriting the proximal subgradient inequality (1.1) in the form

f(x′) ≥ f(x) + ⟨v, x′ − x⟩+ s

2
|x′ − x|2, (1.3)

for instance, produces in the case of s = −r > 0 a condition of quadratic growth that has long been
recognized as essential to the analysis of optimality conditions and associated numerical methodology.

With this in mind, let’s say that f has the s-level uniform quadratic growth property at the point
x̄ ∈ dom f for a subgradient v̄ ∈ ∂f(x̄) if there are neighborhoods X of x̄ and V of v̄ (taken for our
purposes to be convex) along with ρ > f(x̄) such that

(1.3) holds for all x′ ∈ X when (x, v) ∈ (X × V) ∩ gphρ∂f, (1.4)

where, in terms of gph ∂f being the graph of the subdifferential mapping ∂f , the set

gphρ∂f := { (x, v) ∈ gph ∂f | f(x) < ρ} (1.5)
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specifies an f -truncation of ∂f . But the parameter s is not restricted here to being positive. It may
be 0 or negative. We can refine, and at the same time broaden, the meaning of prox-regularity by
saying then that

f is r-level prox-regular at the point x̄ for v̄ ∈ ∂f(x̄) ⇐⇒
f has uniform quadratic growth at x̄ for v̄ at the level s = −r. (1.6)

The restriction in (1.4) to an f -truncation of ∂f via (1.5) bases the property in question on an f -
attentive localization that focuses not only on (x, v) being close to (x̄, v̄), but also having f(x) close to
f(x̄) That kind of localization is important for many reasons in variational analysis, because it ensures
that a concept depends only on a neighborhood of (x̄, f(x̄)) in the epigraph of f , cf. [14, Chapter 8].2

It’s superfluous when f is subdifferentially continuous at (x̄, v̄) in having the mapping (x, v) 7→ f(x)
be continuous relative to gph ∂f at (x̄, v̄). Subdifferential continuity covers a lot of territory, but we
want to proceed here without presupposing it.

A closely related property of gph ∂f that doesn’t concern the growth of function values involves
f -truncation as well. Specifically, ∂f has at the point x̄ for the subgradient v̄ ∈ ∂f(x̄) an f -attentive
localization that is s-monotone if, in the same context of X , V and ρ,

⟨v1 − v0, x1 − x0⟩ ≥ s|x1 − x0|2 when (xi, vi) ∈ (X × V) ∩ gphρ∂f. (1.7)

For s = 0, this is plain monotonicity, whereas for s > 0 it is strong monotonicity. For s < 0 it is
hypo-monotonicity.

Level s of the uniform quadratic growth condition on f at x̄ for v̄ implies the existence of an
f -attentive localization of ∂f that is s-monotone. That’s elementary, but what about the converse?
In the early paper [8], where the focus was on s = −r < 0, it was demonstrated such a localization
guaranteed at least prox-regularity at some (inexactly determined) level r′ > r, corresponding to
s′ < s. But why not at the same level, without a shift?

This is where the variational convexity can come in. As defined in [10], f is variationally convex
at x̄ for v̄ ∈ ∂f(x̄) if, once more in the same context of X , V and ρ, there is a closed proper function
f̂ that is convex on X ,3 for which

(X × V) ∩ gph ∂f̂ = (X × V) ∩ gphρ∂f, with f̂ ≤ f on X and

f̂(x) = f(x) for all the pairs (x, v) in the common intersection.
(1.8)

It is variationally strongly convex if f̂ is not just convex, but strongly convex on X . But it will be
good now to extend this to f being variationally s-convex if f̂ is s-convex on X , meaning that

f̂((1− λ)x0 + λx1) ≤ (1− λ)f̂(x0) + λf̂(x1)− s
2λ(1− λ)|x1 − x0|2

for all x0, x1 ∈ X and λ ∈ (0, 1).
(1.9)

This is plain convexity when s = 0, strong convexity when s > 0, and hypo-convexity when s < 0.
Our featured theorem precisely coordinates these extended versions of variational convexity, mono-

tone subdifferential localization, and quadratic growth with its mirror image of prox-regularity. Local
maximality properties in the monotonicity enter in, and a distinction needs to be made with respect
to what kind of neighborhood is taken. The s-monotonicity property in (1.7) is locally max if no
subset of X × V strictly larger than the one in (1.7) has it. It is f -attentive-locally max when X × V
is replaced in this by its maybe smaller subset where also f(x) < ρ.

2A illustration of the need for this is the function f on IR having f(x) = 0 for x ≤ 0 and f(x) = 1 for x > 0. It
has gph ∂f equal to (IR, 0) ∪ (0, IR+), whereas gphρ∂f for ρ =

1
2 is equal to (IR−, 0) ∪ (0, IR+). In localizing around

(x̄, v̄) = (0, 0), this makes a big difference.
3By adding to f̂ the indicator of the closure of the convex set X , it’s possible to pass to f̂ being convex on IRn
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Theorem 1 (fundamental equivalence of properties). The following properties are equivalent to each
other at the same s value.

(a) f is variationally s-convex at x̄ for v̄.
(b) f has the s-level uniform quadratic growth property at x̄ for v̄.
(c′) ∂f has an f -truncation that is locally max monotone around (x̄, v̄).
(c) ∂f has an f -truncation that is f -attentive-locally max monotone around (x̄, v̄).
(d) ∂f has an f -attentive localization at x̄ for v̄ that is s-monotone (no maximality assumed),

and the subgradient v̄ is regular, v̄ ∈ ∂̂f(x̄).

Note that, although the equivalence in Theorem 1 keeps s as the same level throughout, it’s not
claimed that the ρ and neighborhoods X and V in the definitions of the properties are kept the same.

In particular, Theorem 1 puts new light on prox-regularity by tying it to the seemingly much
stronger property of variational hypo-convexity.

Corollary (top consequence for prox-regularity). The function f is prox-regular at x̄ for v̄ at some
level r > 0 if and only if it is variationally hypo-convex there at the level s = −r.

The vector v̄ in Theorem 1 ends up necessarily being a proximal subgradient, v̄ ∈ ∂pf(x̄), without
that having to be brought in as an assumption. Yet being a regular subgradient enters as an assumption
in part (d). Why? This is made clear by our supplementary theorem.

Theorem 2 (counterexample). The equivalence of all the properties in Theorem 1 fails without the
assumption of regularity in part (d). Specifically, for s = 0 there is an example of a function f such
that ∂f has an s-monotone f -attentive localization at x̄ for v̄, yet f is not variationally s-convex at x̄
for v̄. In this example, v̄ ∈ ∂f(x̄) but v̄ ̸∈ ∂̂f(x̄),

Theorem 1 can be compared to Theorems 1 and 2 of the original paper on variational convexity
[10], with the first theorem directed at s = 0 and the second at s > 0. The key difference in statement
is that the previous results omitted (c′) and assumed the regularity of v̄ in both (c) and (d) (it’s
automatic in (a) and (b)), while speculating that it might be in fact be superfluous in both. Here we
resolve that issue by managing in Theorem 1 to drop that assumption in (c) and leave it out of (c′),
while ending further speculation by determining in Theorem 2 that it can’t be dropped from (d).

We reach this definitive improvement by taking a different route than in [10]. The proof is more
informative and at the same time avoids a recently identified troublespot in the earlier proof, where
at one place an uncertain property of the one-sided derivatives of lower-C1 functions [14, 10G] on IR is
taken for granted.4 The old argument put all the hardest effort into going directly from (d) to (a), but
the new argument goes from (d) to (c′) to (a). Novel to this subject, its success depends on appealing
at a critical point to the fact that a nonempty subset of a given open set can’t be both open and
closed relative to that set without being all of that set.

Although (c′) didn’t appear alongside of (c) originally in [10], it was explicitly brought out in [11,
Theorem 7] as implied by the variational convexity in (a). Obviously (c) is in principle an intermediate
property between (c′) and (d).

The full extent to which the equivalences in Theorem 1 might carry over to an infinite-dimensional
Hilbert space is unclear, because compactness techniques are central to our approach. The infinite-
dimensional results of Khanh, Khoa, Mordokhovich and Phat in [2] require assuming in the background
that f is already prox-regular, at some level at least. With that they were able in [2, Theorem 6.6]
to show the equivalence of (c) and (a), in particular, and therefore with (c′) as well. Whether their
prox-regularity assumption might be removed is an open question.

4Is the right derivative really continuous from the right, and the left derivative from the left, as it is with lower-C2

functions? The author thanks Khoa Vu at Wayne State University, Detroit, for bringing this to his attention.
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2 Proving the results

The counterexample behind Theorem 2, the initial item on our agenda, is one-dimensional. On IR, let
f(x) = min{x, 0}. The mapping ∂f : IR→→ IR is given then by

∂f(x) =


{0} for x > 0,
{0, 1} for x = 0,
{1} for x < 0.

Take x̄ = 0 and v̄ = 0, this being a general subgradient at x̄ that is not a regular subgradient. As
neighborhoods of x̄ and v̄ take X = (−1, 1) and V = (−1, 1) along with any ρ > 0. The corresponding
f -attentive localization of ∂f , obtained by intersecting gphρ∂f with X × V, is then the mapping

x 7→
{

0 if x ∈ [0, 1)
∅ if x ∈ (−1, 0).

That mapping is monotone, satisfying (1.7) for s = 0, yet f is not variationally convex at x̄. It does
not satisfy (1.8) for any convex function f̂ , regardless of any possible adjustment of the localization.

With Theorem 2 out of the way, we turn to Theorem 1. All the concerns there are local, so to
simplify notation and other aspects of the task ahead we can take

x̄ = 0, v̄ = 0, f(0) = 0, dom f bounded. (2.1)

We can further then reduce to the case where s = 0, because in terms of j(x) = 1
2 |x|2, the s-convexity

of f relative to some convex set is equivalent to the convexity of f − sj on that set, as is well known.
That translates into the variational s-convexity in (a) corresponding to the variational convexity of
f − sj. (Neighborhoods need adjustment in the translation, but that’s easy.) In the same vein, the
s-level uniform quadratic growth condition on f in (b) is equivalent to the 0-level version for f − sj,
which simple examination confirms. Because

∂[f − sj](x) = ∂f(x)− s∇j(x) = ∂f(x)− sx,

the s-monotone localizations of ∂f in (c) and (d) are equivalent to the existence of 0-monotone
localizations of f − sj. Thus, by establishing the equivalence in Theorem 1 in the case of s = 0, we
will establish it for every s.

The proof will proceed from here in the cycle of (a)⇒(b)⇒(d)⇒(c′)⇒(a), thereby covering (c)
because of it being a property stronger than (d) but weaker than (c′). Understanding first of all
that (a)⇒(b) is elementary. It’s seen from the definition of variational convexity at level s = 0
in its identification of the subgradient properties of f locally with those of a convex function f̂ ,
since (b) at level s = 0 is just the subgradient inequality of convex analysis. Understanding that
(b)⇒(d) for s = 0 is also elementary. The combination of having f(x1) ≥ f(x0) + ⟨v0, x1 − x0⟩ and
f(x0) ≥ f(x1) + ⟨v1, x0 − x1⟩ yields ⟨v1 − v0, x1 − x0⟩ ≥ 0.

In working next toward confirming that (d)⇒(c′), we can rely on a strengthened interpetation of
what it means for v̄ to be a regular subgradient of f at x̄ in the circumstances in (2.1). While by
definition it just means f(x) ≥ o(|x|), it can be replaced by the more powerful condition that

f(x) ≥ −h(x) for all x, equal only when x = 0, where
h is strongly convex and C1 with h(0) = 0, ∇h(0) = 0.

(2.2)
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This depiction of regularity goes back to [14, 8.5], which in turn was derived from a normal cone result
in [14, 6.11]. Although not made explicit in the statements of those results, the argument for [14, 6.11]
produced such an h as θ(|x|) for a function θ that happens also to be strongly convex.5

Now let g = f + h, a closed proper function having the same (bounded) effective domain as f . By
(2.2), g satisfies

g(x) > 0 for all x ̸= 0, g(0) = 0, (2.3)

and further, by the calculus rule for obtaining the subgradients of the sum of a function with a smooth
function [14, 8.8(c)], has

∂g(x) = ∂f(x) +∇h(x) for all x. (2.4)

Then the conjugate function g∗, having6 −g∗(y) = minx { g(x)− ⟨y, x⟩}, is finite convex and globally
Lipschitz continuous (that being equivalent to the boundedness of dom g) with

g∗(y) ≥ 0 for all y, while g∗(0) = 0 and ∇g∗(0) = 0. (2.5)

In convex analysis, the biconjugate function g∗∗ is the convex hull of g (no closure necessary because
of dom g being bounded), and

y ∈ ∂g∗∗(x) ⇐⇒ x ∈ ∂g∗(y) ⇐⇒ x ∈ convM(y)
for the mapping M : y 7→ argminx { g(x)− ⟨y, x⟩},

(2.6)

which is is nonempty-valued with closed graph,

gphM = { (y, x) | g(x) + g∗(y)− ⟨y, x⟩ ≤ 0, or equivalently, = 0}. (2.7)

From the subgradient relationship in (2.4) and the formula for the graph of M in (2.7) it’s apparent
that

M(y) ⊂ ∂g∗(y) and x ∈M(y) =⇒
{

f(x) = ⟨y, x⟩ − g∗(y)− h(x),
y −∇h(x) ∈ ∂f(x).

(2.8)

The properties of g∗ in (2.5), along with the boundedness and graphical closedness of its subgradient
mapping ∂g∗, tell us that, as y → 0, both g∗(y) → 0 and ∂g(y) → {0}. Hence by (2.8), there is a
neighborhood Y ⊂ V of 0 such that

x ∈M(y), y ∈ Y =⇒ (x, y −∇h(x)) ∈ X × V with f(x) < ρ. (2.9)

This has the consequence that M must be single-valued on Y, because having x0, x1 ∈ M(y) and
therefore y−∇h(xi) ∈ ∂f(xi) by (2.8) leads through our monotonicity assumption in (d) at level s = 0
to having

0 ≤ ⟨x1 − x0, [y −∇h(x1)]− [y −∇h(x0)]⟩ = −⟨x1 − x0,∇h(x1)−∇h(x0)⟩.

But ⟨x1 − x0,∇h(x1) −∇h(x0)⟩ > 0 unless x1 = x0 by the strong convexity of h in (2.2). Then ∂g∗

is single-valued on Y as well by (2.6), reducing in that case to a gradient mapping:

M(y) = ∇g∗(y) for y ∈ Y. (2.10)

5The argument, recast from normals to subgradients, starts from defining θ0(t) = − inf
{
f(x)

∣∣ |x− x̄| ≤ t
}
on [0,∞),

noting that this function is nondecreasing, lower semicontinuous and finite (as follows from f being lower semicontinuous).

It takes θ1(t) =
1
t

∫ 2t

t
θ0(s)ds and then defines θ2(t) =

1
t

∫ 2t

t
θ1(s)ds, showing that θ2 is convex, differentiable and ≥ θ0.

Finally, it sets θ(t) = θ2(t) + t2.
6The notation for the vector dual to x switches here from v to y in order to retain v for later in an appeal to (2.4) as

representing vectors v ∈ ∂f(x) as differences y −∇h(x).
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This reveals importantly that the graphical localization of M to the neighborhood Y × X of (0, 0) is
maximal monotone. So too then is the graphical localization of M−1 to X × Y, with

(X × Y) ∩ gphM−1 = (X × Y) ∩ gph ∂g∗∗

= (X × Y) ∩ gph ∂g = (X × Y) ∩ gph[∂f +∇h]. (2.11)

Although we have proceeded only from assuming monotonicity in the localization (X × V) ∩ gphρ∂f ,
we see from this that ∂f must be maximally monotone in a neighorhood X0 × V0 of (0, 0) within
X × V, because otherwise there would be a contradiction to the maximal monotonicity in (2.11).
Thus, (d)⇒(c′) is correct.

We turn now to verifying the final implication (c′)⇒(a), this task being the hardest. A similar
pattern to that of (d)⇒(c′) will be observed, but new and different ideas will also be brought in to cope
with a more challenging environment. We start in this case from having an open convex neighborhood
X × V of (0, 0) and a ρ > 0 such that the set

G := (X × V) ∩ gphρ∂f (2.12)

is a maximally monotone graph in X ×V. By [14, 2.6] there then exists a maximal monotone mapping
T : IRn →→ IRn such that

G = (X × V) ∩ gphT. (2.13)

Through Minty parameterization [14, 12.14+12.15], the mapping (T + rI)−1 for any r > 0 is single-
valued and Lipschitz continuous from IRn onto IRn with Lipschitz constant r−1. Relative to the open
convex set

Yr = { y = x+ rv) | (x, v) ∈ G}, with 0 ∈ Yr, (2.14)

it furnishes the representation

(x, v) ∈ G ←→ y ∈ Yr one-to-one, with x = (T + rI)−1(y), v = y − rx. (2.15)

By [14, 8.47], every pair (x, v) ∈ G can be approximated arbitrarily closely by a pair (x, v) ∈ G in
which v is a proximal subgradient of f at x, thereby satisfying

f(x′) ≥ f(x) + ⟨v, x′ − x⟩ − r

2
|x′ − x|2

locally around x for some r > 0. Because dom f is bounded, this inequality can be made global,
moreover strict away from x, merely by increasing r if necessary. Then, in terms of the function

gr = f + rj for j(x) = 1
2 |x|2, having ∂gr = ∂f + rI, gr(0) = 0, 0 ∈ ∂gr(0) (2.16)

by (2.1), the strict global inequality can be rewritten as

gr(x
′)− ⟨y, x′⟩ > gr(x)− ⟨y, x⟩ for all x′ ̸= x, where y = v + rx. (2.17)

That way, in describing th “globally proximal” subgradient relationship for pairs (x, v) by the nested
families of sets

Grprox := { (x, v) | (2.17) holds }, Yr
prox = { y = v + rx | (x, v) ∈ Grprox}, (2.18)

we have
⋃

r>0 Grprox ∩ G dense in G and
⋃

r>0 Yr
prox ∩ Yr dense in Yr. Furthermore, in terms of the

mapping Mr : IR
n →→ IRn defined by

Mr(y) := argminx

{
gr(x)− ⟨y, x⟩

}
(2.19)
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we have that Mr is single-valued on Yr
prox, with the unique x = Mr(y) having (x, y − rx) ∈ Grprox.

However, then by (2.5),

Mr(y) = {(T + rI)−1(y)} when y ∈ Yr
prox ∩ Yr, (2.20)

while also more generally,

Mr(y) = {(T + rI)−1(y)} on Or := { y |Mr(y) ⊂ X , y − rMr(y) ⊂ V} ⊂ Yr. (2.21)

Although potentially set-valued in general, apart from (2.20) and(2.21), the mappingMr has closed
graph and is everywhere nonempty-valued with Mr(y) ⊂ dom f (bounded). Moreover

convMr(y) = ∂g∗r (y) for g∗r (y) = maxx { ⟨y, x⟩ − gr(x)}, (2.22)

as will be recalled from the pattern in the proof of (d)⇒(c′), but here with gr = f + rj instead of
g = f + h. From the graphical closedness and local boundedness, the set Or in (2.12) is open [14,
5.19]. On the other hand, the set

Cr := { y ∈ Yr |Mr(y) = {(T + rI)−1(y)}}

is closed relative to Yr. We have from (2.20) and (2.21) that

Yr
prox ∩ Yr ⊂ Cr ⊂ Or ⊂ Cr,

where the first set on the left is nonempty, at least when r is large enough, through the density of the
union of such sets in Y. Thus Cr and Or are actually the same nonempty subset of Yr, simultaneously
open and closed relative to Yr. However, the only such set, lacking a boundary point, is Yr itself. We
must have

Mr(y) = {(T + rI)−1(y)} = ∇g∗r (y) for all y ∈ Yr, (2.23)

where the gradient comes in through (2.22) and the fact that a convex function is differentiable at a
given point if and only if its subgradient set is a singleton. Note from the equation in (2.23) that,
because gphMr = { (x, y) | gr(x) + g∗r (y) = ⟨x, y⟩} by (2.19) and (2.22), we have

y ∈ Yr, x = ∇g∗r (y) =⇒ g∗∗r (x) = gr(x) = ⟨y, x⟩ − g∗r (y) with y ∈ ∂g∗∗r (x) (2.24)

and in particular out of (2.16)

g∗r (0) = 0, ∇gr(0) = 0, g∗∗r (0) = 0, 0 ∈ ∂g∗∗r (0). (2.25)

Recall now that (T + rI)−1 is Lipschitz continuous with Lipschitz constant r−1. By (2.23), this
property is inherited by ∇g∗r on Yr, so |∇g∗r (y1)−∇g∗r (y0)| ≤ r−1|y1− y0| for y0, y1 ∈ Yr. Then, since
Yr is a convex set, we have for any y, y′ ∈ Yr

g∗r (y
′)− g∗r (y)− ⟨∇g∗r (y), y′ − y⟩ =

∫ 1

0
⟨∇g∗r (y + t(y′ − y))−∇g∗r (y)⟩, y′ − y⟩dt,

where ⟨∇g∗r (y + t(y′ − y))−∇g∗r (y)⟩, y′ − y⟩ ≤ r−1t|y′ − y|2. In consequence,

g∗r (y
′) ≤ g∗r (y) + ⟨∇g∗r (y), y′ − y⟩+ r−1j(y′ − y) for all y, y′ ∈ Y∗

r .
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Putting this another way, we have for any y ∈ Yr that

g∗r ≤ qr,y + δclYr on IRn for qr,y(y
′) = g∗r (y) + ⟨∇g∗r (y), y′ − y⟩+ r−1j(y′ − y).

This dualizes through conjugacy and the sum rule in [14, 11.23] to

g∗∗r ≥ (qr,y + δclYr)
∗ on IRn with (qr,y + δclYr)

∗ = q∗r,y σclYr
, (2.26)

where σclYr
is the support function of clYr [14, 11.4] and stands for epi-addition [14, 1H] (infimal

convolution). With respect to the vector x = ∇g∗r (y) we can take advantage of (2.24) to re-express

qr,y(y
′) = −g∗∗r (x) + ⟨x, y′⟩+ r−1j(y′ − y),

and then calculate

q∗r,y(x
′) = supy′ { ⟨y′, x′⟩ − qr,y(y

′)} = supu { ⟨y + u, x′⟩ − qr,y(y + u)}
= supu { ⟨y + u, x′⟩+ g∗∗r (x)− ⟨x, y + u⟩ − r−1j(u), }
= g∗∗r (x) + ⟨y, x′ − x⟩+ supu { ⟨u, x′ − x⟩ − r−1j(u)}
= g∗∗r (x) + ⟨y, x′ − x⟩+ rj(x′ − x),

(2.27)

inasmuch as (r−1j)∗ = rj, getting as a byproduct of that

∇q∗r,y(x′) = y + r(x′ − x). (2.28)

By definition, [q∗r,y σclYr
](x′) is the minimum of q∗r,y(x

′ − x′′) + σclYr
](x′′) in x′′, which is sure to

be attained uniquely because of the quadratic function q∗r,y is strongly convex. According to the
elementary optimality condition for this minimum, it is attained at x′′ if and only if ∇q∗r,y(x′) belongs
to the set of subgradients of σclYr

at x′′. That set is in the boundary of clYr if x′′ ̸= 0, whereas for
x′′ = 0 it is all of clYr. Therefore, as long as ∇q∗r,y(x′) lies in the open set Yr, the minimum will be
attained at x′′ = 0, and [q∗r,y σclYr

](x′) will agree with q∗r,y(x
′). Through (2.27) and (2.28) we can

translate (2.26) now to

g∗∗r (x′) ≥ g∗∗r (x) + ⟨y, x′ − x⟩+ rj(x′ − x) when y + r(x′ − x) ∈ Yr, (2.29)

where, since x is ∇g∗r (y),

y + r(x′ − x) ∈ Yr ⇐⇒ x′ ∈ r−1(Yr − y) +∇g∗r (y). (2.30)

We are looking at this for y ∈ Yr and can appeal to having ∇g∗r (y)→ 0 as y → 0 by (2.25) and to the
notation

IB = the closed unit ball in IRn

to see in (2.29) and (2.30) that there exist λ > 0 and κ > 0 such that κIB ⊂ Yr and when y ∈ κIB
also λIB ⊂ r−1(Yr − y) +∇g∗r (y). Then (2.29) and (2.30) give us

g∗∗r (x′) ≥ g∗∗r (x) + ⟨y, x′ − x⟩+ rj(x′ − x) for all x′ ∈ λIB when y ∈ κIB.

Using j(x′ − x) = j(x′) + j(x)− ⟨x, x′⟩, we can write this as in terms of the vector v = y − rx ∈ V as

g∗∗r (x′)− rj(x′) ≥ g∗∗r (x)− rj(x) + ⟨v, x′ − x⟩ for all x′ ∈ λIB when y ∈ κIB. (2.31)

Here from (2.16) and (2.24) we have g∗∗r (x) − rj(x) = gr(x) − rj(x) = f(x) while on the other
hand g∗∗r (x′) − rj(x′) ≤ gr(x

′) − rj(x′) = f(x′). The inequality in (2.31) comes out that way as
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f(x′) ≥ f(x) + ⟨v, x′ − x⟩ for all x′ ∈ λIB, or [f + δλIB](x
′) ≥ f(x) + ⟨v, x′ − x⟩ for all x′ ∈ IRn.

Therefore, in taking
f̂ = conv[f + δλIB] = (f + δλIB)

∗∗,

we get a closed proper convex function that satisfies

f̂(x′) ≥ f̂(x) + ⟨v, x′ − x⟩, f(x′) ≥ f̂(x′), f(x) = f̂(x),
for x′ ∈ λIB when x = ∇g∗r (y), v = y − rx, with y ∈ κIB.

(2.32)

Remember next that the conditions on x and v in (2.32) entail (x, v) belonging to the localization G
of ∂f from which we began. There is then a neighborhood X ′ ×V ′ small enough that, on the basis of
(2.32), we have

f̂(x′) ≥ f̂(x) + ⟨v, x′ − x⟩, f(x′) ≥ f̂(x′), f(x) = f̂(x)
for x′ ∈ X ′ whenever (x, v) ∈ G′ = (X ′ × V ′) ∩ gphρ∂f,

(2.33)

with the G′ localization inheriting maximal monotonicity in X ′ × V ′ from that of G in X × V. In
particular by (2.33), the pairs (x, v) ∈ G′ belong to gph ∂f̂ . But ∂f̂ is a monotone mapping, so there
can’t be any pairs (x, v) ∈ (X ′ × V ′) ∩ gph ∂f̂ other than these, because that would contradict the
maximality of G′. The requirements of variational convexity in (a) at level s = 0 are therefore satisfied,
and the proof of Theorem 1 is finished.
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