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Abstract

Generalized Nash equilibrium is updated by a formulation in terms of extended-real-valued
functions being minimized by the agents. Tools of variational analysis are employed to investigate
how a local equilibrium, focused on local solutions in the minimization, might respond to perturba-
tions of the parameters on which the agents’ problems depend. Stability properties in this setting
of competitive multiple-agent optimization are developed and contrasted with those already known
for single-agent optimization in understanding solution robustness.

However, the purpose of the investigation goes beyond these results, in themselves, to the
deeper issue of whether the concept of Nash equilibrium is adequate for the constructive modeling
of agent interactions. To be meaningful, an equilibrium needs to be well-posed in reflecting natural
tendencies and circumstances instead of something fragile and ephemeral.

Unfinished business is indicated with unanswered questions, and a mathematical landscape is
thereby revealed where much more remains to be explored.
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1 Introduction

In the original framework of Nash equilibrium with agents k = 1, . . . , N , there are strategy sets Ck

and functions fk of x = (x1, . . . , xN ) ∈ C1×· · ·×CN . An equilibrium is an x̄ = (x̄1, . . . , x̄N ) such that,
for each k, x̄k minimizes fk(xk, x̄−k) subject to xk ∈ Ck.

2 A generalized Nash equilibrium allows Ci to
depend on x−k. But this distinction, while useful for technical reasons in the past, seems antiquated
and artificial today, when constraints are often represented by letting ∞-values signal infeasibility.

In concentrating on situations where the agents’ problems are in the category of finite-dimensional
“continuous” optimization, we can jump to supposing that the interests of agent k are captured by an
extended-real-valued function fk on all of IRn := IRn1 × · · · × IRnN and think of an equilibrium as an
instance of x̄ = (x̄1, · · · , x̄N ) such that, for each k, x̄k minimizes fk(xk, x̄−k) over IR

n. But why insist
on a global minimum, which could pose an insurmountable obstacle for an agent? In natural concept,
shouldn’t an equilibrium be local, or perhaps merely reflect a sort of stationarity in a conflict of forces
or interests?

Whatever the perspective, new challenges emerge in this extended framework for which the tra-
ditional methodology of game theory is likely inadequate, but which might be resolved with the help
of the finite-dimensional variational analysis available now for instance in [12]. The purpose of this
paper is to point out key issues and make some initial progress, while articulating facts and concepts
that others could take up in making further progress.

An important question, of course, is how to know when an equilibrium of theory an extended
kind is guaranteed to exist. Standard existence theorems in game theory largely rely on fixed-point
theorems like that of Kakutani, in which some possibly set-valued mapping takes a compact convex
set into itself. Is there a way of adapting such methodology to the proposed new setting? Another
important question is how an equilibrium might be determined through sequential interactions of the
agents or a numerical algorithm. This could also be a route to establishing existence constructively.

The question we will mainly work toward answering here, though, is how to assess the robustness
of an existing equilibrium. This has its own importance, but it also relates strongly to the question
of computations. If an equilibrium is so delicate that it falls apart irrevocably under a tiny shift in
underlying data, such as could come from numerical errors in representation, what hope would there
be in computing it, or that agents might naturally arrive at it? Knowledge about robustness could
also influence approaches to existence, which might be tuned to equilibrium of a superior quality.

This brings out a deeper reason behind our investigation. Is the concept of Nash equilibrium even
a “good” concept for the mathematical modeling of agent interactions? In our view, stability issues
pose a key test for that. It’s crucial therefore to get a clear picture of their strengths and weaknesses
in this context. From that picture, it can be hoped that local existence or prevalence, at least, can be
constructively established. If not, the concept might lose its appeal and need reworking with added
features that counter volatility.

To address robustness, we formally introduce a general parameter vector p ∈ IRd and suppose

each agent has an extended-real-valued function φk of (x, p) ∈ IRn × IRd (1.1)

that is proper (not ≡ ∞ and never having value −∞) and lsc (lower semicontinuous). We define a
local generalized Nash equilibrium for p̄ to be an x̄ such that

φk(xk, x̄−k, p̄) has a local minimum in xk at x̄k, ∀k, (1.2)

2Here x−k is, as usual in Nash theory, the vector obtained when xk is deleted from x = (x1, . . . , xN ). It’s customary
to sometimes write fk(xk, x−k) instead of fk(x1, . . . , xN ) for notational convenience, without really meaning that the
vector components x1, . . . , xN of x have been permuted.
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where of course the minimization is implicitly over the (not necessarily closed) set

Ck(x̄−k, p̄) = {xk |φk(xk, x̄−k, p̄) < ∞}.

In terms of the general subgradients of variational analysis [12, Definition 8.3],3 we immediately have
at our disposal, as necessary for (1.2), the first-order “stationarity” conditions

0 ∈ ∂xk
φk(x̄k, x̄−k, p̄), ∀k, (1.3)

which we regard as describing a variational generalized Nash equilibrium for p̄. Of course, convexity of
φk(xk, x−k, p) in xk would turn the necessity in (1.3) into sufficiency. Then from both angles we would
have in fact a global generalized Nash equilibrium. But Nash theory ought to be able to accommodate
nonconvex optimization problems for the agents as well. For that, second-order sufficient conditions
for local optimality in variational analysis could be added to the first-order conditions in (1.3) in order
to guarantee (1.2). Anyway, the stability analysis of equilibrium could be centered on the variational
solution mapping associated with (1.3), namely

S0(p) := {x | 0 ∈ Φ(x, p)}, where Φ(x, p) = (∂x1φ1(x, p), . . . , ∂xNφN (x, p)). (1.4)

In a graphically localized sense [2], might S0 be single-valued, even Lipschitz continuous? Might it
then have one-sided directional derivatives governed by formulas in terms of the functions φk?

Among the many motivations for our efforts is the robustness issue already brought up. Might an
equilibrium described by (1.2), as reflected in (1.3), be seriously disrupted by a slightest shift of p̄ to
some nearby p? However, there are also issues of interest at a higher level. We could be dealing with
a hierarchical set-up, where a “principal agent” is selecting p in an upper problem of optimization
which depends on the outcome of that selection in the equilibrium response of the “underling” agents
k = 1, . . . , N .4 We could even, in that vein, be looking at a problem of control where a time-dependent
choice of p(t) is envisioned as inducing an equilibrium trajectory x(t).

In a previous paper [8], we studied the local version of classical Nash equilibrium that corresponds
here in specialization to taking

φk(xk, x−k, p) = fk(xk, x−k, p) + δCk
(xk) for fk in C2 and Ck closed convex. (1.5)

The variational description in (1.3) comes out then, in terms of normal cones to the sets Ck, as the
collection of variational inequalities

−∇xk
fk(x̄k, x̄−k, p̄) ∈ NCk

(x̄k), ∀k, (1.6)

or equivalently as the single variational inequality

−(∇x1f1(x̄, p̄), . . . ,∇xN fN (x̄, p̄)) ∈ NC1×···×CN
(x̄). (1.7)

Results for parameterized variational inequalities in the book [2] were applied in this setting in [8].
An obvious next stage would be to replace the fixed Ck in (1.5) by a set Ck(x−k, p) designated by

constraints of nonlinear programming type,

Ck(x−k, p) = {xk ∈ Xk |Fk(xk, x−k, p) ∈ Kk} for a closed convex set Xk ⊂ IRnk ,

a closed convex cone Kk ⊂ IRmk , and a C2 mapping Fk : IRn × IRd → IRmk ,
(1.8)

3For φ proper and lsc, v ∈ ∂φ(x) if there exist sequences vν → v and xν → x with φ(xν) → φ(x) such that
φ(x) ≥ φ(xν) + vν ·[x− xν ] + o(|x− xν |).

4Recently, a local generalized Nash model for this was taken up in [1].
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and investigate when

fk(xk, x̄−k, p̄) has a local minimum in xk ∈ Ck(x̄−k, p̄) at x̄k, ∀k. (1.9)

Then, with seeming simplicity, the variational description analogous to (1.6) has the form

−∇xk
fk(x̄k, x̄−k, p̄) ∈ NCk(x̄−k,p̄)

(x̄k), ∀k, (1.10)

while the one in (1.7) becomes

−(∇x1f1(x̄, p̄), . . . ,∇xN fN (x̄, p̄)) ∈ NC1(x̄−1,p̄)×···×CN (x̄−N ,p̄)(x̄). (1.11)

The catch, though, is that, unless Ck(x̄−k, p̄) is a convex set, the normal cone in (1.10) is no longer
the one of convex analysis but rather the more broadly defined one of variational analysis [12]. The
condition on x̄k in (1.10) is then a nontraditional “extended” variational inequality. And even with
convexity of every Ck(x̄−k, p̄), the joint condition in (1.11) lies outside usual mathematical territory.

Nonetheless, there is a well known work-around in the face of these difficulties that relies on an
appeal to Lagrange multipliers. The Lagrangian function associated with minimizing fk(xk, x−k, p)
subject to constraining xk to the set Ck(x−k, p) in (1.8) is

Lk(xk, yk, x−k, p) = fk(xk, x−k, p) + yk·Fk(xk, x−k, p) for
(xk, yk) ∈ Xk × Yk, where Yk is the convex cone polar to Kk.

(1.12)

Under the basic constraint qualification for (1.8) that5

−∇xk
Fk(x̄k, x̄−k, p̄)

∗yk ∈ NXk
(x̄k)

with yk ∈ NKk
(Fk(x̄k, x̄−k, p̄)

}
=⇒ yk = 0, (1.13)

there is the formula (cf. [12, 6.14]) that

−∇xk
fk(x̄k, x̄−k, p̄) ∈ NCk(x̄−k,p̄)

(x̄k)

⇐⇒
{

∃ȳk ∈ NKk
(Fk(x̄k, x̄−k, p̄) such that

−∇xk
fk(x̄k, x̄−k, p̄)−∇xk

Fk(x̄k, x̄−k, p̄)
∗ȳk ∈ NXk

(x̄k)

⇐⇒ (−∇xk
Lk(x̄k, ȳk, x̄−k, p̄),∇ykLk(x̄k, ȳk, x̄−k, p̄)) ∈ NXk×Yk

(x̄k, ȳk),

(1.14)

where the final condition is a variational inequality of standard type, since Xk × Yk is a convex set.
This brings us to the notion of a Lagrangian generalized Nash equilibrium as described by

(−∇xk
Lk(x̄k, ȳk, x̄−k, p̄),∇ykLk(x̄k, ȳk, x̄−k, p̄)) ∈ NXk×Yk

(x̄k, ȳk), ∀k, (1.15)

which in the manner of passing from (1.10) to (1.11) can likewise be written as a single variational
inequality of standard type over the product of the setsXk×Yk. Adopting the Lagrangian model (1.15),
as an acceptable substitute for the equilibrium in (1.9) or (1.10) under (1.8), requires a philosophical
adjustment. The game must be viewed in terms of the “strategy” of agent k consisting not just a
locally optimal solution x̄k, but (x̄k, ȳk), where ȳk is a Lagrange multiplier vector associated with that
solution. Of course, in circumstances where ȳk is uniquely determined by x̄k, the strategy distinction
falls away.

Philosophy aside, the fact that a Lagrangian generalized Nash equilibrium takes the form of a
parameterized variational inequality of standard type opens the way for stability analysis it in the
manner undertaken for classical Nash equilibrium in [8]. That would be valuable to pursue, for
greater understanding of equilibrium as in (1.9) with respect to constraints as in (1.8). But our focus
instead will be on how the broader model in (1.2) and (1.3) may successfully be handled by other
techniques than those from [2] utilized in [8]. We will get back to that in Section 3 after laying some
groundwork in Section 2 about what is known for single-agent optimization.

5The transpose of a matrix A is denoted here by A∗.
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2 Stability of a local minimum

Basic to our aims is a solid understanding of when a locally optimal solution to minimizing a function
that depends on parameters is “stable” with respect to that dependence. We can’t hope to make
progress with perturbations of a local generalized Nash equilibrium as in (1.2) without first knowing
how a local minimum of φk(xk, x−k, p) with respect to xk might behave in its dependence on (x−k, p).

Fortunately, we can draw on a lot of theory that is already in place for the general case in some
IRn of local minimizers in x of

φ(x, u)− v·x for proper lsc function φ on IRn × IRm, (2.1)

where the vector u ∈ IRm has a broad role like our earlier p, to be studied around a nominal ū such
as ū = 0, but the vector v expressly gives tilt perturbations to be studied around v̄ = 0. Those tilt
perturbations could obviously be absorbed into the specification of u, but long experience in sensitivity
analysis in optimization has shown that their role is so fundamental to developments of theory that
an explicit treatment is essential.

In fact, we can best begin by looking at tilt perturbations v in the absence of parameterization by
a general u. Consider a proper lsc function f on IRn and a point x̄ at which f has a local minimum,
where accordingly 0 ∈ ∂f(x̄). A good question to ask is what the effect on local minimization might
be when f(x) is perturbed to f(x) − v·[x − x̄] for a vector v ̸= 0 giving a small “tilt” that doesn’t
affect the function value at x̄ itself. Will x̄ be shifted to a nearby unique x(v)? The following precisely
formulated property enters the discussion.

Definition 2.1 (tilt stability of a local minimum [7]). A local minimizer x̄ of f is tilt stable if there
is a neighborhood X of x̄ along with a neighborhood V of v = 0 such that the mapping

M : v ∈ V 7→ argmin
x∈X

{
f(x)− v·[x− x̄]

}
= argmin

x∈X

{
f(x)− v·x

}
(2.2)

is single-valued and Lipschitz continuous on V with M(0) = x̄.

This turns out to be intimately related to another property in variational analysis which may
initially seem puzzling but lies behind the answers to many questions.

Definition 2.2 (variational convexity [9]). The function f is variationally convex at a point x̄ for
v̄ ∈ ∂f(x̄) if there are exist δ > 0 and neighborhoods X of x̄ and V of v̄, as well as a proper lsc convex
function h, such that for some choice of

G = { (x, v) ∈ X × V | f(x) ≤ f(x̄) + δ} with δ > 0, X × V a nbhd. of (x̄, v̄), (2.3)

not only G ∩ gph ∂h = G ∩ gph ∂f , but also h(x) = f(x) for all (x, v) in that common intersection.
Variational strong convexity has h not just convex but strongly convex.

In essence, such variational convexity means that, in a local sense, the behavior of f and its
subgradients can’t be distinguished from the behavior associated with a convex function. Here, our
interest centers on strong variational convexity in the case of v̄ = 0 and its important connection with
tilt stability, together with with characterizations by a locally uniform quadratic growth condition
and by subgradient strong monotonicity. For the full statement of this, recall that v̄ is a regular
subgradient of f at x̄ in [12] when6

f(x) ≥ f(x̄) + v̄·[x− x̄] + o(|x− x̄|), (2.4)

which is equivalent by [12, 8.5] to the existence of a function g ≤ f with g(x̄) = f(x̄) such that g is
differentiable at x̄ and ∇g(x̄) = v̄.

6The canonical norm of x in IRn is denoted by |x|.
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Theorem 2.3 (criteria for tilt stability [9]). The following properties are equivalent. They ensure
tilt stability, and with it, for (x, v) close enough to (x̄, 0), the sufficiency as well as the necessity of the
first-order condition v ∈ ∂f(x) for x to be a local minimizer of f(x)− v·x:

(a) f is variationally strongly convex at x̄ for the subgradient v̄ = 0.
(b) ∃σ > 0 and G as in (2.3) such that

v ∈ ∂f(x), (x, v) ∈ G =⇒ f(x′) ≥ f(x) + v·[x′ − x] +
σ

2
|x′ − x|2, ∀x′ ∈ X . (2.5)

(c) v̄ is a regular subgradient of f at x̄, and ∃σ > 0 and G as in (2.3) such that

(x′ − x)·(v′ − v) ≥ σ|x′ − x|2 for all (x, v), (x′, v′) ∈ G, (2.6)

Although the particular G might need adjustment in passing between these equivalent properties,
the same values of σ serve in (b) and (c) and correspond to the reciprocals of the Lipschitz constants
that can serve for the mapping (2.2) in tilt stability.

In passing from minimizing f(x) to minimizing φ(x, u) in x with u as a general parameter, there is
good reason, from the facts just laid out, to keep the influence of tilt parameters v on solution stability
directly in view.

Definition 2.4 (full stability of a local minimum [3]). With respect to the parameterization by u, a
local minimizer x̄ of φ(x, ū) is a fully stable local minimum if there are neighborhoods X of x̄, U of ū
and V of v̄ = 0, such that the mapping

M : (u, v) ∈ U × V 7→ argmin
x∈X

{
φ(x, u)− v·[x− x̄]

}
(2.7)

is single-valued and Lipschitz continuous on U × V with M(ū, 0) = x̄.

Of course, the full stability in the definition entails the single-valuedness and Lipschitz continuity
of the mapping

M0 : u ∈ U 7→ argmin
x∈X

φ(x, u) with M0(ū) = x̄, (2.8)

since M0(u) = M(u, 0). It’s mathematically difficult, though, to put together a toolbox for verifying
such stability just in u without dealing somehow also with v.

On the other hand, in incorporating tilt stability, full stability not only asks for it in the minimiza-
tion of φ(x, u) in x for u = ū, but for a uniform version of it as u ranges over a neighborhood U of
ū. Tilt stability is itself required in this way to be stable with respect to perturbations of ū. But not
only tilt stability; all the properties for it in Theorem 2.3, such as variational strong convexity, must
likewise then hold “uniformly” for the functions φ(·, u) when u ∈ U at their minimizers. In particular
as well, from Theorem 2.3,

for (x, u, v) close enough to (x̄, ū, 0), the condition v ∈ ∂x∂φ(x, u) is
sufficient, as well as necessary, for x to be a local minimizer in (2.8).

(2.9)

A criterion for full stability is available from [3] in terms of coderivatives of the mapping ∂xφ :
IRn × IRm →→ IRn. By definition [12, 8G], the graph of the coderivative mapping

D∗[∂xφ](x, u |v) : IRn → IRn × IRm at (x, u) for v ∈ ∂xφ(x, u) (2.10)

consists of all (v′, x′, u′) such that (x′, u′,−v′) belongs to the normal cone to gph ∂xφ at (x, u, v).
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Theorem 2.5 (coderivative criterion for full stability [3]). Let φ(x, u) = h(H(x, u)) for a C2 mapping
H : IRn × IRm → IRq and proper lsc convex function h on IRq. Suppose the first-order condition
0 ∈ ∂xφ(x̄, ū) holds along with the constraint qualification

z ∈ ∂h(H(x̄, ū)), ∇xH(x̄, ū)∗z = 0 =⇒ z = 0. (2.11)

Then, for x̄ to be a fully stable local minimizer of φ(x, ū), it is both necessary and sufficient that
(a) (ω, η) ∈ D∗[∂xφ](x̄, ū |0)(ξ), ξ ̸= 0 =⇒ ω·ξ > 0, and
(b) (0, η) ∈ D∗[∂xφ](x̄, ū |0)(0) =⇒ η = 0.

This specializes [3, Theorem 2.3] by combining it with the result in [3, Proposition 2.2] about
“strong amenability,” which concerns the availability of a description of φ as a composite function of
the kind we have introduced here in the theorem’s statement. Functions φ fitting this pattern are
widespread in optimization. The “generalized nonlinear programming” studied in [11], for instance,
has φ(x, u) = f0(x)+ g(F (x)+u). Ordinary nonlinear programming is the case of that where g is the
indicator of a standard constraint cone K, a product of intervals (−∞, 0] and [0, 0] = {0}.

A strong point about Theorem 2.5 is that, with such great sweep, it identifies what is both necessary
and sufficient for the full stability of a local minimizer. However, in order to apply it, an exact or at
least estimating-type of formula is needed for the coderivatives (2.10) of ∂xφ in terms of the h and H
in the composition.

We furnish next an example of an exact such formula from [4, Theorem 3.1] that’s valid under a
restriction beyond the constraint qualification in (2.11). That constraint qualification already yields
for (x, u) near (x̄, v̄) the subgradient formula

∂xφ(x, u) = { v = ∇xH(x, u)∗z | z ∈ ∂h(H(x, u)) }, (2.12)

where in general more than one z could yield the same v. In replacing the constraint qualification
(2.11) by the stronger full rank condition

∇H(x̄, ū)∗z = 0 =⇒ z = 0, i.e., rank∇H(x̄, ū) = q, (2.13)

which propagates by continuity to ∇H(x, u) for (x, u) close to (x̄, ū), we ensure there is exactly one
z for each v in (2.12). The coming formula utilizing this reduces the questions about coderivates of
∂xφ to questions about coderatives of h, for which we utilize the second-order subdifferential notation

∂2h(w |z) = D∗[∂h](w |z) for z ∈ ∂h(w). (2.14)

Theorem 2.6 (full rank coderivative formula [4]). Let φ(x, u) = h(H(x, u)) for a C2 mapping H :
IRn × IRm → IRq and proper lsc convex function h on IRq. Suppose that the first-order condition
0 ∈ ∂xφ(x̄, ū) holds and ∇H(x̄, ū) satisfies the full rank condition (2.13). Let

h0(x, u) = z0·H(x, u) for the unique z0 at (x, u, v) = (x̄, ū, 0) in (2.12). (2.15)

Then

(ω, η) ∈ D∗[∂xφ](x̄, ū |0)(ξ) ⇐⇒ ∃ ζ ∈ ∂2h(H(x̄, ū) |z0)(∇xH(x̄, ū)ξ )
with ω = ∇2

xxh0(x̄, ū)ξ +∇xH(x̄, ū)∗ζ, η = ∇2
xuh0(x̄, ū)ξ +∇uH(x̄, ū)∗ζ.

(2.16)

Plugging this into Theorem 2.5 to obtain a necessary and sufficient condition for full stability under
the full rank condition, we see that the condition in (a) turns into a sort of strong positive-definiteness,

0 < ξ·∇2
xxh0(x̄, ū)ξ + ξ·∇xH(x̄, ū)∗ζ

∀ζ ∈ ∂2h(H(x̄, ū) |z0)(∇xH(x̄, ū)ξ )

}
when ξ ̸= 0, (2.17)
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while the condition in (b) then comes down to just

∇uH(x̄, ū)∗ζ = 0 for all ζ ∈ ∂2h(H(x̄, ū) |z0)(0). (2.18)

It remains still to work out second-order subdifferentials of h that appear in these conditions, but
there are plenty of formulas for that available in [5]. There, and further in [6], more can be found
about full stability than in the original paper [3].

As may have been noticed, Theorem 2.5 appears to offer something more about pure tilt stability
than was recorded in Theorem 2.3. Pure tilt stability resurfaces when

φ(x, u) = f(x), D∗[∂xφ](x |u) = ∂2f(x | ū). (2.19)

Then (b) of Theorem 2.5 departs, and we are left with its partner (a) in the form that

ω ∈ ∂2f(x̄ |0)(ξ), ξ ̸= 0 =⇒ ω·ξ > 0. (2.20)

Couldn’t this criterion be added to Theorem 2.3, say as (d) in the list of properties there? No, the
equivalence of (2.20) is only available for functions f less general than the ones in Theorem 2.3. In [7],
it was achieved under an assumption on f of “continuous prox-regularity.” We have avoided getting
into the technicalities of that here in favor of structure as in Theorem 2.5 which supports the extra
assumption, while being easier to appreciate. In the setting of (2.19), this asks for f to be of the
composite form f(x) = h(H(x)) for a proper lsc convex function h and C2 mapping H, and for x̄ with
0 ∈ ∂f(x̄) to satisfy the constraint qualification that no nonzero z ∈ ∂h(H(x̄)) has ∇H(x̄)∗z = 0.

3 Stability of a local equilibrium

Back in the extended formulation of generalized Nash equilibrium introduced in (1.1), we were looking
in particular at x̄k being a local minimizer of φk(xk, x̄−k, p̄), an instance of parameterized minimization
in xk having (x−k, p) as parameter vector. In taking up the study of equilibrium stability, in the light
now of the theory in Section 2, we have clear guidance for dealing with this. We ought naturally to
concentrate on the case of a strong local equilibrium, where

x̄k is a fully stable minimizer of φk(xk, x̄−k, p̄), ∀k, (3.1)

in the sense of Definition 2.4 and parameter uk = (x−k, p), for which we have, in line with (2.9), that

for (xk, x−k, p, vk) close enough to (x̄k, x̄−k, p̄, 0), the condition
vk ∈ ∂xk

φk(xk, x−k, p) is sufficient, as well as necessary, for
xk to be a local minimizer of φk(xk, x−k, p)− vk·[xk − x̄k].

(3.2)

A local equilibrium (1.2) is then the same as a variational equilibrium (1.3), and we can rely on what
variational analysis might tell us about the solution mapping S0 in (1.4) the Φ behind it, with

(v1, . . . , vN ) ∈ Φ(x1, . . . , xN , p) ⇐⇒ vk ∈ ∂xk
φk(xk, x−k, p), ∀k. (3.3)

But with considerations of tilt stability looming, the solution mapping S0 in (1.4) should clearly now
be upgraded to

S(p, v) = {x | v ∈ Φ(x, p)}. (3.4)

To set a goal, we can begin by formulating for generalized Nash equilibrium in our extended sense
the analogue of full stability in optimization.
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Definition 3.1 (full stability of a local equilibrium). In parameterization by p, a local equilibrium x̄
as in (1.2) for p̄ is fully stable if there are neighborhoods P of p̄, X = X1×· · ·×XN of x̄ = (x̄1, . . . , x̄n)
and V = V1 × · · · × VN of v̄ = (v̄1, . . . , v̄N ) = (0, . . . , 0), such that the mapping

M : (p, v) ∈ P × V 7→
{
x
∣∣∣xk ∈ argmin

xk∈Xk

{φk(xk, x−k, p)− vk·[xk − x̄k]}, ∀k
}

(3.5)

is single-valued and Lipschitz continuous on P × V with M(p̄, 0) = x̄.

For a strong local equilibrium (3.1), accompanied by (3.2) and at the center of our attention, M
is the graphical localization of the solution mapping S in (3.4) obtained by

gphM = [P × V × X ] ∩ gphS (3.6)

Again, the tilt parameters could be set to 0, and we would have a mapping M0 : p ∈ P 7→ x = M(p, 0)
localizing the original solution mapping S0 in (1.4), with gphM0 = [P × X ] ∩ gphS0. But the effects
of tilts need direct scrutiny from the perspective of equilibrium, just as they did in optimization.

It might be imagined that the full stability in Definition 3.1 would encompass full stability in the
agents’ optimization problems, but that’s not true. That agent-wise stability in xk concerns responses
to shifts (p, v) away from (p̄, 0) while x−k is fixed at x̄−k. In the equilbrium setting, such a shift
requires an adjustment from x̄ to x that involves all the agents’ strategies simultaneously.

By the same token, the uniqueness in local optimality that accompanies full stability for the agents’
problems in (3.5), which allows the “xk ∈ argmin” there to be replaced by “xk = argmin,” can’t be
expected to guarantee in (3.5) that M itself is single-valued. The minimization problems aren’t
independent; they interact with each other, and that’s of course the essence of Nash equilibrium.

Putting p perturbations aside temporarily and focusing entirely on v perturbations will help in
getting a better handle on this complexity.

Definition 3.2 (tilt stability of a local equilibrium). A local equilibrium x̄ as in (1.2) for p̄ is tilt
stable if there neighborhoods X = X1 × · · · × XN of x̄ = (x̄1, . . . , x̄n) and V = V1 × · · · × VN of
v̄ = (v̄1, . . . , v̄N ) = (0, . . . , 0), such that the mapping

M̄ : v ∈ V 7→
{
x
∣∣∣xk ∈ argmin

xk∈Xk

{ fk(xk, x−k)− vk·[xk − x̄k]}, ∀k
}

for fk(x) = φk(x, p̄) (3.7)

is single-valued and Lipschitz continuous on V with M̄(0) = x̄.

An elementary example in this framework will bring out the key issues we face beyond those
already confronted when only single-agent optimization was involved. Suppose the functions fk on
IRnk in (3.7) are C2. An equilibrium then, in variational terms, corresponds to having

∇xk
fk(x̄k, x̄−k) = 0, ∀k, (3.8)

with each x̄k being a tilt stable local minimizer if and only if

∇2
xkxk

fk(x̄k, x̄−k) is positive-definite, ∀k. (3.9)

The relation between x and v in (3.7) reduces to ∇xk
fk(xk, x−k) = vk, which can be expressed by

J(x) = v for J(x) = (∇x1f1(x), . . .∇xN fN (x)). (3.10)

Tilt stability hinges on whether the C2 mapping J : IRn → IRn has, in localization around the pair
(x̄, 0) in its graph, a single-valued inverse that is Lipschitz continuous. Of course, for this question
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we have a precise answer in the classical inverse function theorem. Tilt stability corresponds to the
nonsingularity of the matrix

∇J(x̄) =
[
∇2

xkxj
fk(x̄)

]N,N

k=1,j=1
with positive-definite blocks on the diagonal. (3.11)

The diagonal positive-definiteness, arising from the assumed full stability in the minimization of each
agent separately, is obviously not enough to ensure nonsingularity of ∇J , unless the off-diagonal terms
are comparatively “small.” In game terms, that “smallness” could have the interpretation that, in the
minimization of fk(xk, x−k) in xk, the influence of x−k as a parameter isn’t overly disruptive. This is
a significant insight which we’ll later return to.

If the single-valuedness even in plain tilt stability of an equilibrium is elusive, what might be the
fallback for a relaxation of the concepts in Definitions 3.1 and 3.2? The Aubin property, which is a
graphically localized version of set-valued Lipschitz continuity could come to the rescue. That basic
property in variational analysis is examined from all sides in [12, 9F]. Instead of explaining it here,
starting with its formal definition, we’ll take a shortcut and formulate it directly in our application
setting in terms of a condition known from [12, 9.37] to be equivalent to the one in the formal
definition:7

the mapping M in (3.5) is Aubin continuous around (p̄, 0) for x̄ ∈ M(p̄, 0) if
the function (x, p, v) 7→ dist(x,M(p, v)) is Lipschitz continuous around (x̄, p̄, 0),

(3.12)

and likewise,

the mapping M̄ in (3.7) is Aubin continuous around 0 for x̄ ∈ M̄(0) if
the function (x, v) → dist(x, M̄(v)) is Lipschitz continuous around (x̄, 0).

(3.13)

It’s easy to see that, under single-valuedness, Aubin continuity becomes Lipschitz continuity.

Definition 3.3 (near tilt or full stability of a local equilibrium). By an equilibrium x̄ being nearly
fully stable will be meant that it has the relaxed version of the property in Definition 3.1 where single-
valuedness is relinquished and M is just required to be Aubin continuous around (p̄, 0) for x̄ ∈ M(p̄, 0).
Similarly for an equilibrium being nearly tilt stable as a relaxation of Definition 3.2.

Such near stability without single-valuedness is nevertheless a powerful attribute. It guarantees
that, under small shifts in parameters, an equilibrium always, at least, has a nearby replacement,
moreover with the degree of shift in equilibrium bounded proportionally to the degree of shift in the
parameters. A great virtue of Aubin continuity, moreover, is its coderivative characterization by the
Mordukhovich criterion [12, 9.40]. We appeal to that next.

Theorem 3.4 (coderivative criterion for nearly full stability). A strong local equilibrium x̄ for p̄, as
in (3.1), is nearly fully stable if and only if the mapping Φ in (3.3) satisfies

(0, π) ∈ D∗Φ(x̄, p̄ |0)(ω) =⇒ π = 0, ω = 0. (3.14)

Proof. The claim is that (3.14) is necessary and sufficient for the Aubin continuity in Definition 3.3,
which the Mordukhovich criterion characterizes by

D∗M(p̄, 0 | x̄)(0) = {(0, 0)}, (3.15)

7The distance between a point x and a set C is denoted by dist(x,C).
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as long as the graph of M is locally closed around (p̄, 0, x̄). We know that local closedness holds for
this kind of equilibrium through (3.2), which relates M and Φ by (3.6) in terms of the mapping S
in (3.4). This relationship means that, locally around x̄, p̄ and v̄ = 0, we have for graphs and their
associated normal cones:

(p, v, x) ∈ gphM ⇐⇒ (x, p, v) ∈ gphΦ, and therefore
(π, ω, ξ) ∈ NgphM (p, v, x) ⇐⇒ (ξ, π, ω) ∈ NgphΦ(x, p, v).

(3.16)

The graph of the coderative mapping D∗M(p̄, 0 | x̄) consists of all (−ξ, π, ω) such that (π, ω, ξ) belongs
to the first normal cone in (3.16), whereas the graph of the coderivative mapping D∗Φ(x̄, p̄ |0) consists
of all (−ω, ξ, π) such that (ξ, π, ω) belongs to the second normal cone in (3.16). Thus,

(π, ω) ∈ D∗M(p̄, 0 | x̄)(−ξ) ⇐⇒ (ξ, π) ∈ D∗Φ(x̄, p̄ |0)(−ω). (3.17)

On this basis, with inconsequential changes of signs, the condition in (3.15) can be identified with
the one in (3.14).

Although an exact formula for the coderivatives in Theorem 3.4 is difficult to obtain in general
circumstances, we can offer an estimate under a constraint qualification.

Theorem 3.5 (coderivative estimate). The inclusion

D∗Φ(x̄, p̄ |0)(ω1, . . . , ωN ) ⊂ D∗[∂x1φ1](x̄, p̄ |0)(ω1) + · · ·+D∗[∂xNφN ](x̄, p̄ |0)(ωN ) (3.18)

holds under the constraint qualification that

(ξk, πk) ∈ D∗[∂xk
φk](x̄, p̄ |0)(0), ∀k

(ξ1, π1) + · · ·+ (ξN , πN ) = (0, 0)

}
=⇒ (ξk, πk) = (0, 0)∀k. (3.19)

Proof. This will be derived from the rule in [12, 10.41] for the coderivatives of a mapping that is
the sum of other mappings by construing the formula (3.3) for Φ to mean

Φ(x, p) = Φ1(x, p) + · · ·+ΦN (x, p) for Φk(x, p) = (. . . , 0, ∂xk
φk(x, p), 0, . . .). (3.20)

The coderivatives of the mappings Φk are given by

(ξ, π) ∈ D∗Φk(x, p |v1, . . . , vN )(ω1, . . . , ωN ) ⇐⇒ (ξ, π) ∈ D∗[∂xk
φk](x, p |vk)(ωk). (3.21)

Two assumptions in [12, 10.41] need to be verified in order to confirm (3.19) through (3.21). Both
are concerned with the possibilities for putting together “supervectors”8

(v1, . . . , vN ) with vk = (vk1 , . . . , v
k
N ) ∈ Φk(x, p),

N∑
k=1

vk = v = (v1, . . . , vN ), (3.22)

but here the only choice for a given v is each vk = (. . . , 0, vk, 0, . . .), and that simplifies everything.
The first assumption in [12, 10.41] is a local boundedness condition on the mapping that takes (x, p, v)
into the set of supervectors (v1, . . . , vN ) in (3.22). It trivializes under the simplification. The second
assumption is a constraint qualification on the coderivatives on the left in (3.21) which the simplifica-
tion reduces to (3.19).

8We used superscripts k for vectors associated with agent k that aren’t, like xk, just in IRnk .
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Corollary 3.6 (sufficient condition for nearly full stability). Under the constraint qualification in
(3.19), a sufficient condition for the criterion (3.14) for nearly full stability to hold is

(ξk, πk) ∈ D∗[∂xk
φk](x̄, p̄ |0)(ωk),

∑
k
ξk = 0 =⇒

∑
k
πk = 0, ωk = 0, ∀k, (3.23)

and then also πk = 0, ∀k.

Proof. The condition in (3.23) comes directly from applying the inclusion in (3.18). But once it is
known that ξk = 0 and ωk = 0, it follows from assuming (3.19) that πk = 0, too.

This sufficient condition for nearly full stability can be worked out in more detail when each

φk(x, p) = hk(Hk(x, p)) for a C2 mapping Hk

and a proper lsc convex function hk on IRqk .
(3.24)

If each ∇Hk(x̄, p̄) has rank qk, the coderivative formula provided by Theorem 2.6 can be invoked.
Lots more cases covered by (3.24) can be explored further. For instance, we might have

hk(Hk(x, p)) = gk(x, p) + δC(G(x, p)),

so that the problem of agent k is to

minimize gk(xk, x−k) in xk subject to G(xk, x−k, p) ∈ C.

This has the interpretation that the agents must share common resources, such as a budget in money
or some other good. Agent k is limited to the amounts left untouched by all the other agents. Stability
criteria specifically tailored to such circumstances could be derived.

What can be said, finally, about how any of these stability observations might help in actually
finding a local equilibrium? There is good reason to be dissatisfied with applications of game theory in
which the designated “solution” is too delicate to withstand tiny perturbations in model parameters.
This has already been noted as both an impediment to numerical methodology and a possible flaw
in concept. However, an even bigger issue that needs to be faced is the frequent lack of a dynamical
mechanism for the agents to intereact with each other and thereby ultimately reach an equilibrium,
presumably one that exhibits some stability, not fragility. Remedying that lack is a topic too big to
get into here, but when might one equilibrium likely be more “attractive” than another from this
perspective?

The example discussed after Definiton 3.2 suggests something to investigate. A key property
there is the diagonal positive-definiteness in (3.12) and its potential for keeping interagent influences
from getting out of hand. The square matrix ∇J(x̄) isn’t symmetric, but we can ask about positive-
definiteness of its symmetric part, 1

2 [∇J(x̄) +∇J(x̄)∗]. That positive-definiteness can be adopted as
the signal that the block-diagonal holds sway over the rest. It guarantees that ∇J(x̄) is nonsingular
and therefore that the solution mapping in this example, the inverse of the C1 mapping J , is itself
locally single-valued and C1, hence locally Lipschitz continuous, thus giving tilt stability. But there
is more. The positive-definiteness of the symmetric part of ∇J(x̄) is also the condition ensuring that
the C1 mapping J is strongly monotone on a neighborhood X of x̄:

∃σ > 0 such that [J(x′)− J(x)]·[x′ − x] ≥ σ|x′ − x|2 for x′, x ∈ X . (3.25)

Strong monotonicity is a fundamental property in variational analysis that extends beyond smooth
mappings to the general theory set-valued mappings from a space IRn into itself; see [12, Chapter 12].
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It’s important in particular in algorithmic schemes for solving 0 ∈ T (x̄) for a mapping T : IRn →→ IRn,
where refers locally to

∃σ > 0 and a neighborhood X × V of (x̄, 0) ∈ gphT such that
[x′ − x]·[v′ − v] ≥ σ|x′ − x|2, ∀(x, v), (x′, v′) ∈ [X × V] ∩ gphT.

(3.26)

Such strong monotonicity9 is maximal if there is no other mapping T ′, likewise strongly monotone in
X ×V, such that [X ×V]∩gphT ′ is strictly larger than [X ×V]∩gphT . For a single-valued continuous
mapping as in (3.25), maximality is automatic. A key fact is that under maximal strong mononoticity
of T , its inverse T−1, with x̄ ∈ T−1(0), has a graphical localization around (0, x̄) that is single-valued
and Lipschitz continuous.

Some of this has already played out in our discussion of tilt stability in general. Strong monotonicity
appears in characterization (d) of Theorem 2.3, where it again turns out automatically to be maximal.
The full stability concept in Definition 2.4 brings with it, through that characterization, the local
strong monotonicity of the set-valued mapping x 7→ ∂xφ(x, u) holding in a uniform sense for u near ū.
In this section, where we have concentrated on the strong form of local equilibrium in (3.1), it holds
that way for the mappings xk 7→ ∂xk

φk(xk, x−k, p) around (x̄−k, p̄).
Now, though, we have a bigger picture in which the relation v ∈ Φ(x, p) is featured as the general

parameterized replacement for the smooth relation v = J(x) in the special example. What would be
the consequence of strong monotonicity showing up there? In looking for an answer to that, we need to
be cautious about an aspect of generalized Nash equilibrium that hasn’t, until now, needed attention.
An equilibrium, and all the properties we have articulated for it so far, remain unchanged of each of
the functions φk is rescaled to λkφk with λk > 0, as simply a change in units in which the objectives
of the agents are calibrated. Such rescaling could, however, make or break strong monotonicity. To
account for this, we introduce the notation

ΛΦ : (x, p) 7→
(
λ1∂x1φ1(x, p), . . . , λN∂xNφN (x, p)

)
for Λ = (λ1, . . . , λN ), λk > 0. (3.27)

Definition 3.7 (strong monotonity of a local equilibrium). A strong local equilibrium (3.1) is strongly
monotone at p̄ if, for Φ in (3.3) with 0 ∈ Φ(x̄, p̄), and some choice if Λ as in (3.27), there are
neighborhoods X × V and P of p̄ where the mappings x 7→ ΛΦ(x, p) are maximally strong monotone,
all with the same σ > 0.

This is satisfied for instance in the example following Definition 3.2 for Λ = (1, 1, . . . , 1) if the
positive-definiteness of the diagonal blocks in (3.11) sufficiently dominates the effects of the off-diagonal
blocks. As there, the property in Definition 3.7 can thus be interpretated as describing circumstances
where the local optimization in the agents’ subproblems is not so feeble as to be easily disrupted
without recourse by small changes in p or the strategies of the other agents.

Theorem 3.8 (full stability via strong monotonicity). For a strong local equilibrium (3.1) that is
strongly monotone, near full stability implies full stability.

Proof. The strong monotonicity assumed locally for x 7→ Φ(x, p) makes its localized inverse v 7→
M(p, v) be single-valued and Lipschitz continuous. Then M(p, v) must locally be single-valued as a
function of (p, v), so the Aubin continuity with respect to (p, v) in the definition of nearly full stability
turns into the Lipschitz continuity in the definition full stability.

Besides the advantages flowing directly from Theorem 3.8, a strongly monotone equilibrium might
be much more open to being located by an iterative scheme that starts from out-of-equilibrium strate-
gies x0k that aren’t too far away. This could utilize a numerical procedure like the proximal point

9Plain, not necessarily strong, monotonicity would replace the quadratic bound on the right just by 0.
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algorithm, which is specifically designed for finding a “zero” of a maximal monotone mapping and
can succeed even in localized execution as in [10], but hopefully with an adaptation that may be
interpreted as based on steps performed by the agents themselves. Or it might be manifested in how
agents react to each other’s tentative moves in competitive optimization and, in that way, also help
to confirm the validity of an equilibrium model in some practical application. There are so many
interesting topics that await future research.
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