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Second-order optimality conditions for finite-dimensional smooth and nonsmooth nonlinear
programming are obtained by a new method that emphasizes a close connection with
geometrical approximation of the essential objective function. The approximation is secured
by the use of certain epi-derivatives defined by epiconvergence. The optimality conditions are
expressed in a form that covers general interval constraints and their possible representation
through penalties or an augmented Lagrangian. An abstract constraint involving restriction to
a convex polyhedron is incorporated.

1. Introduction. Numerous authors have worked on the question of necessary and
sufficient optimality conditions of first and second order in nonlinear programming. In
order to accommodate modern problem formulations that may involve exact penalty
terms or augmented Lagrangians, they have appealed in this effort to generalized
concepts of differential approximation as well as the more traditional concepts of
tangent cones. Especially to be cited in this vein are the papers of loffe [18]-[20],
Ben-Tal and Z« we [3]-[6], Chaney {7]-[13], and Burke [6).

The reader may find it surprising, therefore, that in this subject there is stiil
something left to be said, particularly in finite dimensions. In fact the contribution in
this paper differs in several significant respects from what has been seen before. It is
based on a problem formulation given recently in Rockafellar {27} that covers virtually
all the optimization models commonly encountered in practice and yet is more specific
than most of those dealt with by the authors just cited and therefore affords the
possibility of sharper conclusions. It is based on a concept of derivative from paper
[27] that has a stronger basis in geometric approximation and correspondingly a
greater potential of stability and robustness. It extends the classical approach to
optimality into a “neo-classical” approach where all one has to do is replace graphs of
functions by epigraphs, and graphical convergence by epigraphical convergence.

In an abstract sense any finite-dimensional problem of optimization can be ex-
pressed in terms of minimizing a certain extended-real-valued function f over R". The
broad case that captures our attention here is the one where

(1.1) f(x) =g(F(x)) for F:R" > R? g RY->R,

where F is a mapping of class €2 and g is a proper convex function that is piecewise
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linear-quadratic by the following definition: the effective domam of ¢ (the sct where g
does not merely have the value =) is expressible as the union of finitely many
polyhedral sets. relative to cach of which g is given by a formula that 1s quadratic (or
affine). Examples showing how typical problems in nonlinear programming can be cast
in this mold have been furnished in [27]. and we shall turn to them in due course later
in this paper. The reader should bear in mind that the minimization of fover R” when
f is of form (1.1) carries with it the implicit constraint that F(x) € D, where D is the
effective domain of g and therefore. under the stated assumptions. is a convex
polyhedron (possibly all of RY).

The important fact to record about such functions f for the purpose of this
introduction is that they are “twice epi-differentiable” as long as a basic constraint
qualification is satisfied. This property, established in [27], expresses geometric features
not heretofore recognized or put to use in connection with optimality conditions.

In §2 we briefly review the concept of epi-differentiability and develop in terms of it
a simple, general theorem about necessary and sufficient conditions which does not
depend on the particular structure in (1.1). Such structure is taken up however in §3.
where we apply the epi-derivative formulas of [27], and in §4. where we specialize to a
number of examples. The sufficient conditions obtained by this route are fully
satisfactory, but the necessary conditions appear at first to fall short of the ones
developed by other authors, because of the particular assumption of a constraint
qualification. There is some philosophy to be offered on this. but in any case the
discrepancy is only temporary and illusory, since by applying the results to an auxiliary
problem one can quickly obtain all that might be desired. This is the topic of §5.

2. Abstract conditions of optimality. In this section f denotes an arbitrary lower
semicontinuous function from R” to the extended real number system R, not necessar-
ily of the composite form (1.1), and x denotes a point where f is finite. We work with
the first and second-order difference quotients

(2.1) o (&) = [f(x + &) - f()]/t and

(2.2) Yoo ) =[x +08) = 7(0) - TR VATES s

the latter involving the choice of an additional vector © about which more will be said
presently. :

A family of sets S, in R” for £ > 0 is said to converge toaset Sas ({0l S is closed
and one has

limdist(x.S,) = dist(x. §) forall v € R".
110

This notion of set convergence can be characterized in many other equivalent ways, but
we do not need to go into the details here; see [27] and [28] for additional description
and references. A family of functions ¢, on R” for ¢ > 0 is said to epiconverge to a
function ¢ if the cpigraph sets epi ¢, converge as ¢ | 0 to epi @. Again this is 4 notion
that has various expressions, but we merely refer to [27] and {28].

DerINITON 2.1, The function f is said to be epi-differentiable at x if the functions
¢, ,in(2.1) epiconvergeas 1 L0 and the limit function, denoted by f/. has f’(0) > x.
It is said to be nvice epi-differentiable at x relative to the vector v il it is epi-diflerentia-
ble in the sense just described and the functions ¢, in (2.2) epiconverge as ¢ L0, and
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in addition the limit function. denoted by £, has £”7,(0) > — ac. In this event ¢ must
be an epi-gradient of f at x in the sense that f(§) =& ¢ for all (e R
[27, Proposition 2.8]. We simply say therefore that f is mwice epi-differentiable at x
(without reference to a particular ¢) if f s epi-differentiable at x. has at least one
epi-gradient there, and with respect to every epi-gradient ¢ is twice epi-diflerentiable at
x relative to v.

If f happens to be of class €2, one has

[7() =& vf{x) forall &,
and the unique epi-gradient at x is ¢ = Vf(x), and
fOAE) =& 9 (x)é forall § whenv = vf(x).

In particular, f is twice epi-differentiable at x in this case.

A number of elementary properties of epi-derivatives have been furnished in (27, §2]
along with further justification of the concept. Our attention here is focused on proving
the following theorem that uses epi-derivatives in a prototype statement of optimality
conditions. We use the terminology that f has a local minimum at x in the strong
sense if

(2.3) Ja > 0 with f(x') 2 f(x) + alx” — x|? forall x" near x.

THEOREM 2.2. Let f: R" = R be a lower semicontinuous function, and let x be a
point where [ is finite and twice epi-differentiable.

(a) (Necessary condition). If f has a local minimum at x. then 0 is u epi-gradient of |
at x and

(2:4) frul€) >0 forall g,
(b (Sufficient condition). If O is a epi-gradient of f at x and

fo0(€) >0 forall ¢ #0,

then f has a local minimum at x in the strong sense.

Proor. If / has a local minimum at x relative to the ball of radius § around x.
then the functions ¢, , and ¢, 4, in (2.1) and (2.2) are nonnegative on the ball of
radius 1/8 around 0. Their epi limits f” and £}, if these indeed exist, must therefore
be nonnegative on all of R”. The epi limit f’ exists by the assumption that f
is epi-differentiable; the condition f’(£) > 0 for all { means that 0 is a epi-gradiemt
of f at x. Then [} exists by the assumption of twice epi-differentiability. This es-
tablishes (a).

Under the assumptions in (b) one-can let B = ming_, f/(§) and have B8 > 0.
because [, is lower semicontinuous (its epigraph being a closed sct by virtue of the
definition of epiconvergence). Then actually

fU0€) = BiE)P forall &,

because %, is a function that is positively homogeneous of degree 2 [27, Proposition
2.7]. This says in the terminology of [27] that the matrix 7/ = BI is a “epi-Hessian"” of
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f at x relative to ¢ = 0. Then by [27. Proposition 2.8] one has
FOCY 2 fx) 4 N = ) (X = x) + oy~ xit).

and the assertion about f having a strong local minimum at x n the sense of (2.3) 15
justified. =

The prime feature of Theorem 2.2 is that, despite its broad generality. it precisely
mirrors the classical theorem for an unconstrained minimum, to which it reduces when
f happens to be twice differentiable at x. The hypothesis of the theorem needs to be
judged in this light, since it is not the weakest that might serve for the same
conclusions. Neither the necessary condition nor the sufficient condition fully requires
the second-order epi-differentiability of f at x. Both could actually be expressed in
terms of certain “lower” epi-derivatives that always exist, and in this way one would
obtain a seemingly more subtle result. This is true, however, for the classical theorem
as well: “lower” second derivatives are all one really needs to deal with in order to
characterize optimality.

Why then the classical assumption of twice differentiability? The reason obviously is
that twice differentiability is a convenient and readily verifiable property with many
consequences besides those of the theorem itself. The derivatives it involves can
specifically be calculated for a large class of functions, and the optimality conditions in
terms of them can therefore be incorporated into the analysis of computational
methods and approximation schemes for problems with particular structure. Our
argument for Theorem 2.2 is that much the same holds for twice epi-differentiability.
This claim is based, of course, on the calculations of epi-derivatives that were carried
out in [27] and which will be utilized in the next part of this paper.

Theorem 2.2 should also be compared with the kind of result that can be stated for
the generalized second derivatives of Ben-Tal and Zowe [3]-{5]. Those derivatives.
defined only for functions with finite values (and therefore not directly usable in a
neoclassical approach to optimality where constraints are represented by an infinite
penalty, as here), have been shown to exist in a number of important cases in which
they can be used to characterize optimality. On the abstract level corresponding to
Theorem 2.2 they cover necessity but not sufficiency, at least without drastically
restricting attention to functions f that are differentiable and whose gradien\t mapping
is Lipschitz continuous [5]. . ’

The general optimality conditions comparable to Theorem 2.2 that have bceen
obtained by Chaney [7]-[13} concern a Lipschitz continuous function f and a diflerent
concept of second derivative, defined using directional limits of subgradients. Again
the case of constraints represented by oo is not directly included. In contrast to the
results of Ben-Tal and Zowe, necessity rather than sufficiency requires an extra
assumption (semismoothness of f in the sense of Mifflin [22]). but this is not so
stringent, and the two conditions are therefore more satisfyingly close together.
Chaney's second derivatives turn out to coincide with ours for the main class ol
functions for which they have been calculated by him, which is also the main class
treated by Ben-Tal and Zowe (3], as we have shown in [27] on the basis of Chaney's
formulas in [10]. Their relationship with second-order epi-derivatives in other cases
(under the assumption that f is locally Lipschitzian) is not settled.

3. Chain rule formula and the main theorem. For Theorem 2.2 to lead to optimul-
ity conditions that are illuminating in specific applications, one must be able to
identify cases of interest where f is indeed twice epi-differentiable at x. and to
calculate then the corresponding derivatives. For this purpose we shall rely on a chain
rule proved in [22] for functions f of the form (1.1). Our first task is to state the



466 R. TYRRELL ROCKAFELLAR

relevant parts of this chain rule in a convenient manner for reference. We must begin
with the underlying properties of the functions g appearing in (1.1).

THEOREM 3.1 [27, Theorem 3.1].  Ler g: R — R be a proper convex function which
is piecewise linear quadratic, and let D denote its effective domain. Then at any point
u € D, g is mwice epi-differentiable, the derivatives being given by simple limuts along
rays:

(3.1) giw) = llilr?)[g(u + tw) — g(u)]/t.
(3.2) g2 (w) = llilns[g(u+,w)—g(u)—w,-|/f.:f,

The epi-gradients y in the second formula are the same as the subgradients of g. the
elements of the subdifferential dg(u) of convex analysis, which is given by

(3.3) dg(u) = (¥l y-w<gifw). Vo).
In fact one has

Y(w) ify w=g/(w).
o ify-o<giw),

(34) g (w) = {

where for w with gl(w) < oc one defines
(3.5) v.(@) = lim [g(u + 1) = g'(u) = 1gi(w)]/1e* < 0.
1

[ = 0 if g is actually piecewise linear|.

DEFINITION 32. Let F:R" —» RY be a €% mapping and consider the constraint
condition

(3.6) F(x) € D.

where D € RY is a convext polyhedron. At a point x for which this constraint is
satisfied we shall say that the basic constraint qualification holds if the only vector
y € RY having

(3.7) vy € Ny(u) and V(yF)(x)=0

is y=0.
Here N,(u) denotes the normal cone to D in the sense of convex analysis, and yF is
the €2 function from R" to R defined by (yF ) x) = y - F(x). One can also write

(3.8) v(yF)(x) =yvF(x)

where VF(x) denotes the d X n dimensional Jacobian matrix of the mapping F
at x.

The basic constraint qualification is a natural extension of the Mangasarian-
Fromovitz constraint qualification to systems of the general form (3.3), as explained in

[27. §4}.
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THLOREM 3.3 [27. Theorem 4.5).  Ler f(x) = g(F(x)), where F: R" = R is a 6 :
mapping and g: R - R is a proper convex function which is piecewise linear-quadratic
with effective domamn D. Let C denote the effective domain of f . ie., C = [ x] F(x) € D}.
Then at any x € C where the basic constraint qualification is satisfied. [ is iwice
epi-differentiable. One has

(3.9) 1(8) = i (VF(x)E).

The corresponding set of epi-gradients v of [ at x coincides with the sct df(x) of
generalized subgradients in the sense of Clarke and is given by

(3.10) Af(x) = dg(F(x)TF(x) = {rVF(x)] y € dg(F(x))}.

For each v € df(x) one has

[ (TF()E) + max £-92(F)(0)E o €€ E(0).

VYE Y.(n

[P i€ s (v).

(3.1 S (8) =

where
(3.12) Y.(x) = {y€ dg(F(x))| yvF(x) =0}
is a nonempiy. bounded. polvhedral convex set.

(3.13) I (x) = (£ €R"| gp (VF(x)§) <v- £}

is a polyhedral convex cone, and vy, (VF(x)$§) is the expression defined from g by (3.5).

It may be noted that in (3.13) one actually has
(3.14) Z(x) = {§ € R gfo (VF(x)E) = v ¢}
because of the assumption that ¢ € df(x). The ialler implies by (3.9) and (3.10) that
(3.15) 8H(TF(x)¢) >v-§ forall { €R".

Our main theorem on optimality conditions can now be displayed. It applies to any
problem that can be represented in the general form

(P) minimize f{x) = g( F(x)) subjectto F(x) € D.

where F, g and D are as in Theorem 3.3. This is a very rich class of problems;
examples will be recalled in §4.

THEOREM 3.4. Let f: R" — R be a function having the form specificd in Theorem 3.3,
and let x be a point of the effective domain C of f where the basic constraint qualification
is satisfied. Let

(3.16) Yo (v) = { v € dg(F(x))| ¥y VF(x) = 0}
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(this will be the set of first-order multiplier vectors). let
(3.17) Zo(x) = (£ € R"| g}, (VF(x)§) < 0)

(this will be the cone giving the first-order critical directions), and denote by
Yrc)( VF(x)£) the expression defined from g by (3.5).
(a) (Necessary condition). If f has a local minimum at x, then Y,(x) #+ @ and

(3.18)
véie Z,(x). Iy € Y(x) withye (TF(x)£) + £- T yF)(x)£> 0.
(b) (Sufficient condition). If Y,(x) # @ and
(3.19) vee Z(x)\ {0). Iy e Yy(x) with

Yeoo(CF(x)E) + ¢ 9 (yF)(x)¢> 0,

then f has a local minimum at x in the strong sense (as defined by (2.3)).

ProO®.  According to Theorem 3.3 one has Y, (x) * @ if and only if 0 is a
epi-gradient vector for [ at x. Formulas (3.11) and (3.14) yield

[Vra(TF)E) v max ¢ 93 (F)(x)E il §e Z,(x).

(3~2()) _/.’,0(5) =
..'x: if¢e Z,(x).

It is immediate then that (3.18) and (3.19) are realizations in the present context of the
second derivative conditions in Theorem 2.2 =

The fact that Theorem 3.4 assumes a constraint qualification for the sufficient
condition as well as for the necessary condition puts this result somewhat out of the
usual pattern for the literature on optimality, as we have already mentioned in
connection with Theorem 2.2 and will discuss further in the sequel. We remind the
reader that this feature is largely one of the mathematical presentation rather than of
the refinements that ultimately drop out. The hypothesis of Theorem 3.4, like that of
the classical theorem for unconstrained minimization, supports not only the optimality
conditions in question but their robust interpretation in terms of a geometrical
approximation 1o f at x, as expressed through Theorem 3.3 by the epiconvergence that
underlies the concept of epi-differentiation.

4. Specialization to models in nonlinear programming. Two specific types of
problem formulation in nonlinear programming will serve to illustrate the content of
our general result in Theorem 3.4, The first is

minimize f,{x) subjectto f{x) €1, for i=1... ., m
(r) ;
and x € X, where f,(x) = max f, (x).
1=1. B
In this problem X denotes a nonempty convex polyhedron in R”. /, is for i = 1., . m

a nonempty closed interval in R, and the functions f, and f,, are all of class 4.
The interval I, can be of any kind: I, = |c,.00) corresponds to an inequality
f0x) > e, 0 (- ¢ corresponds to f(x) < ¢, and 1, = [c¢,. ¢,] corresponds to an
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equality constraint f,(x) = ¢,. The polyhedron X may be R’ or all of R". for
instance; it may be used also as a representation of an arbitrary system of finitely
many linear constraints, which can give extra power later when verifying that a
constraint qualification is satisfied. Obviously covered too are cases where s = 1. so
that f itself is a €2 function rather than just a max function, or when m = 0. i.e. no
side conditions of the form f,(x) € I, are present.

The second of our formulations involves the same data elements and assumptions
but corresponds rather to something like a penalty representation or Lagrangian
representation of (P,):

m

minimize f(x) + Y p,(d,l.(f,(x))) overall x € X. with

1=1

(Py)
folx) = ﬂlwx fo,(x). where

1,* = some nonemplty closed interval (possibly /,* # 1,).

(4.1)

d,.(u,) = distance of u, from 1*.
The functions p,: R, — R are assumed to be (afline or) quadratic and increasing
(therefore convex).

An example of this structure is

(4.2) p,(0) =4q0 withg >0; I*=1.

One then has an “exact’” penalty representation of () of /, type. with the g,’s as the
penalty parameters. Alternatively one could take

(4.3) p,(6)=1r87 withr,>0; I*=1.

This would correspond to a traditional smooth penalty representation of /, type. The
standard (quadratic-based) augmented Lagrangian representation of (P,). as general-
ized to the interval constraints -f,(x) € I, takes the form of (P,), with .

(4.4) p.(8) =1r82 — Y\ /r)" withr,> 0 1*=1— (A/r).

‘;

In this case A, corresponds to the usual Lagrange multiplier. The reader can verify for
instance that when 7, = [0.0] one has under (4.4) that

(4.5) p. (- (£(x)) = X f(x) + b f ()

this is the expression introduced by Hestenes [16] and Powell [23] for an equality
constraint f(x) = 0. When /I, = (- 0. ¢,], on the other hand. one has under (4.4) that

[N F0x) + Y () GEf(x) > —A/r.

4.6 O =
(4:6) pddi-(100) | - N/2r, ()< A/

this is the augmented Lagrangian term introduced by Rockafellar {25] for an inequality
constraint f,(v) < 0.
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In order to represent (P) as a problem of minimizing f(x) = g(F(v ) over all
v € R" we need only deline

H.1) FOx) = (3 () S0 A0 ()
(4.8) D=XXR' X1 x - xI,
glu) =glw.uy..... U, Wps e s o u,)
“9 Z fmaxfug. u, ) ifwe Xandu, € 1,
* otherwise.

Obviously F is a €2 mapping and g is a piccewise lincar convex function with
effective domain D. One has f(v) = f,(x) il x satisfies the constraints in (£)). but
f(x) = ¢ otherwise.

The represeatation of ( £,) as a problem of minimizing f(x) = g(F(x)) over all
v € R” uses the same 62 mapping F as in (4.7) but takes

(4.10) D=XxXR' XR",
(u) =glw.ouy..... Uy Uy u,)
(4.11) B ’max{ Uppeoo e w ) + Y p,(d,’.(u,)) ifwe X,
- =1
\ 0 otherwise.

Then g is a piecewise lincar-quadratic convex function with eflective domain D,
provided of course that every p, is (linear or) quadratic and nondecreasing on R . as
already specified.

The meaning of the basic constraint qualification of Definition 3.2 in the case of
these representations of problems ( P,) and ( P,) must be determined next. It will be of
help to us in this task to use the notation v, € N,(x). where

(4.12) NAx} =N (/(x)) = normal cone 10/, at f(v).

Inasmuch as /, is merely a closed interval in R, this notation is just a convenient way
of expressing the conditions on the signs of the multipliers that have long been familiar
in nonlinear programming. Thus if we write [, = [¢; . ¢,'] (where ¢, or ¢ might be
finite), we have

[0.0] ife, < f(x)<¢
(—00.0] ife, =f(x)<¢
[0. ) ile, <f(x)=¢'.
(—0.oc) ife, =f(x)=¢

(4.13) N(x) =

We will also use the notation

(4.14) NoCv) normal cone to the polyhedron X at .
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THrOrEM 4.1, In problem (P)) as represented by (4.7). (4.8) and (4.9). a feasible
solution x satisfies the basic constraint qualification if and only if the only multiplier vector
[ LR V,,) satisfving

M

(4.15) LN and = Y v f{v) @ Ny(v)
e=-1

1s the vector (O, .. . 0).
In problem (Ps) as represented by (4.7), (4.10) and (4.11), every feasible solution
awtomatically satisfies the basic constraini qualification.

Proor.  For (P£)) one calculates from (4.8) that

NyCECO) - N = (00 0)) X N () X - = N ().
A vector vy = (20 b, Ve Hpss » s ¥, belongs to this cone if and only if
(Voo - \”\) =(0.....0). € Ny(x) and y, € N(x). and for such a vector one has

”

COF)x)=:4+ Y »9f(x).

=1

This equals 0 if and only il =X | y,v/,(x) = z. The basic constraint yualification
requires that such be the case only when (yy...., »,.) = 0 and = = 0. This is equivalent
to the condition stated in the theorem.

For (P,) one has from (4.10) simply that

NoCF(x)) = No(x) x {(0.. .., 0)} x {(0..... 0)}.
In this case a vector y = (z. 1,..... Yows ¥ieo- - 3,,) belongs to A, (F(x)) il and only
if (yops eoee W0) = Oeninn 0)and (y,...., ) = (0. 0), in*which event T(yF ) x)

=z. Such a vector y satisfies T(1F)x) =0 only when 1 = 0. Thus the basic
constraint qu.lhlu.llmn is in this case satisfied automatically. =

For the theorem that comes next we require the tangent cones that are polar to llu
normal cones in (4.12) and (4.14):

(4.16) T,(x) = T,(/(x)) = tangent cone to I, at f(x).
(4.17) T (x) = tangent cone to X at x.

In the case of the intervals I, the langenl cones merely express sign conditions:
parallel to (4.13) we have for 1, = [, . ¢;'] (where ¢, or ¢ might be infinite) that

J(*ac.ac) if ¢, <f(x)<¢

B [0.%) ife, = f(x) <c¢'

4.18 1 = !
(4.18) () (= sdll] e s flE) =
[0.0] if e, = f(x)=¢
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It will also help to have the notation

(4.19) ) = (€ sl fo(6) = folx))-
(4.20) S(x) = {_)'(, = {dopeeeee Yos) Z ¥o; = 1 with
=1

¥y, > 0 for j € J(x). ¥, =0for j&J(x)).

TuroreMm 4.2. Suppose in problem (P)) that x is a feasible solution for which the
constraint qualification in Theorem 4.1 is satisfied: there does not exist (v, v, #
(0..... ) such that (4.15) holds. Consider the cone

(4.21) T(v) = (e T Tf(x) E€T(x) fori=1.... m
and vf,,(x) - £ < 0 forallj € .I(_\')},

and the multiplier set

(4.22) Y(x) = ‘{(."m ..... Wirps Wi« « « v (Voyee e Yo.) € S(x).

v, € N(x) fori—1..... m, and
m

- i."(),v/n,(x) - Z }',Vf,(-\') € NX'(‘() .
=1

=1

(a) (Necessary condition). If x is a locally optimal solution to (P)). then Y(x)+ ©
and

(4.23) vée Z(x). 3 vy .- Vogo Vpoennn ¥,,) € Y(x) with

£ ‘ Z Rl AR R r,\‘-’zj’,(\-)]g .
F=dl

=1
(b) (Sufficient condition). If Y(x) # @ and
(4.24) vee Z(x)\ {0}.3( .- .-, Ve Viaeeen v,) € Y(x) with

£ [ Z ¥ ¥ o, () 4 i.l',sz.(")]ﬁ =~ 0.
171

[

then ~ is a locally optimal solution 1o () in the strong sense. namely: for some o > 0

one has

£ (XY > folx) + aly” - x|° for all feasible X near x.
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PrROOI.  We have here a case of Theorem 3.4 where g is piecewise linear, so that
Yroo(VF(x)§) = 0. All we need 1o do is calculate Yy(x) and Zy(x) in (3.16) and (3.17)
using the structure of F and g in (4.7). (4.8) and (4.9). and to verify that the necessary
and sufficient conditions in Theorem 3.4 thereby reduce to the ones now claimed.

To assist ourselves in the calculation we shall write

(4.25) uy = (ug..... uo), o= (¥or.---. Yoo)-
(4.26) o(uy) = max wu,,. Jy(u,) = argmaxu,,.
’—!I -8 ["I. .5

In (4.9) we have

m

glu) glw, w,oup... .. w,) =8:(w) t alu,)t )_:5,’(14/).
T
where the §°s symbolize indicator functions. Let
T, (u,) = tangentcone to /, at w,. N, (u,) = normal conc to 1, at «,.

It is evident from the limit formula (3:1) for g/(w) that

m

go(w) = gi(d. wy ..., w,) =8, () + 0/ (e,) + le"’.‘“"(w')'
where w, = (w,,.. ... wp,)- At the same time,
dg(u) = dg(w.ugoup.... u,) = (@8, (w). do(u,). 38, (u,)..... 38, (u,))
= (NOv). dalu,). N, (). N,‘m( u,,}) ‘ | .

by formulas of convex analvsis. Here

(4.27) o/(w,) = max «,. and
KA
(4.28) dalu,) = {_u, Yo, = 10x, 2 0forj € Jy(u,).
=1

Yo, =0for j & J”(ll“):‘.

Observing that

(4.29) TH(x)E - (& Tf, ()& . Tholx)-&oxrn(y)- & . <f(x)-¢)
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and define
(4.41) Y(x) = (v, Voor Fivoee Yol o Yo, ) € S(x).
yoep(x)ad,(f(x)) fori=1.... .

m

and - Z)“,/Vf“,(x) - Z‘\',V/,(_\‘) €N (x)).

=1 =1

where dd,.( f,{x)) is the interval in (4.36). ‘
(a) (Nl”('(’.&‘.\'lllfl' condition). 1t x is a locally optimal solution to (P,). then Y(x) # O

and
veEe Z(x), Iy, Viygs B s v,,) € Y(x) with

(4.42)

m "

Y ordivf(x)- &)+ & [ Z Vo,V o, (x) + Z_';V’/,(X)]é > 0.
=1

=1 =1

(b) (Sufficient condition). If Y(x) # @ and

vee Z(x)N\ {0}, (pree-os Your ¥ioeees ) € Y(x) with
(443) m \ s m .
Y rdX(v/(x) &)+ ¢&- [ Y o, v, (x) + X vi(x)[E> 0.
=1 ' =1 =1

then x is a locally optimal solution to ( Py) in the strong sensc.

PROOE. Our intention is to derive this straightforwardly from Theorem 14 by
calculating what the conditions in Theorem 3.4 mean when F. D and g are specified
by (4.7). (4.10) and (4.11). Making use once more of the notation (4.25), (4.26). we
write

(444) g(u) =glw ug ... .. u, ) =08,(w) +olu,)+ > I’,(d,v'(“,))
=1

The limit formula (3.1) for g/(w) then gives us

(4.45)  gllw) = gl(¥. 0w w,)

m

=8, (4) + allw) + X pldlu))dye), ().

=1
where w, = (@ ... w,.). Because g/ is the support function of dg(i). we must have

dg(u) = (No(w). dotuy). pild () dd e fuy). ol ) ) ddy . a,))
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Recalling (4.27) and (4.29). we get (under the notation (4.35). (4.36))

(4.46) g/ (TF(1)§)

_f max ©f, (x) £+ L p(0)d(T(x)-€) iEC T,
ieJtv =1
< if¢& To(v).

Furthermore

(4.47) dg(F(v))

(N dalE ). pyly) dd (fi(3) P} dd, 1, (0)))
where
(4.48) da( F(x)) = dal fol X)o . fur(x)) = S(x)

(sce (4.28)).

In view of (4.46) the set =,(x) in Theorem 3.4 coincides with the set =Z(.x) defined
by (4.40). The -elements of the set Y(x) in (4.41) correspond one-to-one under (4.47).
(4.48). with the vectors (z, )y, .- .. Yone Fpeee s ¥,,) € dg(F(x)) such that (4.30) holds.
Moreover such vectors give (4.31). The only thing left to verily then. in order to see
that conditions (3.18) and (3.19) of Theorem 3.4 in terms of Y,(v) reduce to the
conditions (4.42) and (4.43) claimed here, is the equation

m

(4.49) Ye (VF(x)E) = Y rd}(vf(x) - £).

=1

Calculating from the definition (3.5) and our current formulay (:1.44) and (4.45). we
find .

(4.50)
Y. (w) = lim lo(u“ trwy) —ofu,) — m“'"(w‘,)]/!t:
(10

m

vy iim‘[p,(d,'.(u[ tw,)) - p,(d,.(u,))”lpj(‘l,,(u,))(d,.): (w,)l b
) S ' ‘ ‘

The first limit in this expression vanishes, because ¢ is a piccewise linear function.
Taking advantage of the quadratic nature of the function p, in terms of the expression

p,(0,) - pld,.(u,)) = p,’(d,v.(u,))lﬂl — d,’.(u,)] ¥ _'J,IO, : (I,v.(u‘,)]-.
where r, is the constant in (4.34), and setting

A1) = [f}, 1/,‘.(:4,)|,"‘1 for@ = d,.(u, + 1e).
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we can convert (4.50) into

"

ylw)= Y lim(r,Al,(l) + ij(d,'.(u,))['_\,(l) = (d,‘.):‘(w,)])A

AL

But A,(1) = (d,.), (w,) for 1 > 0 sufficiently small, inasmuch as d;. is a piccewise
lincar function. It follows that

m

v w) = er[(‘ll')::,(“',) 3.
e 1

In the notation (4.29) we therefore have (4.49) as promised. =

Theorem 4.4 can instantly be specialized to the cases of (Py) cited in (4.2). (4.3) and
(4.4). which correspond respectivelv to an /, penalty representation. an /. penalty
representation and an augmented Lagrangian representation of problem (7). It is to
be noted that no constraint qualification ar all is involved in this, despite the presence of
the abstract (linear) constraint condition x € X,

Previous work on problems of tvpe (P5) has not incorporated such an abstract
constraint condition. Aside from this feature there is nothing essentially new in
Theorem 4.4 except for the general formulation encompassing all three of the cases just
mentioned and doing so in terms of arbitrary interval constraints f,(x) & /. With
X — R” one could derive much the same result from the theory of Ben-Tal and Zowe
[3] -[S]. for instance, or alternatively by the approach of Chaney [7]-[13]. In doing so.
however. one v.ould miss an important property made clear by the methodology used
here. namely the connection between these necessary and sufficient conditions and the
geometricallv-hased first and second-order epi-derivatives of the objective function in
(P,) - which have been shown always to exist.

To help with comparisons and facilitate an application of Theorem 4.4 that we shall
make in §5. we state as a corollary the case that corresponds to a typical penalty
representation of (P)) as analyzed around a feasible solution to (7).

COROLLARY 4.5, Consider the case of (Py) where

1*=1

(4.51) p(8)=q8 + 'rf°. I ,
(with g, ~ 0. r, = 0.q, + r, > O) so that (P,) s simple penalty representation of (Pp)
(either 1, or I, or a mixture). Suppose X is a feasible solution to (P} and miroduce the

notation J(xy and S(x) as in (4.19) and (4.20). along with

o

w TS, (x) € Y g (SN -8) < U}.

(4.52) Z(rA) = (& T (X)) i
) IR} — |
(4.53) Y(\) - :( Vitis a2 25 Vieg Pimsves S | [ — v ) Sy
v NAN) wath v | < g, for =1 m
3 . m ~
D DT o S N D SR A R I 4\\(\)1

| v
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(a) (Necessary condion). If x is a locally optimal solution to (P.). then Y(x) # @
and

(4.54) v¢e Z(x). Vags Yioeens ¥m) € Y(x)  with

m

X

=1

m

(x) + Lywf(x)|E>0. "

=1

r,d,:-v“,(v_f,(x) : g) + £ . [ z .I'O/V 2/0/
I

(b) (Sufficient condition). If Y(x) #+ @ and

(4.55) Ve I {0 3y, = Y(v)  with

m

Y ovcix) e >0,

== |

m

)}

e |

r:dl:!\)(v//( “) : £) + g l Z 1',,Ivzf,,,(x) +
7 =l

then x is a locally opumal solution 1o (Py) in the strong sense.

Here. of course d7,,(«,) denotes the distance of w, from T,(x). Thus in accordance
with (4.18) one has thatif 7, is written as [¢, . ¢,"](with ¢, or ¢ possibly infinite) then

JO if e, <f(x)<¢'
7 _Jmax{0. - vf(x) &} ifc, =f(x) <
(4.56) dy,(Tf(x) &)= l max{0.</,(x) - £ e fl) =

ITf(x) - ¢ ifc, =f(x)=¢

5. Refinements of the constraint qualification. In this section we address the
questions raised by the presence in Theorem 4.2, for both the necessary and sufficient
conditions for problem ( P,). of a constraint qualification generalizing the standard one
of Mangasarian and Fromovitz. We demonstrate that by applying Theorem 4.2 to
auxiliary problems related to (P)), instead of to (P,) itself, it is possible quickly to
obtain results that fit the more customary pattern for this subject.

Before doing this. however. we wish to emphasize that Theorem 4.2 in departing
from the customary pattern, should not merely be seen as a sort of stepping,stone
toward a subsequent goal, which will be reached here. If in the theory of optimality
one adopts the philosophy that necessary and sufficient conditions should be tied as
closely as possible to something like uniform local approximations of the essential -
objective (which incorporates the constraints), and much justification can be given for
this, then Theorem 4.2 serves hetter than the traditional type of theorem by virtue of
focusing on the circumstances where such approximations, as expressed by epi-difter-
entiation do exist.

TueoreM 5.1, The condition in (b) of Theorem 4.2 is sufficient for the sirong local
optimality of x m (P)) eren if the constramnt qualification in that theorem is not satsfied
ar n.

PrROOF.  Suppose condition (4.24) is satistied. OQur argument will be that in this case
the corresponding sufficient condition (4.55) in Corollary 4.5 is satisfied for r, = 0 and
g, = ¢ for some sufliciently high value of ¢ > 0. Then x must be locally optimal for
(P,) in the strong sense. and the same must be true for ( P;) because the essential
objective in (P)) majorizes the one in ( P.) but agrees with it on the set of feasible
solutions to ( Py

S VN ———
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First we establish that although the set Z(v) in (4.52) is arger in general than the
one in (4.21), the two sets agree when the g,’s are suflicient!y high. Specifically:
consider

(5.1)  ¢(¢) = max Tf,(x) £

pe )

m

(5.2)  4(&)~ X d; (Tfly)-8).
S
(5.3) K= {&gy(&) =0} = [§Tfx)-teT(x)lori=1..... m}.
In (4.52) with ¢. =~ ¢ - 0 for all 1 one has
(5.4) Z(v) = (£ Ty (V)] (&) + ¥ () < 0).
whereas in (4.21) one has

(5.5) () = {E€ Tlx)|q(¢) <Oand £ € K ).

In the second case actually @(£) = 0 for the vectors in question. because of our
assumption that (4.24) holds: this follows from the nonemptiness of the multiplier set
in (4.22). Thus our hypothesis implies that the minimum value of ¢ over T\ (x) N K is
0. attained precisely at the elements in the set (5.5). Observe now that ¢ is globally
Lipschitz continuous with a certain modulus A (it suffices actually to take A equal to
the largest of the norms |<f, (x)} for j € J(x)). and that

(&) > ed, (&) forsomee > 0.

We claim that when ¢ > A /e, the set in (5.4) is no larger than the one in (5.5). for if it
were there would be a vector £ € T (1) \ K with

0> q(f) + q(§) > q(£) + Ad, (£).

Then for the (Fuclidean) projection £ of £ on T\ .(x) N K we would have D, (§) =
1€ — £ q(&) > 0. so that

(&) > qlé) + A)E" - ¢

in contradiction to the specification of A as a Lipschitz modulus for q.

The next step in our argument is this: if ¢ is sufficiently high (beyond the value
already described), it is possible in our assumed condition (4.24) alwavs (no matter
which £ is given) to choose the multipliers in such a way that

(5.0) v <gfori=1..... m.

Compactness here does the trick. We need only consider the vectors £ in the closed.
bounded set

(s.7) {ge Z(0)1E = 1},

in view of positive homogeneity. For each £ in this set there is a corresponding vector
in the multiplier set (4.22) such that (4.24) holds— and this multiplier vector then
works abso for some neighborhood of € Since the set (5.7) can be covered by diniely
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many such neighborhoods, only finitely many of the multiplier vectors in (4.22) are
needed in obtaining (4.24). We need only choose g high enough that (5.6) holds for
these finitely many vectors, which of course is always possible.

All that remains is to observe that with the value of g as high as we have described,
it is possible to conclude that not only (4.24) but the seemingly stronger condition
(4.55) in the sufficiency part of Corollary 4.5 is satisfied (with g, = g. r, = 0). This is all
we had to verify in carrying out the proof. =

THEOREM 5.2, Suppose in Theorem 4.2 that the multiplier set Y(x) is replaced by
Y(x). which is the sume except that the set

S(x) - {(7\-‘” _____ va ) v, > 0 forg e J(x) vy, = 0 forj & J(n )}

1s substituted for S(x) (1.e. the requirement that ¥\ v, = 1 is dropped ). and the zero
multiplier vector is excluded as an element. Then with this modification the condition in
(a) of Theorem 4.2 is necessary for the local optimality of x in (Py) cven if the constraint
qualification in that theorem is not satisfied at x.

Proo¥F. In proving this we follow a well-traveled route. Fixing the x in question we
examine an auxiliary problem in the variable vector t. which has ¥ = x as a locally
optimal solution. We apply Theorem 4.2 to this problem and obtain the result.

There is no real loss of generality. but a considerable gain in notational simplicity. in
supposing for the purpose at hand that

Il
—

- ».0] fori

(38 Cl0.0] for i

I
~
+
—
-
=

(so that f(%) & [, represents the constraint f(¥) < 0 fori= 1. . r.but f(F)=10
fori=r+1...., m). Define the value

(5.9) a=f(x)=f,(x) forall j€J(x).

and the function

(5.10) (%) = max{ f,{3) —a..... /(,‘(;e) - n,/,(.c)....,.f,(‘;)}_ .
The auxiliary problem we consider is

(P,) minimize £,(7) over all ¥ € X satisfying () - Ofori=r ¢ 1. . n.

The given x is obviously locally optimal in (f’, ) just as it was in ( P)). We divide our
analysis now into three cases.

Case 1. The constraint qualitication of Theorem 4.2 is satsfied for (l-") at X - o
in other words there is no vector (y, ..., v, ) (00 0) such that

"

nt

(5.11) Y wcrixv)ye N,

RN

Theorem 4.2 ix then applicable to ¢ 2). and the multiplier vectors it vields can be

recognized at once as elements of ¥,(1). thereby furnishing the desired conclusion.
Case 2. The constraint qualification of Theorem 4.2 for ( I~’|) at v - ox fals i the

strong sense that a vector (v, oL ) 400 M cxists for which not only (511
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holds but also

m

(5.12) - Y R Vf(x) € Ny(x).

1—ridl

(Note that this is the only alternative if X = R", since then N,(x) = {0}, or if
x € intX or even merely if x € ri X, since then Ny(x) is a subspace of R".) In this
situation our generalized necessary condition is trivial: the set Y(x) contains the vector
(0,....0. . ..... %) and also its negative: for each £ € Z(x) the inequality in (4.23)
must be satisfied for one or the other of these.

Cuase 3 (which comes into play only in dealing with a nontrivial polyhedron X).
Neither of the circumstances designated as Case 1 or Case 2 is present. We shall
demonstrate that this can be taken care of by a modification of ( 7)) that puts us back
into Case 1, in effect. For this purpose we introduce a local representation of X around
v by constraints

I(X) =a;, -V ~ay,-x <0 fork=1.....p.
(5.13)
=0 fork=p+1..... q.

T'his can be done in such a manner that

Y
(5.14) Ny (x) = / Y Nl A eR, fork=1.. . r:

A=1

Ai,ERfork=p+1..... q;

and
(5.15) novector (A .. A ) # (00 0) with
“
Ay 20 fork =1, p. vields Y Aa, - 0.

k-
(This is seen by taking L to be the subspace Ny(x) |- N ()] and A to be the
pointed cone N (x) N L' Select ay..... @, to be nonzero vectors that generate K
and then Apigennes a, to be a basts for 1) The vectors
(5.16) ol A 32 p— Vil ©)s s por s 10y

must be linearly independent, for otherwise we would stll be in Case 2079

m ]
Yorcriar Y ANa, o0
Lepoed

bl

with coeflicients that are not alt O, then (y, ... .. LI I { LA M hecause of (5.15). so
that (5.11) and (5.12) would both be satisfied v view of (S 13 Conader now the

function

/:,(\)*mu\'{!;(.\).ll(\) ..... /,_(v\l}
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and the auxiliary problem
minimize  f,( ¥) overall § satisfying
(P) f(X)=0 fori=r+1,....m, and
L(x)=0 fork=p+1.....q.

As with (P)), the given x is a locally optimal solution to (f’l)‘ Moreover ( P,) satisfies
the constraint qualification of Theorem 4.2 at ¥ = x by virtue of the linear indepen-
dence of the vectors in (5.16), the @, 's being the gradients of the functions /, in (5.13).
The necessary condition of Theorem 4.2 for ( 13[) then gives us what we want, just as in
Case 1. by wav of (5.14) and (5.15). =

The necessary condition provided by Theorem 5.2 fits with a long tradition of
rescarch on this topic. The somewhat novel features are the incorporation of the
abstract constraint 1 ¢ X and the admission of f, as a “max function™ The tradi-
tional setting, where X = R” and f is of class €2, has been treated by many authors.
The first published result appears to have been that of Cox [15] in 1944, as referenced
by Hestenes [17. Chapter 6, Theorem 10.4]. This is almost the same as what Theorem
5.2 yields in the traditional setting. but in certain situations where active inequality
constraints might not be associated with nonzero multipliers the set of direction
vectors £ used by Cox might be smaller than the Z(x) in (4.21). The full version
without this discrepancy was stated by lofte [20] in 1979 and attributed to a 1974 paper
of Levitin, Miljutin and Osmolovskii {21] that appears in a book in Russian. (These
authors assume that the gradients of the equality constraints are linearly independent,
not realizing, it seems. that if this is not true the desired necessary condition holds
trivially; ¢f. Case 2 of the preceding proof.) The result can be seen also in a 1980 paper
of Ben-Tal [1). based independently on his unpublished 1975 report [2].

Of course the story of second-order necessary conditions does not end there, because
many generalizations have been made to infinite-dimensional spaces, infinitely many
constraints, other degrees of nonsmoothness, etc. Our purpose in presenting Theorem
5.2 has not been to push in those directions. however, but to confirm that for the
classes of problems most frequently seen in computation and mathematical modeling,
the “neoclassical™ approach of using differential approximations to the epigraph of the
essential objective leads to results as sharp or sharper than any that are known.

It would be possible also to demonstrate that the constraint quull’limliun in Theorem
4.2 (or for that matter the one in Theorem 3.4) can be weakened to a “calmness™
condition such as used by Clarke [14] and Rockafellar [26). The pattern of develop-
ment would be to show that the calmness condition supports a local /; penalty
representation of the constraints around the given point x. to which Theorem 4.4 can
be applied. The details will not be given here, however.
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