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a b s t r a c t

In reliability engineering focused on the design and optimization of structures, the typical measure of

reliability is the probability of failure of the structure or its individual components relative to specific

limit states. However, the failure probability has troublesome properties that raise several theoretical,

practical, and computational issues. This paper explains the seriousness of these issues in the context of

design optimization and goes on to propose a new alternative measure, the buffered failure probability,

which offers significant advantages. The buffered failure probability is handled with relative ease in

design optimization problems, accounts for the degree of violation of a performance threshold, and is

more conservative than the failure probability.

Published by Elsevier Ltd.

1. Introduction

Civil, mechanical, naval, and aeronautical structures such as
bridges, building, offshore platforms, vehicle frames, ship hulls,
and aircraft wings are subject to uncertain loads, environmental
conditions, material properties, and geometry. It is widely
recognized that these uncertainties must be accounted for in
the design, maintenance, and retrofit of such structures. The
theory of structural reliability, see, e.g. [5], provides an analytic
framework for assessing the reliability of a structure as measured
by its failure probability to be defined precisely below. The failure
probability is widely promoted to designers and building code
developers as a tool for assessing and comparing designs and has
successfully been applied to many applications, see, e.g. [5]. While
the failure probability is of significant importance, it also
possesses troublesome properties that raise several theoretical,
practical, and computational issues. In particular, these issues
surface when the failure probability is used in design optimiza-
tion of structures and may lead to poor numerical performance of
standard nonlinear optimization algorithms such as SNOPT [9],
LANCELOT [4], and NLPQL [28]. In this paper, we discuss these
issues and propose an alternative measure of reliability that we
call the buffered failure probability. The buffered failure probability
is handled with relative ease in design optimization problems,
accounts for the degree of violation of a performance threshold,
and is more conservative than the failure probability.

The failure probability and the buffered failure probability are
defined in terms a limit-state function gðx; vÞ that is a function of a
vector x¼ ðx1; x2; . . . ; xnÞ

0 of design variables (with prime 0

denoting the transpose of a vector), which may represent member
sizes, material type and quality, amount of steel reinforcement,
and geometric layout selected by the designer, and a vector
v¼ ðv1; v2; . . . ; vmÞ

0 of quantities, which may describe loads,
environmental conditions, material properties, and other factors
the designer cannot directly control. The quantities v are usually
subject to uncertainty and their values are therefore not known a
priori. The limit-state function represents the performance of the
structure with respect to a specific criterion referred to as a limit
state. As commonly done, we describe these quantities by random
variables V¼ ðV1;V2; . . . ;VmÞ

0 with a joint probability distribution
which is regarded as known, although it might need to be
estimated empirically. To distinguish between the random
variables and their realizations, we denote the former by capital
letters and the latter by lower case letters. For a given design x,
gðx;VÞ is a random variable describing the (random) performance
of the structure. We refer to this random variable as the state of
the structure.

By convention, gðx; vÞ40 represents unsatisfactory perfor-
mance of the structure with respect to the limit-state function
and, consequently, the event fgðx;VÞ40g is the set of realizations
of the random vector V corresponding to ‘‘failure.’’ We refer to this
set as the failure domain. We note that failure may not necessarily
imply total collapse of the structure, but may simply mean the
violation of a prespecified threshold for crack width, deflection,
vibration, etc.

The current approach to structural reliability defines the
failure probability of a structure with limit-state function gðx; vÞ
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as the probability that the state of the structure takes on a
positive value. As the failure probability depends on the design x,
we denote it by pðxÞ. That is,

pðxÞ ¼ P½gðx;VÞ40� ¼

Z
� � �

Z
Iðgðx; vÞ40ÞfVðvÞdv1 . . . dvm; ð1Þ

where fVðvÞ is the joint probability density function for V and
Iðgðx; vÞ40Þ is the indicator function defined to be one if
gðx; vÞ40 and zero otherwise.

Our definitions of unsatisfactory performance and the failure
domain deviate in two minor ways from those of some other
authors, see, e.g. [5]. First, we exclude the realizations v
corresponding to gðx; vÞ ¼ 0 from the failure domain. Of course,
if the probability of the event fgðx;VÞ ¼ 0g is zero, as is typically
the case when V are continuous random variables, then this
exclusion does not change the failure probability. Our convention,
however, facilitates easy transfer of the results in [20] to the
framework of the present paper and therefore allows general
forms of the limit-state function and a wide range of probability
distributions. Second, while we define gðx; vÞ40 as failure, some
authors adopt the opposite convention where gðx; vÞo0 repre-
sents failure. Obviously, it is trivial to switch between the two
conventions by multiplying the limit-state function with -1. In
this paper, we use the convention gðx; vÞ40 to indicate failure as
our derivations appear simpler in that case.

In Section 2, we discuss the properties of the failure probability
in detail. Section 3 presents the buffered failure probability and
shows that it is more conservative than the failure probability,
accounts for unlikely but possible realizations of the state of the
structure, and has significant computational advantages. Section 4
generalizes the discussion to structural systems with multiple
limit-state functions. Section 5 illustrates the use of the buffered
failure probability in design optimization of a truss structure and
a vehicle frame. We end the paper with concluding remarks in
Section 6.

2. Properties of the failure probability

While the definition of the failure probability is appealing due
to its relative simplicity, it exhibits several undesirable properties
resulting in significant theoretical and practical difficulties. We
discuss these in turn next.

2.1. Simplistic characterization of structures as failed or safe

The current approach to structural reliability effectively
characterizes a structure to be in only one of two possible states:
failed, i.e., gðx; vÞ40, or safe, i.e., gðx; vÞr0. Consequently, the
‘‘degree’’ of failure is not important. For example, the event
fgðx;VÞ ¼ 100g is no worse than the event fgðx;VÞ ¼ 0:01g as they
both are subsets of the failure domain and contribute to the
failure probability. However, a designer would most likely prefer
the event fgðx;VÞ ¼ 0:01g as it represents only a minor violation of
a threshold, possibly somewhat arbitrarily set. On the other hand,
the event fgðx;VÞ ¼ 100g may be catastrophic. The theory of
structural reliability does not account for the designer’s pre-
ference in this case. This preference may become important when
a designer compares two candidate designs as the following
example illustrates.

Example 1. Consider the design of a structure that is character-
ized by the limit-state function

gðx; vÞ ¼ 100-x1v1-ð1-x1Þv2; ð2Þ

where 100 is a deterministic load on the structure and x1 is a
design variable to be chosen by the designer. Only x1 ¼ 0 and 1 are

allowable choices. Moreover, let V1 be a normally distributed
random variable with mean 150 and standard deviation 15
representing the strength of the structure when design x1 ¼ 1.
When design x1 ¼ 0, the strength of the structure is V2 which is a
random variable with mean 150 and a triangular probability
density function in the range [98.40, 175.8] with values near
175.8 being the most likely outcomes. Fig. 1 illustrates the
probability density functions of gð0;VÞ and gð1;VÞ. For both
designs, the probability of failure is 4:29� 10-4. However, as seen
from Fig. 2, which depicts the upper tails of the probability
density functions in Fig. 1, the probability of an ‘‘extreme event’’ is
substantial in case of design x1 ¼ 1, but nonexistent for design
x1 ¼ 0. For example, the probability of the event fgðx;VÞ42g is
2:63� 10-4 for design x1 ¼ 1 but for design x1 ¼ 0 that probability
is of course zero. While this is obviously an artificial example, it
illustrates that two designs with the same failure probability may
have significantly different characteristics. If the designer only
computes the failure probability, this difference may not be
revealed.
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Fig. 1. Example 1: probability density functions (pdf) of gð1;VÞ and gð0;VÞ.
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Fig. 2. Example 1: tails of probability density functions (pdf) of gð1;VÞ and gð0;VÞ.
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2.2. Inaccurate or computationally costly approximations

Since the uncertainty in a structure often needs to be
characterized by many (hundreds of) random variables, the
computation of the failure probability for a given design x
requires the evaluation of a high-dimensional integral, see (1).
As that evaluation is usually impossible to carry out analytically
and computationally expensive to carry out by numerical
integration, approximations based on Monte-Carlo simulation
and geometric considerations are typically used.

2.2.1. Monte-Carlo simulation

For a given design x, Monte-Carlo simulation estimates the
failure probability pðxÞ by generating N independent realizations
v1, v2, y, vN of the random vector V and computing the fraction of
the realizations in the failure domain, i.e., the estimate of the
failure probability

pNðxÞ ¼
1

N

XN

j ¼ 1

Iðgðx; vjÞ40Þ: ð3Þ

The corresponding estimator is unbiased and, from the central
limit theorem, we know that the standard deviation of the
estimator decays proportional to 1=

ffiffiffiffi
N
p

, as N-1. While this
decay rate cannot be improved upon, the standard deviation of
the estimator can often be much improved by the use of variance
reduction techniques such as importance sampling, directional
sampling, and Markov-chain Monte-Carlo sampling, see, e.g. [26].
Since the standard deviation decays only proportional to 1=

ffiffiffiffi
N
p

and the effort required to compute pNðxÞ grows linearly in N,
Monte Carlo simulation is usually computationally costly.

2.2.2. Geometric approximations

If the random vector V consists of independent standard
normal random variables and the limit-state function is affine in
v, i.e., gðx; vÞ ¼ aðxÞ0vþbðxÞ for some m-valued function aðxÞ and
real-valued function bðxÞ, then the failure probability
pðxÞ ¼Fð-bðxÞÞ whenever pðxÞr0:5, see, e.g., [5, Chapters 4–6].
Here, Fð�Þ is the cumulative distribution function of a standard
normal random variable and bðxÞ is the shortest distance from the
origin in Rm (i.e., the space of realizations of V) to the surface
fvjgðx; vÞ ¼ 0g, see Fig. 3, where g1ðx; vÞ is an example of an affine
limit-state function. We refer to bðxÞ as the reliability index of

design x. It can be shown that in this case

bðxÞ ¼ -bðxÞ=JaðxÞJ: ð4Þ

If gðx; vÞ is not affine, see, e.g., g2ðx; vÞ in Fig. 3, then Fð-bðxÞÞ is
an approximation of the failure probability. In this case, there is
no explicit expression for bðxÞ and it must be computed by solving
the optimization problem

bðxÞ ¼ min
v

JvJ s:t: gðx; vÞZ0: ð5Þ

There is empirical evidence that the approximation Fð-bðxÞÞ of the
failure probability is quite accurate on classes of applications
arising in structural engineering; see for example [36] and
references therein. However, the approach may also lead to
inaccuracy as discussed below.

When gðx; vÞ is not concave1 in v, this optimization problem
may have points satisfying the Karush–Kuhn–Tucker (KKT) first-
order necessary conditions for a local minimum but that are not
global minima. For example, limit-state function g3ðx; vÞ in Fig. 3
results in a line fvjg3ðx; vÞ ¼ 0g with many points that are locally,
but not globally, the closest point to the origin. Since standard
nonlinear optimization algorithms such as SNOPT [9], LANCELOT
[4], and NLPQL [28] only guarantee convergence to such a KKT
point, it may be difficult to compute the globally optimal solution
of (5) in this situation, let alone prove that an obtained point is
globally optimal. The same holds for algorithms specialized for
solving (5) such as the iHLRF algorithm [13]. Hence, bðxÞ could be
significantly overestimated, thereby leaving serious design risks
undetected. For example, a standard nonlinear programming
algorithm may return the same value for the three limit-state
functions in Fig. 3 when applied to (5). The value would be correct
for g1ðx; vÞ and g2ðx; vÞ, but severely overestimate the reliability
index for g3ðx; vÞ. Even if the global minimum is found in (5), we
see from Fig. 3 that Fð-bðxÞÞ may overestimate pðxÞ, as in the case
of g2ðx; vÞ, or underestimate it as in the case of g3ðx; vÞ. In general,
it is difficult to know how close Fð-bðxÞÞ is to pðxÞ.

In practice, V is essentially never a vector of independent
standard normal random variables. Hence, to apply the above
approximation one typically needs to carry out a probability
transformation, see, e.g., [5, Chapter 7]. Random vectors governed
by distributions such as the multivariate normal (possibly with
correlation) and lognormal distributions can be transformed into
a standard normal vector using a smooth bijective mapping. Other
transformations can also be carried out at least approximately.
A transformation can make the limit-state function highly non-
linear and nonconcave as function of the independent standard
normal random variables, which makes it difficult to determine
the global minimum of (5).

The method of estimating pðxÞ by Fð-bðxÞÞ is referred to as the
first-order reliability method as it effectively linearizes a
transformed limit-state function. An extension of this method is
the second-order reliability method where the transformed limit-
state function is approximated by a quadratic function, see
[5, Chapter 6]. However, the second-order reliability method
suffers from the same difficulties as the first-order method,
though its accuracy may be better. An alternative method is to
attempt, after a transformation to independent standard normal
random variables, to determine the largest ball in Rm, centered at
the origin, with gðx; vÞr0 for all v in the ball. Using the chi-square
distribution, this leads to an upper bound on the failure
probability pðxÞ. However, the bound is usually overly conserva-
tive and of little practical use.

Fig. 3. Reliability indices bðxÞ for three limit-state functions and a given design x.

The shaded areas indicate failure domains. 1 See, e.g. [2,3] for definitions of concavity and convexity.

R.T. Rockafellar, J.O. Royset / Reliability Engineering and System Safety 95 (2010) 499–510 501



Author's personal copy
ARTICLE IN PRESS

2.3. Poorly behaving sensitivities of failure probability and its

approximations

In sensitivity analysis and design optimization, we examine
the effect on the failure probability (or its approximation) of
infinitesimal changes in the design. Hence, differentiability of the
failure probability and its approximations with respect to design x
as well as computable formulae for the corresponding gradient
become important. Specifically, standard nonlinear optimization
algorithms require all functions in an optimization problem to be
continuously differentiable. If this condition is not satisfied, the
algorithms may break down without returning an optimized
design.

2.3.1. Gradient of the failure probability

The issue of differentiability of the failure probability is
nontrivial as the integrand in (1) is not differentiable (The
indicator function makes a jump from 1 to 0 as the condition
gðx; vÞ40 goes from being satisfied to not satisfied.) Hence, we
cannot simply compute the derivative of an integral by integrat-
ing the derivative of the integrand which is allowed under weak
assumptions when the integrand is differentiable.

Despite this situation, the failure probability is actually
continuously differentiable with respect to the design x under
rather general conditions when the failure domain is bounded and
the limit-state function is continuously differentiable with respect
to the design [33]. However, the gradient formula in [33] is
difficult to use in estimation because it may involve surface
integrals. In [14] (see also [15]), an integral transformation is
presented, which, when it exists, leads to a simple formula for the
gradient of the failure probability. However, it is not clear under
what conditions the transformation exists. As in [33], the study
[32] assumes that the failure domain is bounded. With this
restriction as well as the assumption that the failure domain is
‘‘star-shaped,’’ a formula for the gradient of the failure probability
involving integration over a simplex is derived. In principle, this
integral can be evaluated by Monte Carlo simulation. However, to
the authors’ knowledge, there is no computational experience
with estimation of failure probabilities for highly reliable
mechanical structures using this formula.

In [5, Section 9.2], with generalizations and proofs in [24], we
find convenient expressions for the gradient of the failure
probability under similar assumptions to those in [32]. The
expressions can be estimated using Monte Carlo simulation with
good accuracy at moderate computational expense when the star-
shaped assumption is satisfied and the number of random
variables is moderate. However, it becomes increasingly costly
to estimate the expression using Monte Carlo simulation when
the number of random variables grows. Moreover, in practice, it is
difficult to verify the star-shape assumption. An alternative
formula for the gradient of the failure probability is presented
in [23,22] that can also be estimated using Monte Carlo
simulation. However, the formula relies on the implicit function
theorem applied to the equation gðx; vÞ ¼ 0 that may not always
be applicable.

2.3.2. Gradient of the reliability index

As described in Section 2.2, the failure probability pðxÞ can
rarely be computed exactly and the approximation Fð-bðxÞÞ is
often used, where the reliability index bðxÞ is defined in (5). Since
the cumulative distribution function Fð�Þ is continuously differ-
entiable, differentiability of this approximation depends on the
properties of bðxÞ. We find expressions for the gradient of bðxÞ in
[5, Chapter 8], but those cannot hold for all x as the following
simple example illustrates.

Example 2. Consider the limit-state function

gðx; vÞ ¼
v2

1

x2
1

þv2
2-1; ð6Þ

let V1 and V2 be independent standard normal random variables,
and let x140 be a design variable, see Fig. 4. As bðxÞ is defined as
the distance to the closest point on the surface fvjgðx; vÞ ¼ 0g, see
(5), we find that bðxÞ ¼ x1 if 0ox1o1 and 1 otherwise. Hence,
@bðxÞ=@x1 ¼ 1 if 0ox1o1, @bðxÞ=@x1 ¼ 0 if x141, and the
derivative is not defined when x1 ¼ 1, see Fig. 5. As we see from
this figure, bðxÞ is not continuously differentiable and the
derivative at x1 ¼ 1 is not defined.

As Example 2 illustrates, bðxÞ may not be continuously
differentiable and, hence, standard nonlinear optimization algo-
rithms may stall at points that are not KKT points when applied to
design optimization models involving bðxÞ.

In view of the above discussion, we see that the differentia-
bility of the failure probability as well as the existence of tractable
formulae for its gradient rely on assumptions that may not hold
and that are difficult to verify in practice. Moreover, the
frequently used reliability index provides an approximation of
the failure probability Fð-bðxÞÞ that may not be continuously
differentiable. Hence, even if the limit-state function is a
continuously differentiable function in the design variables, the
failure probability and Fð-bðxÞÞ may not be.

2.4. Lack of convexity of the failure probability

As stated above, standard nonlinear optimization algorithms
typically only guarantee convergence to a KKT point. However, if a
design optimization problem has a convex objective function,
which we would like to minimize, and the constraints form a
convex feasible region, then a KKT point must be a global optimal
design for the problem. Absent convexity, it may be difficult to
compute a globally optimal design, let alone prove that an

Fig. 4. Example 2. Equation gðx; vÞ ¼ v2
1=x2

1þv2
2-1¼ 0 illustrated for three different

values of x1. The shaded areas indicate the failure domain.

1x

1( )x

1

1 1           1( ) /x      x

Fig. 5. Example 2. Illustration of reliability index bðxÞ (solid line) and its derivative

(dashed line).
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obtained design is globally optimal. Therefore we would like to
formulate convex design optimization models if possible. We
refer to [3] for an introduction to convex optimization.

From this discussion we conclude that the convexity of the
failure probability pðxÞ would be valuable when solving a design
optimization problem. Unfortunately, it is unknown whether pðxÞ
is convex even if gðx; vÞ is convex in x for all v. Hence, pðxÞ does
not ‘‘preserve’’ convexity as a convex limit-state function may
result in a nonconvex failure probability. The same situation holds
when the reliability index bðxÞ is used to approximate the failure
probability. For this reason, we expect that design optimization
problems involving the failure probability or the reliability index
may have many local minima that are not globally optimal.
Standard nonlinear optimization algorithms are unlikely to find
the globally optimal design and may return, at best, locally
optimal designs. Consequently, it may be necessary to apply
computationally expensive global optimization algorithms, see,
e.g. [10].

3. Buffered failure probability

As reviewed in Section 2, the failure probability has several
troublesome properties. In this section, we discuss an alternative
probability, which we call the buffered failure probability, that has
several advantages over the failure probability. The buffered
failure probability relates to the conditional value-at-risk [19,20],
which is now widely used in the area of financial engineering to
assess investment portfolios. The tutorial paper [18] provides an
overview including relation to safety margins and potential
replacements for failure probability constraints. However, buf-

fered failure probability is directly introduced and explained here
for the first time.

3.1. Definition

We first recall that for any probability level a, the a-quantile of
the distribution of a random variable is the value of the inverse of
the corresponding cumulative distribution function at a. For
simplicity in presentation, we assume here and throughout this
paper that the cumulative distribution function of gðx;VÞ is
continuous and strictly increasing for all x. For definitions which
serves to fully generalize beyond this case, we refer to [20]. We
consider especially the random variable gðx;VÞ for a given design
x and denote the a-quantile of gðx;VÞ by qaðxÞ. As indicated by the
notation, qaðxÞ depends on the design x as the probability
distribution of gðx;VÞ changes with x. Figs. 6 and 7 illustrate
qaðxÞ for the case when gðx;VÞ is normally distributed with mean
-1 and standard deviation 1. Fig. 6 shows the cumulative
distribution function of gðx;VÞ in this case and quantiles
corresponding to probability levels a¼ 0:60 and a0 ¼ 0:84. Fig. 7
illustrates the same information using the probability density
function of gðx;VÞ and, hence, probabilities correspond to areas
under that function. In view of Figs. 6 and 7 and (1), we find that
the failure probability is equal to one minus the probability level
that results in the quantile being zero. For example, in Fig. 6 we
find that a0 ¼ 0:84 gives qa0

ðxÞ ¼ 0. Hence, pðxÞ ¼ 1-a0 ¼

1-0:84¼ 0:16.
Before we define the buffered failure probability, we introduce

a quantity that is closely related to the quantile. For any
probability level a, we define the a- superquantile as

qaðxÞ ¼ E½gðx;VÞjgðx;VÞZqaðxÞ�; ð7Þ

where the vertical bar indicates a conditional expectation. That is,
the a- superquantile is the average value of gðx;VÞ, conditional on
the event that gðx;VÞ is no less than the a- quantile. This quantity

is called conditional value-at-risk in financial engineering, but we
here propose and adopt the application-independent name
superquantile. Figs. 6 and 7 illustrate the superquantiles of
gðx;VÞ for probability levels a¼ 0:60 and a0 ¼ 0:84. Since gðx;VÞ
is normally distributed, it is trivial to compute the superquantiles
using the well-known conditional expectation formula (see,
e.g. [35]),

qaðxÞ ¼ mþ
sfðqaÞ

1-a
; ð8Þ

for a normally distributed gðx;VÞ with mean m, standard deviation
s, and truncation level qa, where fð�Þ is the standard normal
probability density function and qa is the a- quantile of the
standard normal distribution. When gðx;VÞ is not normally
distributed, the calculation of the superquantile appears much
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Fig. 6. Cumulative distribution function (cdf) of gðx;VÞ with examples of a-

quantile qaðxÞ and a- superquantile qaðxÞ when normally distributed with mean -1

and standard deviation 1.
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more difficult. As seen in the next subsection, however, it can be
computed in a remarkably efficient manner.

Fig. 7 highlights the definition of a superquantile as a
conditional expectation. As seen for probability level a¼ 0:60, the
corresponding quantile is -0:75. The corresponding superquantile
is, roughly speaking, the value that splits the interval ½-0:75;1Þ
into two ‘‘balancing’’ parts. The area under the probability density
function between -0:75 and the value (the lightly shaded area in
Fig. 7) ‘‘balances’’ the area under the function above the value (the
heavily shaded area). In this case, that value is -0:03 as computed
by (8). Similarly, for probability level 0.84, the corresponding
quantile is 0 and the corresponding superquantile is 0.53. That is,
the area under the probability density function between 0 and 0.53
‘‘balances’’ the area under the function above 0.53.

We note that in general qaðxÞrqaðxÞ for any probability level a
and design x. In [18] we also find the following equivalent
formula for the superquantile:

qaðxÞ ¼
1

1-a

Z 1

a
qa0 ðxÞda0: ð9Þ

We do not repeat the derivation of this expression here, but note
that the expression essentially averages the quantiles for prob-
ability levels larger than a.

We now define the buffered failure probability pðxÞ to be equal
to 1-a where a is selected such that the superquantile

qaðxÞ ¼ 0: ð10Þ

That is,

pðxÞ ¼ P½gðx;VÞZqaðxÞ�; ð11Þ

where a is selected such that (10) holds. Hence, q1-pðxÞðxÞ ¼ 0. We
see from Figs. 6 and 7 that the probability levels a¼ 0:60, which
led to qaðxÞ ¼ -0:03, and a0 ¼ 0:84, which led to qa0

ðxÞ ¼ 0:53, are
slightly too small and much to large, respectively, to result in a
corresponding superquantile of zero. However, it is easy to find by
trial-and-error and (8) that a probability level a¼ 0:62 results in a
quantile of -0:70 and a superquantile of approximately zero as
illustrated in Figs. 8 and 9. (We present a much easier way than
trial-and-error below for computing the superquantile.) By
definition, see (11), the buffer probability is then
1-a¼ 1-0:62¼ 0:38, which is somewhat larger than the failure
probability of 0.16.

In general, we find that

pðxÞrpðxÞ ð12Þ

for any x, see [19,20,18]. Hence, the buffered failure probability is
a conservative estimate of the failure probability for any design x.
As we see below, the degree of overestimation is usually modest.
We stress, however, that the buffered failure probability carries
more information about the design than the failure probability as
it includes information about the upper tail of gðx;VÞ. Hence, for
designs where the probability of gðx;VÞ taking on values
substantially above zero is relatively large, the buffered failure
probability tends to be somewhat larger than the failure
probability. In contrast, if the probability of gðx;VÞ taking on
large values is small, then the buffered failure probability is
typically close to the failure probability.

As we discuss below, the buffered failure probability is
surprisingly easy to compute, possesses several convenient
properties, and avoids many of the difficulties associated with
the failure probability. Hence, we believe there are substantial
advantages to replacing the failure probability by the buffered
failure probability in engineering design.

Example 3. Consider the limit-state function given in Example 1
and recall that pð0Þ ¼ pð1Þ ¼ 4:29� 10-4. We now compute the
buffered failure probability for the designs x1 ¼ 0 and 1. Since
gð0;VÞ is given by a triangular probability density function, we
determine an a such that qað0Þ ¼ 0 by integration and find that
pð0Þ ¼ 1-a¼ 9:65� 10-4. For design x1 ¼ 1, qaðxÞ is the expectation
of a truncated normal distribution, which is easily calculated by
(8). We use trial-and-error to determine an a such that qað1Þ ¼ 0
and find that pð1Þ ¼ 1-a¼ 1:13� 10-3. We first observe that both
designs satisfy (12) as expected. We also see that design x1 ¼ 0
has a smaller buffered failure probability than design x1 ¼ 1 and is
therefore ‘‘safer’’ in the sense of the buffered failure probability.
This corresponds to our intuition discussed in Example 1, where
we concluded that design x1 ¼ 0 was preferable due to the smaller
probability of extreme violation of the threshold.

Example 3 illustrates the fact that the buffered failure
probability takes into account the tail behavior of the distribution
of gðx;VÞ and hence offers an alternative measure of reliability of a
structure that may better reflect designers’ concerns.
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Fig. 8. Cumulative distribution function (cdf) of gðx;VÞ, as in Fig. 6, with a selected

such that the a- superquantile qaðxÞ ¼ 0. Illustration of the buffered failure

probability pðxÞ and the failure probability pðxÞ.
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Fig. 9. Probability density function (pdf) of gðx;VÞ, as in Fig. 7, with a selected such

that the a- superquantile qaðxÞ ¼ 0. Illustration of the buffered failure probability

pðxÞ and the failure probability pðxÞ.
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As seen from (11) and (1), the buffered failure probability
shifts the threshold level from zero downwards to qaðxÞ
(a negative number) and therefore adds a ‘‘buffer zone’’ to the
failure domain. We observe that the threshold shift and the buffer
zone depend on the probability distribution of gðx;VÞ and, hence,
on x as illustrated in Fig. 10 for the limit-state function in
Examples 1 and 3. That figure shows two solid and two dotted
lines. The vertical solid line represents fvjgð1; vÞ ¼ 0g, i.e., the limit
between the failure domain (to the left) and its complement the
safe domain (to the right) for design x1 ¼ 1. The dotted vertical
line represents fvjgð1; vÞ ¼ qað1Þg. This line shifts to the right as
compared to the solid line resulting in a buffer zone (shaded
dark). Similarly, the horizontal solid line represents fvjgð0; vÞ ¼ 0g,
i.e., the limit between the failure domain (below) and the safe
domain (above) for design x1 ¼ 0. The dotted horizontal line
represents fvjgð0;vÞ ¼ qað0Þg. This line shifts up as compared to the
solid line resulting in a narrow buffer zone. We observe that
the threshold shift and buffer zone are substantially smaller for
x1 ¼ 0 than for x1 ¼ 1. In general, the line, surface, or hypersurface
fvjgðx; vÞ ¼ qaðxÞg may not be parallel to fvjgðx; vÞ ¼ 0g for a given
x. In Fig. 10, however, those lines are parallel due to the fact that
the limit-state function in Examples 1 and 3 is affine in v.

From the above definition of the superquantile, it may appear
difficult to compute the buffered failure probability in general.
However, this is not the case as the next subsection describes.

3.2. Buffered failure probability in design optimization

Suppose we would like find a design with failure probability no
larger than a threshold 1-a0. That is, we would like to determine a
design x that satisfies the constraint

pðxÞr1-a0: ð13Þ

In view of Section 2, we observe that standard optimization
algorithms may have substantial difficulties on problems with
constraints of the form (13). We now show that the alternative
constraint

pðxÞr1-a0 ð14Þ

in terms of the buffered failure probability is much easier to
handle. We start by noting that a design x that satisfies (14) also
satisfies (13). Hence, (14) is a conservative requirement.

The ease with which (14) can be handled in optimization
algorithms clearly hinges on our ability to evaluate pðxÞ or
equivalent expressions. While pðxÞ cannot be expressed explicitly,

there is a convenient, equivalent expression for (14) that we
derive next.

In view of Fig. 8, we see that (14) holds if and only if

qa0
ðxÞr0: ð15Þ

It is shown in [19] that

qaðxÞ ¼min
z0

Zaðz0;xÞ; ð16Þ

where z0 is an auxiliary design variable and

Zaðz0;xÞ ¼ z0þ
1

1-a E½maxf0; gðx;VÞ-z0g�: ð17Þ

We do not include a derivation of this expression as it is
somewhat involved and refer the interested reader to [19]. Hence,
the task of finding a design x that satisfies pðxÞr1-a0 is
equivalent of finding a design x and an auxiliary variable z0 such
that

Za0
ðz0;xÞr0: ð18Þ

Suppose that the goal is to determine a design x that
minimizes some continuously differentiable objective function
f ðxÞ (e.g., cost) subject to the reliability constraint pðxÞr1-a0 and
a finite number of continuously differentiable equality and
inequality constraints abstractly represented by the set X. That
is, we would like to solve the design optimization problem

P : min
x

f ðxÞ s:t: pðxÞr1-a0; xAX:

In view of the discussion above, the alternative formulation in
terms of the buffered failure probability takes the form

BP : min
x;z0

f ðxÞ s:t:z0þ
1

1-a0
E½maxf0; gðx;VÞ-z0g�r0; xAX;

where we observe that the optimization is over both x and z0.
We usually cannot compute E½maxf0; gðx;VÞ-z0g� explicitly.

However, the expectation can be estimated by its sample average.
Let v1; . . . ; vN be realizations of V. Then, the optimization problem

BP0N : min
x;z0

f ðxÞ

s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

maxf0; gðx; vjÞ-z0gr0;

xAX; ð19Þ

is an approximation of the problem BP. Even if the limit-state
function gðx; vÞ is continuously differentiable for all v, BP0N is not
directly tractable by standard nonlinear optimization algorithms
due to the nonsmoothness of the max- function in (19). BP0N is
solvable by a specialized algorithm found in [16], but we do not
describe that algorithm here. Instead we present an equivalent
transcription of BP0N that facilitates the use of standard nonlinear
optimization algorithms.

We let z1; . . . ; zN be auxiliary design variables and denote
z ¼ ðz0; z1; . . . ; zNÞ

0. Then, BP0N is equivalent to the following
intermediate problem

min
x;z

f ðxÞ s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

zjr0; maxf0; gðx; vjÞ-z0g

¼ zj; j¼ 1;2; . . . ;N xAX; ð20Þ

where we simply force the auxiliary design variables to take on
the ‘‘right’’ values. We can relax the equality constraints to less-
than-or-equal constraints as there is no benefit to let the variables
take on values such as maxf0; gðx; vjÞ-z0gozj for any j¼ 1;2; . . . ;N.
Moreover, a constraint of the form maxf0; gðx; vjÞ-z0grzj is
equivalent to the two constraints gðx; vjÞ-z0rzj and 0rzj. This

Fig. 10. Contours of limit-state function in Examples 1 and 3 for x1 ¼ 0 and 1.

R.T. Rockafellar, J.O. Royset / Reliability Engineering and System Safety 95 (2010) 499–510 505



Author's personal copy
ARTICLE IN PRESS

leads to the following equivalent problem of BP0N:

BPN : min
x;z

f ðxÞ s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

zjr0

gðx; vjÞ-z0rzj; j¼ 1;2; . . . ;N;

zjZ0; j¼ 1;2; . . . ;N;

xAX: ð21Þ

We propose that engineers consider BPN instead of P when
designing structures for reasons summarized next.

3.3. Comparison of probabilities

There are four main advantages to consider BPN instead of P.
First, as discussed above, the failure probability pðxÞ and its
gradient cannot generally be computed exactly and must be
approximated in ways which, in some cases, might turn a blind
eye to serious risks. The first-order approximation Fð-bðxÞÞ has
unknown accuracy and may not be continuously differentiable.
Monte Carlo estimates of pðxÞ have error bounds, but the
estimates have gradients only under assumptions that are difficult
to verify in practice. Hence, it is highly problematic to apply
standard nonlinear optimization algorithms to optimization
problems involving pðxÞ. In contrast, BPN is solvable by standard
nonlinear optimization algorithms as long as the limit-state
function gðx; vÞ is continuously differentiable with respect to x.
This is a substantially less stringent condition than those required
for P. The optimal value of BPN is close to the optimal value of BP
when N is large (see [29, Chapter 4] for specific results on the
‘‘proximity’’ of BPN to BP). Moreover, BP is a restricted problem
compared to P because the buffered failure probability over-
estimates the failure probability, see (12). Hence, a feasible design
in BP is also feasible in P.

Second, the buffered failure probability provides an alternative
measure of structural reliability which accounts for the tail
behavior of the distribution of gðx;VÞ. Hence, designs obtained
from BPN may be more desirable than those from P.

Third, even if gðx; vÞ is convex in x, pðxÞ and Fð-bðxÞÞmay not be
and, hence, it may be difficult to obtain a globally optimal design
of P. In contrast, the region defined by the constraints (21) is
convex when gðx; vjÞ, j¼ 1;2; . . . ;N, are convex functions in x.
Hence, every KKT point of BPN is a globally optimal design when
f ðxÞ and gðx; vjÞ, j¼ 1;2; . . . ;N, are convex functions and the region
X is a convex set. Hence, BPN ‘‘preserves’’ convexity. Even if not all
of these conditions are satisfied, we expect it to often be easier to
determine a design with a low objective function value in BPN

than in P because BPN deals with gðx; vÞ directly instead of the
more complex expression pðxÞ.

We expect gðx; vÞ to be convex in x in several practical
situations. For example, suppose that x¼ x1 represents the size of
a part of the structure and the strength Rðx; vÞ of the structure
grows as x1 grows for all possible realizations v. Moreover,
suppose that this growth in strength is constant or tapers off as x1

grows. Then, Rðx;vÞ is concave for all v and, hence, the limit-state
function gðx; vÞ ¼ SðvÞ-Rðx; vÞ is convex, where SðvÞ describes the
load on the structure. Since the convexity of gðx; vÞwith respect to
x was of little importance in the context of pðxÞ, few researchers
have focused on developing convex limit-state functions or
approximations thereof. As the importance of convexity is now
clear, we hope that this paper will spur research into the
development of convex limit-state functions. While physics
dictate to a large extent the form of limit-state functions,
engineers may still have opportunities for skillful modeling,
including the development of useful approximations. In the same
manner as a simple limit-state function gðx; vÞ ¼ v2-x1v1, which is

linear in x, is equivalent to the limit-state function
ĝðx; vÞ ¼ v2=ðx1v1Þ-1, which is nonlinear in x, we expect the
development of (approximately) equivalent convex limit-state
functions to existing nonconvex limit-state functions.

Fourth, BPN facilitates the development of approximation
schemes for limit-state functions that are expensive to evaluate.
For example, if the evaluation of the limit-state function involves
the output of a finite element model, it may not be possible to
evaluate the limit-state function more than a few hundred or a
few thousand times. In such situations, the failure probability in P
is often replaced by response surface and surrogate models, see,
e.g., [7,31,34]. This allows quick optimization, but the quality of
the resulting design depends on the fidelity of the response
surface or surrogate model used. As pðxÞ may be a highly
nonlinear, nonconvex function, we conjecture that it may be
more difficult and computationally expensive to develop a good
surrogate model of pðxÞ than of gðx; vÞ, about which we may have
problem-specific insight. With a surrogate model of gðx; vÞ, the
optimization of BPN using that surrogate model in place of gðx; vÞ
can often be accomplished relatively quickly; see Section 5.2. For
example, suppose that xk, k¼ 1;2; . . . ;K , is a selection of designs.
Then, for any v and k,

gðx; vÞ � gðxk; vÞþrxgðxk; vÞ0ðx-xkÞ ð22Þ

when x is close to xk and gðx; vÞ is continuously differentiable with
respect to x. Obviously, the selection of xk, k¼ 1;2; . . . ;K , e.g., by
means of an experimental design, influences the accuracy of this
approximation and is an important topic in its own right. In this
paper, however, we do not discuss this topic further. Interested
readers are referred to [34] and references therein. Using this
linear approximation of the limit-state function, we obtain the
following approximation of BPN , which is intended for the case
when gðx; vjÞ is convex in x for all j¼ 1;2; . . . ;N:

LBPN : min
x;z

f ðxÞ s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

zjr0;

gðxk;vjÞþrxgðxk;vjÞ
0
ðx-xkÞ-z0rzj; j¼ 1;2; . . . ;N; k¼ 1;2; . . . ;K ;

zjZ0; j¼ 1;2; . . . ;N xAX:

Under that convexity assumption, LBPN can be made to
approximate BPN arbitrarily well by selecting more designs
appropriately, i.e., increasing K. We note, however, that LBPN is
a nonconservative approximation of BPN . The construction of
conservative approximations of BPN would also be possible under
suitable assumptions, but that topic is beyond the scope of the
current paper.

Solving LBPN only requires the evaluation of the limit-state
function and its gradient KN times to generate the problem data in
LBPN . During optimization no evaluation of the limit-state
function or its gradient is needed and, hence, can be carried out
quickly. If the objective function f ðxÞ and the constraints defining
X are linear, then LBPN is a linear program that can be solved
quickly by standard linear programming solvers or decomposition
algorithms. In this case, the introduction of integrality restrictions
on x may also be tractable as this makes LBPN a mixed-integer
linear optimization problem that often can be solved in moderate
computing times. In comparison, it is difficulty to solve P in the
case of integrality constraints as it then becomes a mixed-integer,
nonlinear, nonconvex, optimization problem.

3.4. Variance reduction

While a large sample size N provides a good approximation of
BPN to BP, the number of constraints and decision variables in
BPN grows linearly in N. The accuracy of BPN for a moderate N
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is often substantially improved through variance reduction
techniques such as importance sampling, see, e.g. [26]. If all
realizations v1; . . . ; vN result in satisfactory structural perfor-
mance for relevant designs, i.e., gðx; vjÞr0 for all j¼ 1;2; . . . ;N,
then globally optimal solutions for z0; z1; . . . ; zN are all zero. This
implies that the optimal design in BPN is simply the x that
minimizes the objective function f ðxÞ over X. Consequently, the
possibility of failure of the structure is not accounted for in BPN in
the case of such realizations. Hence, it is important that some of
the realizations result in gðx; vjÞ40 for relevant designs. We can
typically accomplish this by increasing N or, more efficiently, by
importance sampling, which we describe next.

Let W be a random vector with m random variables with joint
probability density function fWðwÞ with fWðwÞ40 for all w
satisfying fVðwÞ40. Let w1; . . . ;wN be realizations of W. Then,
we redefine

BPN : min
x;z

f ðxÞ

s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

zjr0;

ðgðx;wjÞ-z0Þ
fVðwjÞ

fWðwjÞ
rzj; j¼ 1;2; . . . ;N;

zjZ0; j¼ 1;2; . . . ;N; xAX: ð23Þ

By generating realizations from an appropriately selected prob-
ability density fWðwÞ, we can ensure that a substantial number of
realizations wj satisfies gðx;wjÞ40 for relevant designs. In
practice, fWðwÞ can typically be selected by increasing (decreas-
ing) mean values of random variables describing loads (material
strength). For more sophisticated approaches to selecting fWðwÞ
we refer to [26].

4. System reliability

4.1. Problem formulation

The performance of a structure is often given by multiple limit-
state functions representing quantities such as stresses and
deformations at different locations. Let gkðx; vÞ, k¼ 1;2; . . . ;K , be
a collection of limit-state functions describing the relevant limit
states for a structure. We define a cut-set to be a (sub)set of these
limit-state functions with the characteristics that if all the limit-
state functions in the cut-set are unsatisfactory for a given design
x and realization v, i.e., gkðx; vÞ40, then the structure experiences
system failure. A cut-set is minimal if no limit-state function can
be removed from the cut-set without rendering the resulting set
not a cut-set. We refer to an individual limit-state function being
unsatisfactory as component failure. Suppose there are ic minimal
cut-sets. We denote the set of limit-state functions belonging to
minimal cut-set i by Ci, iA I¼ f1;2; . . . ; icg. As system failure occurs
in the event of component failure with respect to all limit-state
functions in any minimal cut-set, the system failure probability is
defined as

psðxÞ ¼ P
[
iA I

\
kACi

fgkðx;VÞ40g

2
4

3
5: ð24Þ

If the cardinality of Ci, denoted jCij, is one for all iA I, then the
structure is a series structural system as the failure of any
component results in system failure. On the other hand, if ic ¼ 1,
then the structure is a parallel system as system failure only
occurs if all components fail.

It follows directly from (24) that

psðxÞ ¼ P½fgðx;VÞ40g�; ð25Þ

where

gðx; vÞ ¼max
iA I

min
kACi

gkðx; vÞ ð26Þ

is a system limit-state function. Hence, the design optimization
problem with system failure constraints generalizes P and takes
the form

Ps : min
x

f ðxÞ s:t: psðxÞr1-a0; xAX:

As Ps is at least as intractable as P, we consider a formulation
involving the buffered system failure probability.

4.2. Using the buffered failure probability

Following the approach of Section 3, we define analogously to
BPN the problem

BPs
N : min

x;z
f ðxÞ

s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

zjr0;

min
kACi

gkðx;v
jÞ-z0rzj; iA I; j¼ 1;2; . . . ;N; ð27Þ

zjZ0; j¼ 1;2; . . . ;N; xAX;

where we use in (27) the fact that

max
iA I

min
kACi

gkðx; v
jÞ-z0rzj; j¼ 1;2; . . . ;N ð28Þ

is equivalent to (27). The relationship between Ps and BPs
N is

identical to those between P and BPN . Hence, we recommend
designers to consider BPs

N instead of Ps.
In the case of series structural systems, i.e., each minimal cut-

set includes only one limit-state function, BPs
N is identical to BPN ,

except it includes more constraints of the same form. Hence, BPs
N

is tractable by standard nonlinear optimization algorithms when
gkðx; vÞ, k¼ 1;2; . . . ;K , are continuously differentiable. Moreover,
convexity is preserved as in the case of BPN .

Cases with general or parallel structural systems are more
complicated. The minimum over limit-state functions in (27)
causes BPs

N to become a nonsmooth optimization problem even if
gkðx; vÞ, k¼ 1;2; . . . ;K , are continuously differentiable. Hence,
standard nonlinear optimization algorithms are not applicable.
We propose three alternative approaches to overcome this
difficulty.

The first alternative transcribes the problem into a finite, but
potentially large number of optimization subproblems. Specifi-
cally, BPs

N is equivalent to

min
kij ACi ;iA I;j ¼ 1;2;...;N

min
x;z

f ðxÞ

s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

zjr0;

gkij
ðx;vjÞ-z0rzj; iA I; j¼ 1;2; . . . ;N; ð29Þ

zjZ0; j¼ 1;2; . . . ;N; xAX:

This problem amounts to minimizing
Q

iA IjCij
N subproblems

essentially of the form BPN and retaining the design with the
best objective function value. A main advantage of this transcrip-
tion is that it preserves convexity. That is, if gkðx; vÞ, k¼ 1;2; . . . ;K ,
are convex functions with respect to x, f ðxÞ is a convex function,
and X is a convex set, then each of the

Q
iA IjCij

N subproblems are
convex.

A design found in one of the subproblems can be used to warm
start the calculations of the next subproblem. However, the main
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challenge with this approach is the large number of subproblems
to solve. If it is not practical to (approximately) solve all
subproblems, then it is always possible to solve only a subset of
the subproblems. This provides a conservative design as (29) is a
restriction of (27) and further improvement might be possible
after solving other subproblems.

The second alternative avoids the large number of subpro-
blems by using exponential smoothing [1,17]. This alternative
replaces the nonsmooth function

cðx; vÞ ¼min
kACi

gkðx; vÞ ð30Þ

in (27) by a continuously differentiable approximation. For any
approximation parameter e40, let

~giðx;v; eÞ ¼ -e ln
X
kACi

e-gkðx;vÞ=e

0
@

1
A ð31Þ

be this approximation. We know that

0rcðx;vÞ- ~giðx; v; eÞre lnjCij ð32Þ

for all x, v, and e40. Hence, the smooth approximation ~giðx; v
j; eÞ

underestimates cðx; vjÞ and the error in the approximation
vanishes as e-0.

We now simply replace minkACi
gkðx;v

jÞ in (27) by its smooth
approximation for all i and j. This results in the following problem

BPs
NðeÞ : min

x;z
f ðxÞ

s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

zjr0;

~giðx; v
j; eÞþe lnjCij-z0rzj; iA I; j¼ 1;2; . . . ;N; ð33Þ

zjZ0; j¼ 1;2; . . . ;N; xAX:

Since we included the error term elnjCij in (33), a design that is
feasible in BPs

NðeÞ is also feasible in BPs
N . If the limit-state

functions gkðx; vÞ, k¼ 1;2; . . . ;K , are continuously differentiable,
then standard nonlinear optimization algorithms are applicable to
BPs

NðeÞ.
We observe, however, that even if gkðx;vÞ, k¼ 1;2; . . . ;K , are

convex, BPs
NðeÞ is not a convex optimization problem. In essence,

minimal cut-sets with cardinality larger than one introduce
nonconvexity in the design optimization problem. We also note
that exponential smoothing can be used in BPN to replace the N

constraints (21) by one single constraints.
The third alternative for solving BPs

N adapts the approach in
[12]. In that paper it is shown that BPs

N is equivalent to the
following problem:

EBPs
N : min

x;z ;mk
ij
;iA I;j ¼ 1;...;N;kACi

f ðxÞ

s:t: z0þ
1

Nð1-a0Þ

XN

j ¼ 1

zjr0;

X
kACi

mk
ijgkðx; v

jÞ-z0rzj; iA I; j¼ 1;2; . . . ;N; ð34Þ

zjZ0; j¼ 1;2; . . . ;N; xAX;X
kACi

mk
ij ¼ 1; iA I; j¼ 1; . . . ;N;

mk
ijZ0; iA I; j¼ 1; . . . ;N; kACi;

where mk
ij; iA I, j¼ 1; . . . ;N, kACi, is a set of auxiliary design

variables that effectively ‘‘select’’ which limit-state functions in
(27) are active. The equivalence between EBPs

N and BPs
N is in the

sense that a globally (locally) optimal solution from one problem
can be used to construct a globally (locally) optimal solution of
the other problem. If gkðx;vÞ, k¼ 1;2; . . . ;K , are continuously
differentiable, then standard nonlinear optimization algorithms

are applicable for solving EBPs
N . However, even if gkðx; vÞ,

k¼ 1;2; . . . ;K , are convex, EBPs
N may not be a convex problem

because (34) involves a product of design variables.

5. Computational studies

We illustrate the use of the buffered failure probability with
the design of a truss structure and a motor vehicle.

5.1. Optimal truss design

Consider the simply supported truss in Fig. 11. Let Vk be the
yield stress of member k, k¼ 1;2; . . . ;7. Members 1 and 2 have
lognormally distributed yield stresses with mean 100 N=mm2 and
standard deviation 20 N=mm2. The other members have
lognormally distributed yield stresses with mean 200 N=mm2

and standard deviation 40 N=mm2. The yield stresses of members
1 and 2 are correlated with correlation coefficients 0.8. However,
their correlation coefficients with the other yield stresses are 0.5.
Similarly, the yield stresses of members 3–7 are correlated with
correlation coefficients 0.8. The truss is subject to a random load
V8 in its mid-span. V8 is lognormally distributed with mean
1000 kN and standard deviation 400 kN. The load V8 is
independent of the yield stresses. We use a joint lognormal
distribution (see [5, Section 7.2]) and the above correlation
coefficients to approximate the joint distribution of
V¼ ðV1;V2; . . . ;V8Þ.

The design vector x¼ ðx1; x2; . . . ; x7Þ, where xk is the cross-
section area (in 1000 mm2) of member k. The truss fails if any of
the members exceed their yield stress (We ignore the possibility
of buckling.) This gives rise to seven limit state functions:

gkðx; vÞ ¼ v8=zk-vkxk; k¼ 1;2; . . . ;7; ð35Þ

where zk is a factor given by the geometry and loading of the
truss. From Fig. 11, we determine that zk ¼ 1=ð2

ffiffiffi
3
p
Þ for k¼ 1;2,

and zk ¼ 1=
ffiffiffi
3
p

for k¼ 3;4; . . . ;7.
We impose the constraint that the series system failure

probability with the seven limit-state functions should be no
larger than 0.00135, i.e.,

psðxÞ ¼ P
[7

k ¼ 1

fgkðx;VÞ40g

" #
r0:00135: ð36Þ

We also impose the 14 deterministic constraints 0:5rxkr2,
k¼ 1;2; . . . ;7, that limit the allowable area of each member to be
between 500 and 2000 mm2. We seek a design of the truss that
minimizes the cost of the truss. Since all members are equally
long, the cost is f ðxÞ ¼

P7
k ¼ 1 xk. This problem is of the form Ps

and, hence, we solve BPs
N with (27) replaced by

gkðx; v
jÞ-z0rzj; k¼ 1;2; . . . ;7; j¼ 1;2; . . . ;N ð37Þ

Fig. 11. Design of Truss.
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as our example is a series structural system. Since the limit-state
functions, objective functions, and constraints are linear in x, BPs

N

is a linear program that can be solved quickly by standard
optimization solvers. We use sample size N¼ 10 000 and the
variance reduction technique of Section 3.4 where we select the
sampling distribution to be identical to the original distribution
except that the mean value of the load is increased with three
standard deviations.

We implement the resulting linear instance of BPs
N in the

General Algebraic Modeling System (GAMS) Distribution 22.9 [6]
on a laptop computer with 1 GB of RAM and 2.16 GHz processor
running Windows XP. The globally optimal design of BPs

N is found
by the solver CPLEX 11.2 [11] with default options in 19.4 s. The
optimized design is shown in row 3 of Table 1 with the resulting
buffered failure probability in the last column of the table. In this
case, the buffered failure probability is about three times larger
than the failure probability. Here, the failure probability is
estimated by importance sampling with a 5% coefficient of
variation using an independent sample. For a rigorous solution
validation procedure we refer to [21]. For comparison, we also
report in row 4 of Table 1 the design found for the same truss in
[25] by approximately solving Ps using sample average
approximations. Since Ps requires the failure probability to be
no larger than a threshold and BPs

N , effectively, imposes the same
threshold on the buffered failure probability, the design of row 4
is naturally cheaper than the one in row 3. However, the former
design is less safe with an estimated failure probability of 0.00153
(5% coefficient of variation of estimate), which slightly exceeds
the threshold of 0.00135. While the algorithm in [25] is
guaranteed to converge to a feasible design satisfying the KKT
conditions under suitable assumptions, termination of the
algorithm after a finite amount of calculation time may result in
such infeasibilities. In contrast, the design obtained by using the
buffered failure probability has an estimated failure probability
below the required threshold of 0.00135. Moreover, the
calculation time of the algorithm in [25] is substantially longer
than that of solving BPs

N , with a time exceeding one hour to obtain
the design in row 4 of Table 1. While an improved
implementation of the algorithm in [25] will reduce this time,
the advantage of the buffered failure probability appears
substantial.

To better compare the design obtained using the buffered
failure probability with that using the failure probability, we also
solve BPs

N with probability threshold 0.00410. This threshold
equals the buffered failure probability of the design in row 4 of

Table 1. Row 5 of the table gives the resulting design obtained
after 20.5 s using CPLEX. We see that the designs in rows 4 and 5
are essentially identical, which indicate that optimization with
the buffered failure probability gives a similar design to that
obtained using the failure probability when the threshold is
appropriately adjusted. We note again that the computing time is
dramatically reduces when using the buffered failure probability.

5.2. Motor vehicle design

We consider an example given in [27] (see also [8]) where the
goal is to minimize the weight of a part of a motor vehicle subject
to reliability constraints related to side impact. We formulate this
problem in the form Ps with a series system failure probability
with respect to ten limit-states functions and a reliability level
1-a0 of 0.0013. The limit-state functions are surrogate models of
the real structural performance; see [27]. The example has seven
design variables relating to the thickness of material (The paper
[27] includes four additional variables, which we simply fix to the
values reported in [27], i.e., 0.345, 0.345, 0, and 0.) All thicknesses
must be in the interval [0.5 1.5]. The thicknesses cannot be
manufactured exactly and, hence, the limit-state functions
include normally distributed manufacturing errors with zero
mean and standard deviation 0.03 for each thickness. The errors
are statistically independent. We refer to [27] for details of this
example.

We implement BPs
N for this example with sample size

N¼ 7500 using the same hardware as above, but now solve the
problem using SNOPT [9] as implemented in TOMLAB [30].
Table 2 gives the optimized design in row 3, which was
obtained after 166 s, and the resulting buffered failure
probability; see the last column. The corresponding failure
probability is estimated by Monte Carlo sampling with a 5%
coefficient of variation using an independent sample; see the
second to last column of row 3. For comparison, we also report the
design given in [27] with estimated failure and buffered failure
probabilities (5% coefficient of variation); see row 4 of Table 2.
Again, we see that our methodology results in a reasonable design
in short computing time.

6. Conclusions

We discuss several theoretical, practical, and computational
issues associated with the failure probability with particular

Table 1
Design of truss.

Method 1-a0 Design of member (in mm2) Cost (mm2) Failure prob. Buffered prob.

1 2 3 4 5 6 7

BPs
N

0.00135 1320 1332 1272 1278 1271 1278 1271 9022 0.00047 0.00135

[25] 0.00135 1138 1156 1118 1107 1119 1113 1108 7859 0.00153 0.00410

BPs
N 0.00410 1153 1179 1100 1105 1106 1109 1101 7852 0.00154 0.00410

Table 2
Design of motor vehicle.

Method Optimized design Cost Failure prob. Buffered prob.

x1 x2 x3 x4 x5 x6 x7

BPs
N 0.5000 1.3524 0.5000 1.2989 0.6103 1.5000 0.5000 24.60 0.00067 0.00130

[27] 0.5000 1.3251 0.5000 1.2919 0.5964 1.5000 0.5000 24.37 0.00347 0.01769
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emphasis on difficulties arising in design optimization. We
propose an alternative measure, the buffered failure probability,
that offers significant advantages. The buffered failure probability
accounts for the degree of violation of a performance threshold, is
more conservative than the failure probability, and is handled
with relative ease in design optimization problems. The paper
formulates several design optimization problems in terms of the
buffered failure probability and discusses their relation to design
optimization problems in terms of the failure probability. We find
the buffered failure probability to be superior to the failure
probability and recommends its use in design and optimization of
structures.

While the buffered failure probability appears promising for
use in design optimization with reliability constraints, its
applicability in other optimization models such as those with a
von Neumann–Morgenstern maximum expected utility criterion
is unclear. Moreover, the buffered failure probability requires the
estimation of an expectation, which may be computationally
costly, and may result in large-scale optimization models. These
challenges should be the subject of further study.
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