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I. Introduction. Let X be a real Banach space and let V* be the dual of X,
with  xvox® owritten in place of xY¥(x). A monotone operator from X to X* s a

(generally multivalued) mapping 7" such that
(1.1 XovonForE =00 whenever xFo (o) vF o Tk

Such an operator 77is said to be maximal i its graph, i, the set

(1.2) GOy = vov® )y v Yo To = Ve v

is not properly contained in the graph of any other monotonc operator 770 v -« 4
The set

(L.3) DIy = dx- X T 7

is called the effective domain of T, and 17 is said to be locally bounded at a point
X DOt there exists a neighborhood U of x such that the set
(1.4 TUY)y = UAT@y b Uy
is a bounded subscet of Y.

It 1s upparent that, given any two monotone operators 7y and 75 from \ to
X the operator T+ 70, is again monotone, wherc

(T +To)x) ~ T )+ T,(x0)
= [t T, o - Tolv)s,

N

(1.5}

117 and 77, are maximal. it does not necessarily follow. however. that 7 +7., is
maximal-—-some sort of condition is needed, since for example the graph of 7, -+ T,
can even be empty (as happens when D(T) N D(T,) = . ).

The problem of determining conditions under which 77, + 7', Is maximal turns
out to be of fundamental importance in the theory of monotone operators. Results
in this direction have been proved by Lescarret [9] and Browder [3]. [6]. {7]. The

strongest result which is known at present is:

Trroresm (BROWDER [6] [7T1). Let X be reflexive, and let T, and T, be monotone
operators from X to X*. Suppose that T\ is maximal. D(T.)= X T, iv single-ralued
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76 R. T, ROCKATELLAR {May

and hemicontinuous (.. continuous from line segments in X to the weak™ topnlogy
in X*), and T, carrices bounded sets into hounded sets. Then 1y~ T, is a mavimal

monotone operator.

The conditions here on 7T, imply in particular that 77,. like 7, is maxima!
(Browder [3, Theorem 1.2]).
The purpose ot this paper is to establish the following considerably more general

result (where int and ¢l denote interior and (strong) closure, respectivelyv).

Turoresm 1. Let X he reflexive, and let T and T, be maximal monotone operators
from X to X*. Supposc that either one of the following conditions is satisfied:

(@) DT Ovint DT+ . or

(b) there exists an x < ¢l D(T,) O ¢l D(T,) such that T is locally bounded ar x.

Then Ty + T, is a maximal monotone operator.

Conditions (a) and (b) of Theorem | are actually equivalent, as we have shown
elsewhere [16. Theorem .

The derivation of Theorem 1 will rest heavily on the theory already developed
by Browder in [6] and elsewhere. In the case where 77 and 77, are the subdiflerentials
[13]. Theorem |
could be deduced, however, directly from Fenchel's duality theorem and related

of lower semicontinuous proper convex functions on X {12],
results [11].

When X is finite-dimensional, Theorem I mayv be refined slightly in terms of
relative interiors. (The relative interior of a subset C of X, denoted by ri C s
the interior of C relative to the affine hdl of C, which is the intersection of all the

hyperplancs containing C.)

TueoreMm 2. Let X be finite-dimensional. and let T, and T, be maximal operators

from X to X* such that
. i (T Nt DT, #0.
TThenm T+ T, s thax e .

One of the main motivations behind Theorems | and 2 1s that such results make
it possible, as Browder has remarked [6. p. 92]. to derive theorems about " varia-
tional incqualities™ from fundamental theorems about the ranges and effective
domains of (multivalued) maximal monotone operators. Some applications of this
sort will be considered in §4. For the sake of applications to a class of variational
inequalities studied in terms of hemicontinuity by Hartman-Stampacchia [8] and
Browder [4]. it will be useful to have. along with Theorems 1 and 2. the following
special maximality theorem.

We shall say that an clement x* < X is normal 1o a convex subset Kol X at a
point x il

(1.6) xe KNoand Tu—x, 3 £ 0, YucK.

For cach x & X, the set of all v normal to K at x is classically called the normal
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cone to A at x. The normal cone to A at vis a weak™ closed convex cone in A
empty by definttion when v AL but contaming at least the zero vector off V7
(and hence nonempty) when v AL The multivalued mapping from Voo V'
which assigns to cach x . X the normal cone to A at x will be referred to as the
normality operator for K. (This mapping is actually the subdifferential of the
mdicator of A, so that it is a maximal monotone operator with effective domain

K, i Kois a nonempty closed convex set [12], [13]0)

Tororem 30 Let K be a nonempry closed conrex subsct of X Gohere X s noi
necessarily reflexivey. and Ter T X - X% he the normaliny operator tor Ko Lot
T,: X- - X% he any single-valued monotone operator (ot necessarily maximal )
such that DUT,)Y> KN and T is hemicontinuows on K, (e, continuous alone cacl line
segtent in Nowith respect to the sweak™ topology of N5 Then T~ 1, iy a maximal

Honotone operdalor.

2. Preliminary results. In this scction we shall only be concerned with the case
where X s reflexive. Asplund [1] has shown by means of a theorem ot Linden-
strauss that, in this case, there exists an cquivalent norm on X which is evervwhere
Gateaux differentiable except at the origin and whose polar normoon V7 s ever -
where Gateaux differentiable except at the origin. (Under such @ norm. the unit
balls of ¥ and X* are strictly convex.) For notational simplicity. we may assume
that the given norm on V" already has these spectal properties. We denote by
the Gateaux gradient of the function fi(x) =(172) v 2. Thus Jis the duality mapping

which assigns to cach v o X the unique J(x) < X such that
(2.1) Sy o= o e J(x) 2

(Sce [21) As is known. J maps V one-to-one onto X¥ and s conunuous from the

strong topology to the weak ™ topology. AlsolJ s asstrictly monotone operator. 1.e.

(2.2) NS =J) =0 when v # 0
FF'or any monotone operator 7 from Y to V¥ we define the mapping 17 - by
(2.3) T =iy wF o

It 1s obvious that 777!

15 i@ monotone operator from V¥ to Yoand tassuming Yo
be reflexive) 7770 is maximal if and only it 77is maximal., We denote the ranee of 1

by R(T). Thus
(2.4 R(TYy = DYy Uy v Xy

The main tool which we shall use in proving Theorem 1 is a generalization,
essentially due to Browder [6]. of the fundamental! Hilbert space theorem of Minty

[0].

Prorosition L. Let X be reflexive, and et J be the duality mapping defined abore.
Let To X — X% be any maximal monotone operator. Then, jor any A -0, R(T +AJ)
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is all of X* and (T+ M)~ is a single-valued maximal monotone operator from X*
to X which is demicontinuous, i.e. continwous from the strong topology to the weak
topology.

Proof. If O c D(T), this follows from the argument given by Browder at the
beginning of the proof of Theorem 4 of [6], except that Lemma 10 of [6] should be
invoked in place of Lemma & We want to use this result, however. even in the
case where 0¢ D(T), so we must give a somewhat moditied proof. Let a = D(T),
and let 77 and 7, be the monotone operators defined by

T(x) = T(x+a), T.(x) = AM(x+a).

Then 0= D(T)). and 7, and 7, satisfy the hypothesis of Theorem 1 of [6]. as is
easily verified. This implies that R(T,+T7,) is all of X*, and of coursec R(T,+T,)
is the same as R(T+AJ). Also, T+ AJ is a maximal monotone operator by Theorem
2 of [6](*). Thus (74 M) ' is a maximal monotone operator from X* to X whose
cffective domain is all of X*. We shall show that (7+AJ) ! is single-valued, and
this will imply by Rockafellar [[4, Corollary | to Theorem 1] that (T+AJ) ™" 15
demicontinuous. Let x and v be elements of (T4 AJ) “*(«*), and let

X = oA (x) 2 T(Y). y* =yt AJ(v) = T().
Since T is monotone, we have

0= v—pu*—u* = "x—p, (XF+AJ() - ¥+ AJ(Y))

= {v—p, XF—1F A x—r J() = ()
AMx—yp, J(x)=J(y)>,
and this implies x=y by (2.2).

v

COROLLARY. Let X be reflexive, and let J be the duality mapping defined above.
Let T: X ~> X* be a monotone operator. In order that T be maximal, it is necessary
and sufficient that R(T+J) be all of X*.

Proof. By Zorn's Lemma, there exists a maximal monotone operator 77: X -~ X'*
such that 7'(x)> 7T(x) for every x. Applying Proposition I to 77 with A=1, one
sees that, for each v* e X'* there exist unique elements x = X and x* = X'* such
that x* € 77(x) and x*+J(x)=u*. Therefore. T=T7"if and only if each u* = X'*
can actually be expressed in the form x*+J(x) for some x < X and x* = T(x),
ie. if and only if R(T+J)= X*.

The next result may be recgarded as a generalization of Theorem 2.2 of Browder
[3]. Its proof is derived from Browder’s proof of Theorem 3 of [6].

PROPOSITION 2. Let X be reflexive, and let T: X - > X* be a maximal monotone
operator. Suppose there exists an «>0 such that

(2.5) {x, x*, =2 0 whenever ||x| > «, xe D(T), x*e T'(x).

(®) The hypothesis in Theorem 1 of [6] that 7, have a dense domain is superfluous-—it is
nowhere used in the proof nor mentioned in the rest of the paper.
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Then there exists an x & X such that
(2.6) 0. T().

Proof. We¢ can assume that the given norm on X has the special properties
described above. Let U, be the closed ball of radius « around the origin of X
The set
(2.7 T(C) = AT v £«

is closed X1 see Rockafellar {14, Lemma 2], Hence, to show that 0+ 7(07).
it suffices to show that 7)) meets every ball of positive radius about the orrgin
of X*. Let J be the duality mapping defined above. Given any ¢ =0, there exists by
Proposition [ an x - X such that

O e (T4 (e'e) S ).
Setting x* = (e «)/(x). we have v* ¢ T(x) and
0= x, 8% }p(ei) X, J(V)
or equivalently by (2.1)
(2.8) St o —(ele) xR

If'we had - & =« the left side of (2.8) would be nonnegative by (2.5), whereas the

right side would be negative. a contradiction. Therefore v =« and

= () ) = ()

IIA

&

This shows that 7({ ) mects the closed ball of radius « about the origin of X*,
and the proof s complete.

Besides the important device of perturbing a monotone operator 7 to an operator
of the form 74 AJ. we shall need to use a device of * truncation ™ in proving Theorem
1. For each « = 0, we shall denote by B, the subditierential of the indicator function
of the closed ball U of radius « about the origin in Y (with respect to a norm on
A having the special properties described above). Thus B is the normality operator
for O sothat B.(v) . when v o, B(x) consists of solely the zero element off
X*when x <t and

BAx)y = {AJ(x) - A 20 when x -«

It is known that B, 15 a maximal monotone operator (Rockatellar {12]. [13]). In
particular, therefore, if 70 .V = Y ¥ is anv monotone operator. 7+ B, is & monotone
operator. Note that

(2.9) (T+ By = T(v)y when x ~int [,
(2.10) DITr+B,) - DTYn U..

ProprositioN 3. Ler X be reflexive, and let T X~ X% be a monotone operator
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such that © - DT, Suppaose there exists an «y >0 such that the monotone operator
'~ B_is maximal for every oz ag, where B, is the mapping defined above. Then T
is maximal.

Proof. Subtracting a constant mapping from 7 if necessary, we can reduce to the
case where 0 = 7(0). Let J be the duality mapping defined above, and let #* be an
arbitrary clement of X*. To prove that 7" is maximal, it suflices, according to the
corollury to Proposition I, to prove the existence of an v = X such that

(2.11) wh e (THJ)(X).

Take any w2, such that > "u*!'. Since T+ B, is maximal by hypothesis, there
exists by Proposition 1 a certain x « X such that

w* c(TH B, +J)x) = (T+J)x)+ B,(x).
By the definition of B, this means that
(2.12) wF C(THIN)+FAS(x) = (T+H(T+ ) )(x),

where v e and A is some nonnegative number. taken to be 0 if [x! <« We
shall show that indeed | x <« so that (2.12) reduces to (2.11) as desired. According
to (2.12). there exists an x* € T(x) such that

u* = X (1 A)J ().
[0 terms of this 4*, we have
x,ut o= X X H (LA J (),

where v.x* z 0 by the monotonicity of 7" and the fact that 0 ¢ T(0). It follows
by (2.1) that

(T2 2 = (T+0)7x, J(x) £ Ixu® e < 0w,

and hence that
SN < (140 e £

2. Proofs of the main results.

Proof of Theorem 1. Since assumptions (a) and (b) in Theorem | are equivalent
by [14. Theorem 1], as already pointed out, we need only consider the case of
assumption (a). We shall suppose, to begin with, that D(T,) is also a bounded
subset of Y. Subsequently we shall prove, using Proposition 3, that this boundedness
assumption is unnecessary. It will be assumed, of course, that the norm on X which
we work with has the special properties described at the beginning of §2.

Translating 77 and T, by a common amount if necessary, and subtracting a
constant mapping from 7y, we can assume that

3.1 0eT,(0), Ocint D(T).
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L et/ be the duality mapping defined above. We shall show that, for the monotone
cperator T+ 7o R(T,+T,+J) is all of X* and this will establish that T, +T,
i~ maximal. according to the corollary to Proposition 1.

Given any ¥ = X*  we must show that ¥* e R(T,+T,+.J). Subtracting a
constant mapping from 7, if necessary, we can reduce the argument to the case
where ¥¥=0. Thus we need only show the existence of an x € X such that

(98}

(3.2) 0e(T,+To+J)(x).

Now v satisties (3.2) if and only if there exists an x* = X* such that
(3.3) —AF (T +(1:2))x) and  x* e (T,+4(112)J)(x).
Define the mappings S; and S, from X* to X by

(3.4 S(x®) = (T +(1/2)J) "1 (—x*),

{3.5) So(x*) = (Ty+(1/2)J) 7 H(x*).

The existence of an v and x* satisfying (3.3) is then cquivalent to the existence of an

N satisfying

(3.0) 0 & S1(x*)+ Su(x™).

Therelore. to prove the existence of an v satisfying (3.2), it suffices to prove that
(3.7 0e R(S,+.55).

To do this. we observe from Proposition | that §; and S, are single-valued
maximal monotone operators, continuous from the strong topology of X* to the
weak topology of X, such that

(3.8) D(Sy) = X* = D(S,).

Hencee S;+ 5, is a single-valued monotone operator, continuous from the strong
topology to the weak topology, such that D(S,+S,)= X*, and this implics by
Browder [3, Theorem 1.2] that §,+.S, is maximal. Since J(0)=0, we have

(3.9) 0 & (Ty+(1/2)J)(0)
by (3.1}, and consequently 0 = .5,(0). Therefore
(3.10) CSi(x*), x*. =0, YV x*e X*,

by the monotonicity of S;. Furthermore, R(S,)= D(T,+(1/2)J)= D(T,), so that
R(S,) i1s a bounded set by our initial assumption and, by (3.1),

(3.1 0 €int R(S,).

We shall show that these properties of R(S,) imply the existence of an «>0 such
that

(3.12) (Sy(x*), x*» = 0 whenever !x*! > a.



52 R. T. ROCKAFELLAR [May

This will establish (3.7) as désired, via Proposition 2, since by (3.10) and (3.12)
we will have

(S;+S)x*), x*> = 0 whenever x*' > a.
The proof that (3.12) holds for some « >0 proceeds as follows. For any x* and
¥ In X*, we have
{8p(x*) = So(y*), x*¥—p*, 2 0
by the monotonicity of S,, in other words
(3.13) IS H), YR 2 (Su(1F), xF 0+ {S5(x%) = So(yF), v

Since R(S.,) is bounded in X, R(S,) is contained in a certain ball of radius «, >0
about the origin, and hence

(3.14) 1 S(x%) = Sy(3#). y* | < e y*]

in (3.13). On the other hand, (3.11) implies by [14, Theorem 1] that S5 ' is locally
bounded at 0. Thus there exist e>0 and «, >0 such that

(3.15) {S20%) [ V¥ S woj 2 {y 11y s e
From (3.13) and (3.14), we have
18:X*), X, 2 {S(¥*), x* > —2aay

{y¥i < a,, so that by (3.15)

tor every 1* with |

(Sax*), x*) 2 sup {{y, X*, — eyt
yise
= efjx¥[ — 2¢y0t5.

The latter expression is nonnegative when x*| =2« «,'e, and therefore (3.12)
holds. as claimed, for « = 2a,a,/e.

The argument that we have given so far proves that Theorem 1 is valid under the
additional hypothesis that D(7,) is bounded. We shall show now that this narrower
version of Theorem 1 implies the general version. Let 7, and T, be maximal mono-
tone operators such that

(3.16) D(T)) nvint D(T,) # o,

where D(T.) is not necessarily bounded. Translating the domains of 7, and T,
il necessary, we can assume that the origin belongs to the intersection (3.16). For
each «>0. the maximal monotone mapping B, described in §2 then satisfies
D(T,) nint D(B,)# .-, and D(B,) is bounded. The monotone operator T, + B, is
therefore maximal by the narrower version of Theorem 1. Since

D(T,+B.) = {xe D(T,) | ‘x| < al.

and the origin belongs to the intersection (3.16), we have D(T,) N int D(T,+ B,)
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= . where IT,+B,) is again bounded. Thus the mapping T, +(7.+B,)=
(7, +T.)+ B, is 2 maximal monotone operator for every «>0 by the narrower
version of Theorem 1, and we may conclude from Proposition 3 that 7, + 7, is
maximal. This proves Theorem 1 in the general case.

Proof of Theorem 2. Translating 77 and 7, by a common amount if necessary,

we can suppose that
(3.17) 0 e D(T,) N ri D(T,),

so that the affine hulls of D(7}) and D(T3,) are certain subspaces L, and L, of X,
respectively. Let Lo=1, N L,, and for i=0, 1, 2 let
(3.18) L = {x*e X*|{x,x* =0,Vxeal},
P(x) = L} if xel,
(3.19) i .
= J if xe¢l,.

Each P; is a maximal monotone operator (the subdifferential of the indicator of L),
and

(3.20) Py = P1+P; = Py+P, = Py+P,.

Given any x= D(Ty), x*eTy(x), z¥cL{., we have {(x—y, (x*+z¥)—p* =
cx=yxF =¥ =20 whenever ye D(Ty), v*eT(y), because T, is a monotone
operator with D(77)< L, and this implies by the maximality of 7; that

x*¥4z¥ € Ty(x).

Thus

(3.21) T, =T, +P;.
Similarly

(3:22) Ty =T+ Py,

and it follows that
(3.23) W+ T, =T\ +Ty+P,+Py = (T, +Py)+T,.

In view of (3.20) and (3.21), we can regard 7, and P, in a natural way as maximal
monotone operators from the space L; to the quotient space X*/Li*, which may
be identified with the dual L¥ of L,. Theorem 1 is applicable to these mappings
from [, to L¥. since by (3.17) the origin belongs to the intersection of D(P,)=L,
and the interior, relative to Ly, of D(T;). Thus T+ P, must be a maximal mono-
tone operator from X to X*. Now we apply a similar argument to the space L,.
Since (3.22) holds and (Ty+Py)+P,=T,+ Py, we can regard T+ P, and 7T, as
maximal monotone operators from L, to X*/Ls, which may be identified with L¥.
The interior of D(T3) relative to L, meets D(T;+ Py)= D(T,) N L, by (3.17), so
(T, + Py)+ T, 1s maximal by Theorem 1. This means by (3.23) that 7,4+ 7, is a
maximal monotone operator from X to X'*.
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Proof of Theorem 3. As already mentioned in §1. 7, is a maximal monotone
operator, sinee it is the subdifferential of a certain closed proper convex function,
namely the indicator of K [12], [13]. Therefore T, + 7, is, at all events, a monotone
operator. Let y € X and y* € X* be such that

(3.24) {x—y.x*—yp¥. = 0 whenever x* e Ty(x)+ Ty(x),
or in other words

Y= xf A+ x—y, To(x)—v* 20

(3.25) . . .
whenever x € K and x¥ is normal to K at x.

We shall demonstrate by a direct argument that
(3.26) yEe T +To(y), ie v¥—Ty(y)e Tyy),
and this will prove that 7', + 7, is maximal.
If v is any point of K and x¥F is normal to K at x. then Ax¥ is likewise normal to
A at x for every Az 0, so that by (3.25)
Ax—1. xFr+{x—p, To(x)—py*. =2 0, YA=0.

This implies that - x—y, xF . 20. Thus

‘=1, x¥—-0. =z 0 whenever x§ = Ty(x),

and since 7, is a maximal monotone operator we may conclude that 0 e Ty (v).
Hence v € K.

To complete the proof that (3.26) holds, i.e. that y*—T7T,(y) is normal to K
at y. we need only show that
(3.27) Cu—y, yE=Ty(y)- £0, Yus K.
Fix any v € K. and let

Xyo= Au+(1—A)y, 0< A<
Since v ¢ KN and K is convex, we have x, ¢ K. Therefore (3.25) holds for v=x,
and v =0, and we have
0 = =0, Tolx) = p*> = Mu—p, Tolx)—y*,

Au—y, To(x)=To(3), — A u—y, v =Ty,

This implies that

U=y, ¥ =T(y) = u—y, To(x)—Tu(y), 0< A<
Since 7. is hemicontinuous, 7,(xv,) converges in the weak™ topology to Tu(y) as A
decreases to 0. and (3.27) must hold.

4. Applications. Theorems 1, 2 and 3 may be used to get new theorems asserting
that R(T,+ T,) is all of X, or that 0 ¢ R(T,+T,), and so forth.
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tor example. Theorem 3 of Browder [6] leads to the foilowing result, where a
mionotone operator 77 X - X is said to be coercive if

3 hm o (I e«)int{ v, a*

[EET

| X% = T(x), x| 2« =+

(inf o being 4+ ¢ by convention).

Frirori v 4 Ler X be reflexive. and let T and T, be monotone operators satisfving
the ivpothesis of Theorem 1 (or Theorem 2 or Theorem 3), such that Ty + T, is coercive.
Then RUT,+T,)—= Y%

U particular. T, + 7T, is coercive 10 < D(Ty) and T, is coercire, or vice versa.
Also. T+ T, is coercive trivially if DTy 0 D(T,) is bounded.)

Proof. The monotone operator 7=17, +7, is maximal by Theorem | (or by
Theorem 2 or Thearem 3. as the case may be), and since 7 1s also coercive we have
R(7h= V% according to Browder [6. Theorem 3. (Browder™s result assumes that
the unit ball of 17 s strictly convex and that 0« D(T). However, the strict con-
venity assumption can be avoided by giving the proofiin terms of a duality mapping
J oot the tvpe emploved in §2. This is permissible, since passage to an equivalent
norm on \ does not alter the coerciveness of the operator 7. The assumption that
0 D(Tycan then be avorded by invoking Proposition | of the present paper in the
proof in place of Browder's Theorem 1)

In the case where /7, and T, satisfy the hypothesis of Theorem 3, Theorem 4
vields a result about variational inequalities proved independently by Browder [4]
and Hartman-Stampacchia [8].

A condition for the existence of an x satisfying
(+.2) 0¢ TN+ Tulx)
can be obtuined at once by combining Theorems 1, 2 and 3 with Proposition 2.
In particular. taking 77, or 7, to be the normality operator associated with a convex
set AL one obtains the following existence theorem for solutions to variational

imequalitios.

Trororest 50 Lee X be reflexive, let K ohe a closed convex subset of X, and let
AN XN be a (possibly muldtivalued ) monotone operator. Suppose there exist an
a N oand ain o0 such that

(4.3 Nooao Nt 20 whenever x o DAY N K, x> a0 v e 4(Y).

Suppose also thar one of the following fire conditions is satisfied:
tay D KN oand A s single-valued and hemicontinuous on K. or
(hy A s maximal and K- Ovint D(A) 4 . or
(cy A s maximal and DAY Y int K7 . or
(dy A iy locally hounded ar some x & K v el DAY and maximal. or

(¢r X iy finite-dimensional. A is maximal and

DAY K # 0
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Then the variational inequality for A and K has a solution. i.c. there exists at least
one x oo DOAY O K such that, for some x* < A(x), —x* iy normal to K at x.

Proof. Replacing K and A4 by the translates K'=K-—-a and A'(xv)=A(x+a) if
necessary. we can reduce the theorem to the case where ¢=0. In terms of the
normality operator N for K, which has D(.V) =K, the solutions to the variational
inequality for 4 and K are simply the points x such that

0e N(x)+A(x) = (N+ A)(x).

Such a solution exists by Proposition 2. if the monotone operator T=N+ A4 is
maximal. since condition (2.5) for 7 is equivalent to condition (4.3) on K and A
(when O=«a = A). Each of the conditions (a). (b). (¢). (d) and (e¢) 1s sufficient, in
view of Theorems [, 2 and 3, for 7 to be maximal.

When the set A is given by a system of convex inequality constraints,
(4.4 K={x!1fix) £0.i=1,....m.
the normality condition in Theorem S can sometimes be expressed in terms of the
subdifferentials «f; of the convex functions f; and certain Lagrange multipliers.
In particular, there s the following result.

COROLLARY. Let X be reflexive, and let T X — X* be a maximal monotone

operator. Let i, [, be continuous real-valued convex functions on X. Suppose
there exist an a = X and an «>0 such that

(4.5) ae D(TY and [(a) <O fori=1.....m,
N—a.o T 20 whenever x€ D(T), x*e T(x),
(4.6 .,
‘X, >« and f(x) 20 fori=1,...,m.
Then there exist real numbers A,. .. .. A, (Lagrange nudtipliers) and an x & X such
thar
(+.7) A = 0. fi(x) =0, Afi(x) = 0, i=1,...,m,
(4.8) 0 & T+ A/l + - -+ At fl ).

Proof. For K as in (4.4), we have ae D(T) N int K by (4.5), so that the hypo-
thesis of Theorem 5 is satisfied under condition (¢). The corollary then follows
from the fact that (since the inequality system f, <0, /=1, ..., m, can be satisfied)
the normal cone to K at a point x € K is the union of Ayfi(x)+ - +A,cf(x)
over all coeflicients A; such that A, 20 for indices 7 such that fi(x)=0 and A;=0 for
indices 7 such that f(x) <0. For the proof of the Jatter fact, sce Rockafellar {11, p.
86]. (The argument in [11] concerns the case where /7, .. ., f,, are Gateaux differen-
tiable. but it is casily extended to the general case.)

ReMarRK. When certain of the functions f; are actually affine (i.e. linear-plus-a-
constant), the corresponding conditions fi(a)<0 in (4.5) may be weakened to



O, SUMS OF NONLINEAR MONOTONE OPERATORS 87

ficn= 0. provided that the condition @ = D(T) is strengthened at the same time to

int DC). This follows by the argument given in [I'1. p. 87]. With this modifica-
tion. the corollary may be applied to cases where the definition of K involves
constraints of the form  x, b =g, where b e X*, since such a constraint can
alwavs be re-expressed as a pair of affine inequality constraints:

fix) = x,b-—B £0, fox) = B~7x,b- £ 0.

Obseryve that. according to (4.8) the “solution™ x whose existence is asserted
in the corollary s in particular a solution to:

(4.9) 0 S(x), where S = THAfi+- -+ A

Moreover. S is a4 maximal monotone operator by Theorem |, since the sub-
differentials ¢ f; are maximal monotone operators with D(¢/)) = X. (A nonnegative
multiple of a maximal monotone operator with effective domain X is trivially
another maximal monotone operator.) In particular, suppose in the corollary
that 7'is single-valued on D(T). and that each /; is actually Gateaux differentiable,
so that the subdifferentials of; reduce to single-valued gradient mappings V.
Then S iy a single-valued maximal monotone operator with D(S)= D(T), and (4.9)

becomes an equation:
(4.10) 0= S(x) = T+ X filx)+ - - -+ A0 fu(x).

The Lagrange multiphers A; thus make it possible sometimes to reduce variational
incqualitics to operator equations of a simpler sort, which can be useful of course
in the analysis of the solutions v, at least in cases where 7T'is a differential or integral
operator whose properties are well understood.
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