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SENSITIVITY ANALYSIS OF SOLUTIONS
TO GENERALIZED EQUATIONS

A. B. LEVY AND R. T. ROCKAFELLAR

ABSTRACT. Generalized equations are common in the study of optimization
through nonsmooth analysis. For instance, variational inequalities can be writ-"
ten as generalized equations involving normal cone mappings, and have been
used to represent first-order optimality conditions associated with optimiza-
tion problems. Therefore, the stability of the solutions to first-order optimality
conditions can be determined from the differential properties of the solutions
of parameterized generalized equations. In finite-dimensions, solutions to pa-
rameterized variational inequalities are known to exhibit a type of generalized
differentiability appropriate for multifunctions. Here it is shown, in a Banach
space setting, that solutions to a much broader class of parameterized general-
ized equations are “differentiable” in a similar sense.

1. INTRODUCTION

One of the most important areas of nonsmooth analysis is the study of the
sensitivity to perturbation of the solutions to parameterized optimization prob-
lems. Since it is difficult, in general, to identify actual solutions to optimization
problems, sensitivity analysis is often carried out instead with respect to the
sets of quasi-solutions (points satisfying a first-order necessary condition for
optimality). In the case of convex problems, where first-order necessary condi-
tions for optimality are sufficient as well, these quasi-solutions are true solutions.
Since many first-order conditions for optimality can be expressed in the form
of generalized equations, there is much interest in the stability of the solutions
to parameterized generalized equations (see [1-5] for instance).

Robinson [3] gave an excellent survey of work, through the late 1980’s, on the
sensitivity analysis of generalized equations. These results can be interpreted in
terms of the sensitivity to perturbations, in p, of the multifunction (set-valued
mapping) G given by:

(1.1.1) Gip)={xeC|-F(p, x)e M(x)}

where the sensitivities of the (single-valued) mapping F and the multifunction
M are given. Robinson [3] showed that G is singled-valued and Lipschitz when
F is continuous in both variables, Lipschitz in the first and “strongly Bouligand”
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differentiable in the second, and M is the normal cone mapping associated with
C, a closed, convex set in a Hilbert space. Under strong additional assump-
tions, Robinson [3] actually obtained the “Bouligand” differentiability of the
necessarily single-valued G. Dontchev and Hager [4] extended Robinson’s re-
sults and obtained generalized Lipschitz results for the mapping G, with M
more general than a normal cone.

Further work has been done to obtain not only “continuity” results but “dif-
ferentiability” results for the mapping G. When M is the normal cone map-
ping associated with the polyhedral, convex set C C R”, Robinson [1] proved
that under certain conditions of differentiability on F and regularity condi-
tions on the “linearized” generalized equation, the mapping G is single-valued,
Lipschitz, and “Bouligand” differentiable. Still in the finite-dimensional setting
but for general M, King and Rockafellar [2] obtained a kind of generalized
derivative for the multifunction G when F is continuous in both variables and
strongly Bouligand differentiable in the first, and when a generalized regularity
condition is satisfied. Such “differentiability” results are not only very useful for
sensitivity analysis, but have application to general approximation schemes as
well. However, until now, aside from Robinson’s [3] result for a single-valued
G, nothing has been said about the “differentiability” of the multifunction G in
spaces more general than finite-dimensions, or with the mapping M depending
on the parameter p, where this parameter is possibly restricted to a subset of a
Banach space.

It is clear from equation (1.1.1) that, in general, G will be a multifunction,
and thus any broad sensitivity theory based on ‘differentiation” of such map-
pings must embrace some notion of generalized derivatives of multifunctions.
Rockafellar [5] introduced a generalized derivative, called a “proto-derivative”,
that applied to multifunctions on Banach spaces. Proto-derivatives are obtained
from Painlevé-Kuratowski set limits of the graphs of certain different quotient
multifunctions (the graph of a multifunction G is the set of all pairs (x, y)
with y € G(x), and is denoted by gph G). In Rockafellar [5, Theorem 5.6],
conditions were established that ensured the proto-differentiability of the mul-
tifunction G: R x R” — R” given by

(1.1.2) Gp,z)={xeClz-F(p,x) e M(x)}

where F is Fréchet differentiable, and M is the normal cone mapping associ-
ated with the polyhedral, convex set C € R”.

The present paper focuses on a Banach space extension of Rockafellar’s [5,
Theorem 5.6], where among other things, the parameterization is extended to
the mapping M . Specifically, we investigate the “differentiability” of the mul-
tifunction G given by

(L.13) Glp,z)={xeClz-F(p,x) e M(p, x)},

where p, z, and x are elements of general Banach spaces &, Z, and
& . We replace Fréchet differentiability of the mapping F with a form of
Hadamard differentiability perhaps only relative to some subset C, called semi-
differentiability relative to C (when the subset C is actually the whole space,
this is simply called semi-differentiability). This is a very weak form of dif-
ferentiability (certainly weaker than Fréchet differentiability), and examples of
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semi-differentiable mappings abound (Robinson [3] discussed mappings which
have properties stronger than semi-differentiability).

In Theorem 4.1, assuming merely that the single-valued mapping F is semi-
differentiable relative to Cs x C for some set C» C &, and the restriction of
M to Ce» x C, Mc,xc, is proto-differentiable, we show that the (restricted)
quasi-solution mapping Gc,xz is proto-differentiable, and obtain a formula
for its proto-derivative. Furthermore, we do not need the full generality of
infinite-dimensional Banach spaces and restricted parameter sets in order to
obtain important results from Theorem 4.1. Not only does our Theorem 4.1
generalize Rockafellar’s [5, Theorem 5.6] (since the normal cone mapping asso-
ciated with a polyhedral convex set in R” is proto-differentiable), but it provides
new sensitivity results for families of finite-dimensional nonlinear programming
problems with unrestricted parameterizations (see Example 4.2 and the remark
following it).

Besides these finite-dimensional applications, our Theorem 4.1 greatly 'in-
creases the range of infinite-dimensional problems for which the stability of
quasi-solution sets can be analyzed. A large and useful class of proto-differen-
tiable mappings in infinite-dimensions has recently been identified. In [6] and
[7], the authors showed that for certain composite functions on Hilbert spaces,
called “fully amenable” functions (compositions of convex functions with %2
mappings, and satisfying a constraint qualification), the (Clarke) subgradient
mappings of the functions are proto-differentiable as long as the functions
themselves are “twice epi-differentiable”. Fully amenable functions on finite-
dimensional vector spaces have been extensively studied by Poliquin and Rock-
afellar in [8] and [9]. In the more general Hilbert space setting, Levy [10]
showed that many such composite functions are indeed twice epi-differentiable
if they happen to be “integral functionals”. Such fully amenable integral func-
tionals are common in problems of optimal control, stochastic programming,
and the calculus of variations, and thus the subgradient mappings associated
with these functionals appear often in first-order conditions for optimality in
such problems.

Throughout this paper, 2 and % will denote general Banach spaces, and we
will use strong convergence unless weak convergence is indicated with a “w ”.
In §2, we investigate several related notions of generalized derivatives of mul-
tifunctions, including Rockafellar’s “proto-derivative” [5], and in §3 we define
semi-differentiability of a single-valued mapping. For locally Lipschitz map-
pings with domain and range in some finite-dimensional vector spaces, Shapiro
[11] showed that semi-differentiability is equivalent to Robinson’s “Bouligand”
differentiability [12], defined in terms of the “contingent cone™. It turns out that
proto-differentiation has an important connection with this contingent cone,
a fact that suggests there is a relationship between proto-differentiability and
semi-differentiability. We establish such a relationship in Proposition 3.4, ob-
taining the proto-differentiability of the multifunction that is the sum of a proto-
differentiable multifunction and a semi-differentiable mapping. Although this
result is interesting in its own right, we are currently concerned primarily with
its role in the proof of our Theorem 4.1. Section 4 is devoted to the proof
of Theorem 4.1, our result giving the proto-differentiability of the parameter-
ized quasi-solution sets (1.1.3). At the end of §4, there are two examples that
illustrate some of the uses of Theorem 4.1.
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2. GENERALIZED DERIVATIVES OF MULTIFUNCTIONS

An important ingredient in the definition of the proto-derivative of a mul-
tifunction is the notion of “graph convergence” which, in turn, depends on a
concept of set convergence due to Painlevé and Kuratowski. The inner set limit
as t | 0, denoted by liminf, of a family of sets {G;} parameterized by ¢ > 0,
is defined as the set of points x such that for every sequence ¢, | 0, x isa
limit point of some sequence of points taken from the sets G,, . Likewise, the
outer set limit as t | 0, denoted by limsup, is defined as the set of points x
such that for some sequence t, | 0, x is a limit point of some sequence of
points taken from the sets G, . In general, the inclusion

liminf G; C lim sup G,
t10 t10

is valid, and “graph convergence” is defined by this inclusion being an equality
when the G,’s are the graphs of a family of multifunctions.

Definition 2.1. A family of multifunctions {S;} parameterized by ¢ > 0 and
mapping £ into %, graph converges to the multifunction S: 2 — % as
t10,if
limsupgph S; = liminfgph S; = gph S.
t10 tl0

The notions of Painlevé-Kuratowski set limits not only help define graph
convergence, but have been used to define certain “tangent cones” to sets in
Banach spaces. In particular, the contingent cone to C at a point X € C, is
given by

. C-
Te(X) := limsup
t10

For a multifunction I" from a Banach space &2’ to another Banach space,
a point x € £, and a point y € I'(x), Rockafellar [13] defined the proto-
derivative of T" at x relative to y as the multifunction whose graph is the limit
set of the graphs of the difference quotient multifunctions (AI)x ,: & — Y,
defined by

AD)x &) =/)T(x+)—-y] foréeZ and?>0,
when these multifunctions happen to graph converge as ¢ | 0.

Definition 2.2. For a multifunction I': X — Y, a point x € X, and a point
y € I'(x), if the difference quotient multifunctions (A,I'), , graph converge as
t | 0, then I is proto-differentiable at x relative to y . The proto-derivative
is defined as the multifunction whose graph is the limit set, and is denoted by
I, ,. For any set C C 2, if the restricted multifunction I'c, defined by

e { r¢), iféecC

. foréeZ
a, otherwise <

is proto-differentiable at x € C relative to y € G(x), then G is said to be proto-
differentiable on C at x relative to y, and the proto-derivative is defined as
the multifunction whose graph is the limit set, and is denoted by (I'c)% , -

Since the notion of proto-differentiation is defined in terms of graphs of mul-
tifunctions, it is not surprising that the proto-differentiability of a multifunction
is equivalent to the proto-differentiability of its inverse multifunction.
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Proposition 2.3. 4 multifunction G: & — ¥ is proto-differentiable at x relative
to y € G(x) ifand only if its inverse G~ is proto-differentiable at y relative to
x € G~!(y), and the formula (G, ,)~' = (G~'), . holds.

Proof. As in [5, Proposition 5.1], this is clear since proto-differentiability is
defined in terms of graphs of difference quotient multifunctions. 0O

In order to state the next lemma, which provides an analytically useful version
of the definition of proto-differentiability, we must first introduce a notion of
one-sided differentiability of an arc v: [0, 7) — 2. For such an arc, we define
the one-sided derivative of v at 0 by
v(t) —v(0)

t

v}(0) := lim == ==,

when this limit exists.

Lemma 2.4. 4 multifunction G: & — % is proto-differentiable at x relative to

y € G(x) with proto-derivative G, , if and only if for every { € 2, Y

Gt@) = {n _ L),

there exist sequences &, — &, t, | 0, and }
Nn — N Such that y + t,n, € G(x + t,&,)

and

there exist arcs v: [0, 1) > Z and u: [0, 1) > ¥
G, (&) =< n|withv(0) =x, u(0) =y, v\.(0)=¢, and u/,(0) =7, p = L_(£).
and such that u(t) € G(v(t)) forall t € [0, 1)

Proof. Rockafellar [5, Proposition 2.3] proved this in the case when £ and
% happen to be finite-dimensional vector spaces, and the same proof works
for 2 and % general Banach spaces. The graphs of the multifunctions L_
and L, are, respectively, the lim inf and lim sup of the graphs of the difference
quotients for G at (x,y). O

From the definition of the contingent cone, it is evident that the multi-
functions L, and L_, as defined in Lemma 2.4, are empty-valued for all
¢ ¢ Tyomg(x) (where domG denotes the domain of the multifunction G,
which is the set of all points ¢ € 27 with G(&) nonempty). Thus, if the proto-
derivative G , exists, its domain is a subset of the contingent cone to the set
dom G at the point x.

3. SEMI-DIFFERENTIABILITY

The following notion of semi-differentiability relative to a set C allows one to
study the differentiability of single-valued mappings with respect to a restricted
set of parameters. Parameterized mappings modeling some phenomena might
lose their physical relevance for parameters outside a subset C, or could even be
undefined outside C. Examples include mappings parameterized by probability
measures or by scalars confined to some interval (see Example 4.3). For such
mappings, semi-differentiability on the whole space is often inappropriate or
even impossible to obtain without artificially extending the mappings to the
whole space.
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Definition 3.1. Let 2 and % be Banach spaces, and let C be a subset of 2.
A mapping g: C — % is directionally semi-differentiable relative to C at a
point X € & in the direction x , if the directional semi-derivative relative to C
of g at X in the direction Xx,

Dcgz(x):= lim gxX +1tx') — g(xX)

x'—x t
110 ‘
X+tx'eC

b

exists.

A particularly important set of directions is given by the contmgent cone to
the set C at the point X € C, T¢(X).

Definition 3.2. Let 2 and % be Banach spaces and let C be a subset of X .
A mapping g: C — % is semi-differentiable relative to C at a point X € C,
if g is directionally semi-differentiable relative to C at X in the direction x
for all directions x in the contingent cone to C at X.

Obviously, any mapping that is semi-differentiable on the whole space 2 is
necessarily semi-differentiable relative to any subset C . However, for the kinds
of mappings on restricted parameter sets that we discussed at the beginning of
this section, even though semi-derivatives relative to a particular subset might
exist, semi-differentiability on the whole space could be impossible to obtain.
When the set C is the whole space 2, semi-differentiability is the same as
Robinson’s B-differentiability [3], and is weaker than Fréchet differentiability.
In particular, Haraux [14] shows that the projection onto a “polyhedric” set in a
Hilbert space in a B-differentiable mapping which is not Fréchet differentiable.
A polyhedric set is a generalization to Hilbert spaces of a polyhedral set in
finite-dimensions (see Mignot [15] for examples of polyhedric sets). Clearly
then, supposing semi-differentiability of the mapping F in (1.1.1) is at least as
mild as assuming the corresponding differentiability conditions of Robinson [1]
or King and Rockafellar [2].

A clue to the relationship between proto-derivatives and Bouligand deriva-
tives can be found in an equivalent definition of the proto-derivative involving
the notion of “derivability” of a set.

Definition 3.3. A set C is a Banach space is derivable at a point x € C if the
contingent cone to C at x satisfies the following identity:

.. C—
Te(x) = llr?ul)nf

It is clear from the definition of the contingent cone that I" is proto-differen-
tiable at x relative to y if and only if the set gphI" is derivable at (x, y).
Furthermore, Robinson’s original definition of Bouligand differentiability of a
single-valued mapping f at a point x [12] implies that the graph of f be
derivable at (x, f(x)). This connection between Bouligand derivatives and
proto-derivatives, together with the fact that semi-differentiability is equiva-
lent to Bouligand differentiability under certain circumstances, indicates that
the proto-differentiability of a multifunction and the semi-differentiability of a
mapping might be related concepts. In fact, a multifunction that is the sum of
a proto-differentiable multifunction and a semi-differentiable mapping is itself
proto-differentiable.



GENERALIZED EQUATIONS 667

Proposition 3.4. Let 2 and % be Banach spaces and let C be a subset of
&Z . If the multifunction H: & — % is empty-valued outside C and proto-
differentiable at x relative to y, € H(x), and the mapping g: C — ¥ is semi-
differentiable relative to C at x, then the multifunction G: & — ¥ defined
as the sum of H and g, G .= H + g, is proto-differentiable at x relative to
Yy = yo+ g(x) € G(x). Furthermore, the proto-derivative of G is given by:
Gy ,=H, , +Dcgx. .

Proof. Let LY and LS be as in Lemma 2.4 applied to G, and let L¥ and
LY be as in Lemma 2.4 applied to H. For any & ¢ Tc(x), the sets LY(¢)
and LY(&) are both trivially empty (since domG C domH C C, and thus
TaomG(x) € Te(x)) . Furthermore, for any & € Tc(x), L is defined by

there exist arcs v: [0,7) = 2 and h: [0, 1) - ¥
LH(&) = < n | with v(0) = x, A(0) = yo, v}(0) = ¢, and A,(0) = 7,
and such that A(¢) € H(v(¢)) for all ¢t € [0, 1)
By considering arcs u: [0, 1) — % defined by u(z) := h(t) + g(v(t)), we
conclude that the inclusion _
(3.4.1) LE(&) 2 LE(&) + Dcgx(€)

holds. Since H is proto-differentiable at x relative to yy, Lemma 2.4 implies
that L# = L¥ | and inclusion (3.4.1) becomes

(3.4.2) LE(&) 2 L¥(&) + Dcgx(&).
Clearly, if the inclusion
(3.4.3) L$(&) € LY (&) + Dcgx(&)

were valid as well, it would follow that L$(&) € LY(&). Since the reverse
inclusion holds by definition, we could finish the proof by making another appeal
to Lemma 2.4. Therefore, we are done if we can show that inclusion (3.4.3) is
valid.

Proof of inclusion (3.4.3). By definition, the containment 7 € LY(&) is equiv-
alent to there being sequences &, converging strongly to £, 7, converging to
n,and ¢, | 0 with

H(x + lnén) — Yo + G(-x + tnfn) — g(x)
tn tn
(implicit here is the containment x + ¢,&, € C). However, if we define

= X+t —gx
'In:='7n—g( nfn) 8( )’
n
then it follows that 7, converges to 1 — Dcgx(&), and (3.4.4) implies the

containment

(3.4.4) M €

H t -
ﬁn € (x + tnén) yO .
n

This just means that n € LH (&) + Dc gy (&), and the claim is proved. O

4. PROTO-DIFFERENTIABILITY OF THE QUASI-SOLUTION SET

We now have all the tools that we need to prove our main theorem, which
gives the proto-differentiability of the quasi-solution set.
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Theorem 4.1. Let %, Z and % be Banach spaces, and let C = Cp x Cyp
with Co C P and Co CE. If G: P x F — Z is a multifunction of the
form

Gp,z)={xeCqp|z—F(p,x)e M(p, x)},

Jor a mapping F: C — Z which is semi-differentiable relative to C at (p, X) €
C, and a multifunction M: P x & — Z which is proto-differentiable.on C at
(7, X) relativeto u:=(zZ—F(p, X)) e M(p, X), then G is proto-differentiable
on CexZ at (p, Z) relative to X. Furthermore, the following formula for the
proto-derivative of G holds:

(Geoxz)p,7),5P> 2) ={x €Z|2 — DcFp 5 (p, x) € (Mc)z 5,200, X)}-

Proof. In order to prove this theorem, we first define the mappings M and F
from # xZ to xZ,and H, g and A from £ x.Z to L x £ as
follows:

M(q, x) = {0} x M(q, x),
F(q,x):=(q, F(q,x)),
H(p,z):={(q,x) € Cl(p, z) - F(q, x) € M(q, x)},
g, z):=(-p,0),
(p,Z)-=H(p,Z)+g(p,Z)-

From the above definitions, it is clear that A(p, z) = {(0, x)|x € Gc,xz (P, z)}
and in order to prove our result, we need only show that A is proto-differentiable
at (p, zZ) relative to (0, X), with the appropriate formula. As a result of
Proposition 3.4, this can be accomplished by demonstrating that H is proto-
differentiable at (7, Z) relative to (p, X) with proto-derivative given by

HG 3,69 2)
={(p, x) € P xZ|z — DcF 5P, x) € (Mc)g 5 a0, x)}-

Focusing on equation (4.1.1) then as our goal, we notice that the identity

(4.1.1)

(4.1.2) H'=F + Mc

holds. Under our hypotheses, Proposition 3.4 applied to identity (4.1.2) gives
the proto-differentiability of H~!, which, by Proposition 2.3, gives the desired
proto-differentiability of H. To obtain equation (4.1.1), we first need to cal-
culate the proto-derivative of H~! at (p, X) relative to (7,Z). Applying
Proposition 3.4 to the identity (4.1.2), we get the following formula for the
proto-derivative of H~!:

(H_I)I@,;),(ﬁ,z)(P: x)=(p, DcFg %P, x)+ (MC)E,—;,}),Q(P, x)).

Therefore, the containment (g, z) € (H™!)/

7.%),6.9 (p, x) is equivalent to the
conditions ¢ = p, and

z—=DcFg 5P, x) € (MC)I@,;),u(P, x).

Via Proposition 2.3, this is equivalent to equation (4.1.1) and we are done. O
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The formula for the proto-derivative of G in Theorem 4.1 can be improved
slightly when the sets C» and Cy happen to be derivable at p and X respec-
tively. In this case, the identity

Tc(P, X) = Tc,(P) x T, (X)

holds, and since the set (MC)EE,Y),E(I’ , x) isempty forall (p, x) ¢ Tc(p, ')?) ,
we conclude that the proto-derivative of G actually has the form

.

(Geox2),7),5(P> 2) = {x € Tc,(X)|z — DcFp %), x) € (Mc)G 5.2, X)}-

The proof of our Theorem 4.1 follows Rockafellar’s proof of [5, Theorem
5.6]. Particular methods that come directly from [5] include our introduction of
“extended” mappings at the beginning of the proof and our subsequent reliance
on results about the inverse multifunction and the sum of a proto-differentiable
multifunction with a differentiable mapping. However, there are some inno-
vations in the proof of our Theorem 4.1, made, for instance, to handle the
general multifunction M (recall that in Rockafellar’s Theorem 5.6, M was
the normal cone mapping associated with a convex, polyhedral set). We call
attention to the fact that, just as in Rockafellar [5, Theorem 5.6], the “ z ”-term
must be included in the representation of the mapping G. The presence of
this parameter means that the multifunction whose proto-differentiability we
are studying, must at least depend parametrically on the z and might depend,
more generally, on other parameters (as represented by the dependence of F
and M on p). For the purpose of applying Theorem 4.1 to sensitivity analysis,
this “dependence on z ” simply means that the parameterized problems whose
quasi-solutions are to be studied, must include a linear term as a part of their
parametric dependence.

We note finally that Theorem 4.1 holds as well if “strong” is everywhere
replaced by “weak”. Our choice of convergence is made in order to present
both a general statement of the theorem, and one that is applicable to a broad
class of problems.

We conclude with two examples that show some of the range of our Theo-
rem 4.1. The first example involves finite-dimensional problems of nonlinear
programming.

Example 4.2. Let f; be a 2 function on R? x R” and let C be a set defined
by finitely many %2 functions as follows:
filx)<0 fori=1,...,s
filx)=0 fori=s+1,...,m}'
Forany p e R? and z € R”, let (N LP, ) denote the problem

C={xeR"

(NLPy, ;) minimize fo(p,x)—z-x overxeC.

A first-order necessary condition for optimality in the problem (NLP, ;) is
given by =V, fo(p, x) + z € Nc(x) (here Nc(x) denotes the (Clarke) normal
cone to the set C at the point x), and therefore the solutions to these optimality
conditions give a multifunction G: R? x R” — R" of the form

Gp, z) == {x € Clz = Vxfo(p, x) € Nc(x)}.

If for some point (7, Z) € R? x R", the f;’s defining the set C satisfy the
Mangasarian-Fromovitz constraint qualification at a point X € G(p, Z), then



670 A. B. LEVY AND R. T. ROCKAFELLAR

the normal cone mapping N is proto-differentiable at X relative to o :=
(Z=Vxfo(P, X)) € Nc(X) (see [13]). Clearly, the mapping V, fo: R xR" — R”
is semi-differentiable at (7, X) relative to the set R? x C (in fact itis #! on
the whole space), and therefore our Theorem 4.1 gives the proto-differentiability
of the quasi-solution mapping G at the point (p, Z) relative to X . The proto-
derivative of G has the form

GE’T,E),}(pa Z) = {x € %IZ - Vx,pf()(_p—, Y)p - Vx,xf(‘)(ﬁ, f)x € (NC):?j(x)} ¥

For this example, the proto-derivative of Nc can be computed using formulas
in [13] and [16].

Remark. Many authors have analyzed the sensitivity of solutions to first-order
“Lagrangian” necessary conditions for parameterized nonlinear programming
problems like (NLP, ;) (see Kyparisis [17] for a survey). This Lagrangian-
based approach produces multipliers that become extra parameters for the prob-
lem. Consequently, a direct sensitivity analysis of the solutions to such La-
grangian optimality conditions involves “derivatives” with respect to the multi-
plier parameters as well as the original parameters. The method in Example 4.2
is based on “primal” necessary conditions, and ultimately this approach also
involves multipliers; however they appear only after the proto-differentiation
of the quasi-solution mapping, in the formula for the proto-derivative of the
normal cone mapping (Nc)ﬁ—c,g- Thus through our Theorem 4.1, we are able
to directly study the sensitivity of the nonlinear programming problem with
respect to only the original parameters.

Example 4.3. Let f; be a #2 function on a Hilbert space 2 such that for
some p >0 and Z € 2, the “ p-coercification” of fy, fo(-)+ (p/2)|I(-) = Z||,
is convex, and let Co be a subset of 2. For any real scalar A > p and any
zeZ,let (P, ;) be the problem of minimizing the A-coercification of fy:

(Pa.z) minimize fo(x) + %Hx —z|> overxe€ Cy.

The quasi-solutions to (P, ) are the points x € Cg that satisfy the optimality
condition Az — V fy(x) — Ax € Nc,(x), and thus the quasi-solution mapping
G:Rx & — £ has the form

G(A,z) ={xeZ|z—x—-A"'Vf(x) € Nc,(x)}.

Using Theorem 4.1, we can study how the solutions to (P; ;) change as the
parameters 4 > p and z are perturbed from p and Z, by computing the proto-
derivative of G on C :=[p, o) x Cy at (p, Z) € C relativeto X € G(p, Z).
If the normal cone mapping to the set Cy is proto-differentiable at X relative
to U:=(Z—-X - p 'V fy(X)), Theorem 4.1 gives the following formula for the
proto-derivative of the quasi-solution mapping:

(Ge)pzsds 2)={xeZ|z+ (/P fo(X) —x - p~ 'V fo(X)x € (Nce)z,u}-

In finite-dimensions, sets like those in Example 4.2 are examples of Co for
which the above analysis is valid (since their associated normal cone map-
pings are proto-differentiable). In infinite-dimensional Hilbert spaces, sets Cg
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that can be represented as fully amenable integral functionals also yield proto-
differentiable normal cone mappings (see [10] and [6] for details), and there-
fore families of coercification problems over such sets have proto-differentiable

quasi

10.
11.

12.

17.

-solution mappings.
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