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On the Virtual Convexity of the Domain and Range
of a Nonlinear Maximal Monotone Operator

R.T. ROCKAFELLAR
Let X be a real Banach space. and let X* be the dual of X. with {x. x*)

wriiten 1 place of v*(x) for xe X and x*e X*. A multivalued mapping
toperatory 70 X — X * 1y said to be monotone if

Y

=T ' >0 whenever x*e T(xhy*e T().
[ts said 1o be a maximal monotone mapping if its graph
v x¥)ixe X, x¥e T CX < X* (n

v not contuned properly in the graph of any other monotone mapping
TN -- XV Monotone mappings have received  considerable  attention
recently because of applications to the theory of nonlinear differential cquations
tsee Browder [3] and the references given there). It 1s known that. in particular,
the subdifferential ¢/ of any lower semi-continuous proper convex function
fon X isa maximal monotone mapping (Rockafellar [127).

Let DTy and R(T) denote the effective domain and range of T. i.c.

DiTy={xe X|T(x)+=0].
RITY=u{T(x)|xeX;.

Mty [10] has shown that. if T is @ maximal monotone mapping and X 1s
Sinite-dimensional. then DT 1s almost convex in the sense that D(T) contains
the (non-emptyy relative interior of conv D(T). where conv denotes convex hull.
ffollows in this case that R(T)is likewise almost convex. because R(T)=D(T ).
T 7 being the maximal (multivalued) monotone mapping defined by

T Yx®y = {x|x%e T(x).

The purpase of this note is to prove. by means of some recent theorems of
Browder { 3], a certain infinite-dimensional generalization of Minty's result
which is valid for the ¢lass of all Banach spaces X such that

N has an cquivadent norm which is everywhere Fréchet difterentiable
exceptat the origin and whose dual norm on X* is everywhere bréchet (2)
differentiable except at the origin.

It well-known that (2) implies the reflexivity of X. For convenience in this
paper. we shall refer to the Banach spaces satisfyving (2) as smoothly reflexire.
Of course. all Banach spaces isomorphic to 17 spaces with [ <p< 7 are
smoothly reflexne i particular all Hilbert spaces. Asplund [ 1. Theorem 4
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has shown recently by means of a result of Kadec [8] that the cluss of smoothly
retloxive Banach spaces includes all separable reflexive Banach spaces. At present
it s an open question whether or not erery reflexive Banach space is in fact
smoothly reflexive. but it is known (Asplund [ 1. Theorem 4]. based on Linden-
strauss [ 91 that every reflexive Banach space does satisty the weaker form of
(21 in which Frechet differentiability is replaced by Gateaux differentiability.

Weshall calla subset C ol X virtually convexif, given any relatively (strongly)
compact subset K of convC and any &> 0. there exists a strongly continuous
single-valued mapping ¢ of all of K into € such that

pix)—xiZ¢ forevery yeK.

Fhis condition imphies in particular that ¢l C 1s convex. where ¢l denotes strong
closure. It also implics that Cis finitely conrex! in the sense of Halkin [7]. ie.
that given amy finite subset S of Cand any ¢ > 0, there exists a strongly continuous
single-valued mapping @ of conv S into C such that |@(x)— x| ¢ for every x
mconv S, Trivially. every convex setis virtually convex.

Our main result is the following.

Theorem 1. Ler X be a smoothly reflexive Banach space, and let T X — X*
he a maximal monotone mapping. Then D(T) and R(T) are virtually convex sets.

The result of Minty may be regarded as a special case of Theorem [ accord-
g to the lemma below. In Theorem 20 we shall state a weaker convexity result
which does not imply Minty’s result, but which is truc in any reflexive Banach
space.

Lemma. WWhen X s finite-dimensional, a subsct C of X is virtually conrvex
it and onlv it ir is almost convex.

Proof. ltis enough to consider the case where the affine hull of C is all of X,
so that ¢l C(which is in either event a convex set) has a non-empty interior.

Suppose first that C is almost convex, and let K by any relatively compact
subset of conv (. Let = be an interior pomnt of ¢l C. Given any &> 0. choosc
70, 1 small enough that 2z — x| ¢ for every x € K. and define ¢ by

e(x)y=(1—/2)x+ /2.

This @ 15 a continuous mapping such that lp(x) -y = for every xe K.
Morcover. ¢(x) e mt(cl C) for every x e clC. Since C is almost convex, one has
mt{clOYcCCceconvC el

and it follows that @ maps K into C. Thus Cis virtually convex.

Conversely now. suppose that Cis virtually convex and let = be any interior

point of conv C. Choosc ¢ > 0 so small that
K,Cconv(,

' Since this paper was written. J. P. Gossez has communicated to the author a proof that,
comversely. every finitely convex set 1s virtually convex.
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where Ko the closed ball of radius ¢ around -. Since K, is compact, there
CAints & continuous mapping ¢ of K, into € such that 1p(x) — x| <& for every
vo K, The mapping y defined by
X)) =2+ x—@(x)

i continuous from K, into itself, and hence y has a fixed point X. Onc has
<IN =z and this implies that ze C. Thus € includes the (non-empty) interior
otcony €. tWeare grateful to Prof. V. L. Klee for pointing out this simple fixed
point argument.)

Proof ot Theorem 1. Inasmuch as X* also satisfies (2)and D(T)=R(T Y,
1Usuffices by symmetry to prove the virtual convexity of R(T). Replacing T if
necessary by the maximal monotone mapping T defined by

T'(x)=T(x+X)—X*,
where Xis some point of D(T) and ¥* e T(X). we can assume without loss of
generality that 0 e T(0) so that
Xox*FyzZ 0 whenever  x*e T(y). (3)
(The range of T would be just a translate of R(T). and translations preserve
virtual convexity.)

We can assume that the given norm ' - | on X already has the differentiability
properties deseribed in (2). The corresponding extended spherical mapping J
(Cudia [6]) 15 then a strong homeomorphism of X onto X* such that

J(.x)=72J(x) for cvery real /. (4)
Xt =00J(x6)) = ()2, (5)
The mapping J is. of course, the Fréchet gradient of the convex function
JxX)=(1/2) Ix[%, xe X . (6)
whosc conjugate function is
JH®) = (172) 1x*]2, x> e X*. )
Thus J is a maximal monotone mapping such that
(1/2) 12 4+ (1/2) |x*12 2 (e x*y |

with cquality < x* = J(x).

(8)

Other properties of J will be mentioned as needed.

According to Browder [5. Theorem 27, for any />0, T+ /.J is a maximal
monotone mapping from X to X*. Moreover, for any XeD(T+,J)=D(T)
and any x* e (T + 7J) (x) we have

XTD =X x* = 2J(x)) + O 2 (X)) 2 24 (X)) = 7 jxi, 2 9)
by (3) and (5). This says that T + 4J is coercive, so that

X*=R(T+2J)=D(T+/,J)" ") (10)
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by Browder [3. Theorem 3]. We show now by a shight modification of an
argument of Browder [5. p. 107] that (T + 2J) "' is single-valued and strongly
continuous. Let x¥ x%. ..., be a sequence in X* converging to a point x§. For
cach index & let x, be an clement of (T + AJ) 7 '(xF). and let

ViE=xF - 2J(x)e Tixy.

It suffices to show that x; converges strongly to x,,. Since

xRS xE
by (9). the sequence x . x,. ..., must be bounded. Therefore
0= lm {x, — x4 XF — xF
ks o

= 3i111 [{xp = Xoo 3 = ¥E> + 2{x, — xp. J ) = J(xp)p] .

where the latter “inner products™ are non-negative by the monotonicity of T
and J. It follows that

0= lim {x; — xo.J(x;,) — J(xy)) . (I
ko>

Since J is the gradient mapping of the convex function j. we have (cf. Rockafellar
(12 _ , )

J(xo) Zjlx) + {xg — X ()

Jx) Z jlxg) + {0 — X Jx o))
and consequently

R VS VTR J(-\-A) - J'»\.n)> EI(YA) - ./-(-\-n) - <\’-\(A - X ']('\‘ll):} \é 0.

Thercfore
0= kli{n (i) — jlxg) = (xp ~ xS x> ] (12)

The Frechet differentiability of the conjugate function j* at J(x,) corresponds
by Asplund-Rockafellar [3. Theorem 1] to j being rotund in the norm topology
at x, relative o J(x,). which means that (12) implics that x, converges strongly
o x,. (This argument differs from Browder’s [S.p. 107] in that Browder
concludes the convergence of x, from (11) by applying a lemma which requires
N to be uniformly convex. We avoid uniform convexity by appealing to the
more general Asplund-Rockafellar result.)
For each 2> 0 and x* e X*_ let

Q,(x*)=(T + 2J) Hx¥), (13)
P (x*) = x* — /J(Q;(x*)). (14)

From what we have just seen, Q; is a strongly continuous single-valued mapping
of all of Y* mto X. Morcover
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by (9), so that Q, carries bounded sets'into bounded sets. Therefore P, is a
strongly continuous single-valued mapping of all of X* into X* carrying
bounded sets into bounded sets. The range of P, is contained in R(T); in fact

Py(x*) € T(Qa(x*)), (15)
because
x* € (T + AJ) (Q:(x®) = T(Qx(x*)) + AT (2:(x™))
by the definition of Q,. We shall demonstrate that
ailn(} P,(x*)=x*, Vx*ecl(convR(T)), (16)

where the convergence is strong and uniform on compact sets. This will
establish the virtual convexity of R(T). (The choice of P, is motivated by
Moreau’s theory of proximal mappings [11]: if T=4f for a lower semi-
continuous proper convex function f on X with conjugate f* on X*, P,(x¥*)
turns out to be the unique point y* for which

(1/2) Ily* — x*|1* + Af*(*) (17)

attains its minimum.)
Let K be any non-empty compact subset of cl(convR(T)), and let ¢ >0 (with
e<1). We have

Kcu{C, 0fa< 0}, (18)
where
C,.={x*|3y* ecl(convR)), |y* — x*| <¢/2},

R,={x*||x*| <o and 3xeT '(x¥), x| So}.

(19)

Since K is compact, while the sets C, , are open and nested, K must actually
be contained in C, , for some sufficiently large « > 1. We shall demonstrate the
existence of a 1, > 0 such that

”PA(X*)_X*H §85 Vx*eca,u 0<'1§'10’ (20)

and this will finish the proof of the theorem. (It will show also, by the way, that
P, converges uniformly to the identity on cl(conv R,) for any a as 1{0.)
We need to establish as a preliminary that, for any u > 0, the set
(P(x")x*€C, . 0< A<} 21)
is bounded. By (8) we have
(1/2) 1771 (x* = Py(x*)II? +(1/2) [|x* — P, (x*)]? 22)
Z (T = Py(x®), x* — P,(x*)),

while by (5) we have
(1/2) [T~ (x* = Pae*)I2 +(1/2) [ x* — P(x*)||?

= {JTHx* = Py(x¥), x* — Py(x*)) . =



N R.F. Rockafellar:
Subtracting (23) from (22), we get

(12) (5% — P,ix*) 2= (1)2) 3 — P(x%)° (24)
= (JTHx* — Py (x*)). PAx*) = P,(x%)).

On the other hand. the monotonicity of T implies by (15) that

0= (Q;(x*) — Q,(x*), P,(x*)— P (x*)) .
and hence that
COHNTL PXF) — P (x*)) 2 {Q,(x¥), P,(x*) — P (x*))> . 125}
Of course
QM1 =770 HYF = Px9). Qux*)=p" 'S Hx*— P (xF),
so by (24) and (25)
(120 X% = Px*) )2 —(1/2) fx* — P,(x*) 2
2 (2 ) (¥ = PAxH) Po(x*) — P, (x*))
= (1) (I T (x* — P (x*), x* — P (x*)
+ () {7 HXF — Px*). Pix®) — x*)
— (20 T HXE = PAXF) N - P(xF)
It follows that
BF — Pk Ry x® o PV 2
S22 ) {7 Hx* — P(x¥). x* — P,(x*) (26)
S 2 xX* —PUx*l . xR Pix*y] .
Forany g> 0. the quantity
B.=sup{| x* — P (x*)t|x*eC, )}

is finite. sinece €, is bounded and P, maps bounded sets into bounded sets.

Forany x*e €, and 0 < /2 <y we have

K= PR TS P42, X~ PxH)
i other words
(x*— P (x*) — B <242, (27)
This proves that the set in (21) is bounded as claimed.
Now. taking g = [. we choose a real number [ such that
Px*) =f when x¥e(C, 0<,<1. (28)

and we set

to=c"dulzr+ f) . (29)

W
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where A, < 1 (by our assumption that ¢ < 1, o > 1). Given any y* € R, there exists
by definition a y such that y* e T(y) and | y| £a. For this y and y* we have,
by (15) and the monotonicity of T,

0=y = Qi(x*), y* = P,(x*)) =y — A7 T 71 (x* — Py(x¥)), y* — Po(x*))
and hence
Ay, y* = P(x¥)y 2 (I 7H(x* = Py(x¥)), y* — Po(x*))
= THX* = Pxc¥), y* = x*D + (T = Py(x¥)), x* — Po(x*) (30)
= {TTH* = Pi(x¥), y* = X* + | x* — Py (x®)||2.
When x*e C, ,and 0 < 2 =< 4,, we have
Ay, y* = POy S ALyl (Ty* I+ 1P(x*)I) (31)
<Aoo+ B)=¢%/4.
It follows from (30) and (31) that
Ix* — P (x*)[1? < (T 71 oe* = Py(x¥)), x* — y*) +(€7/4) (32)

when x* e C, , and 0 <A =< Z,. We have shown that (32) holds for any y* e R,.
But, for each x* and 4, (32) is a linear inequality in y*, so if it is satisfied for
every y* € R, it must actually be satisfied for every y* e cl(convR,). Thus, when
x*eC,,and 0 <A< 4,, we have

% = PLGe*)2 £ 107 % = Py - fe* = v+ (/4)

(33)
= x* = PO - I = y* + (2%/4)
for every y* e cl(conv R,). Since
inf{|x* — y*||| y* e cl(convR,)} < ¢/2 (34)
for any x* e C, , by the definition of C, _, it follows that
Ix* = Py(x*)||? < (e/2) [|x* — P (x*)|| + (67/4) (35)

when x*eC,, and 0<4i<4, It is easily verified that (35) implies
l[x* — Pi(x*)il <e.
Remark. The proof actually shows that, given any bounded (not necessarily
relatively compact) subset K of
cl(convu{T(x)||Ix]| <a}) (36)
(for any o> 0), and given any &> 0, there exists a strongly continuous (single-

valued) mapping ¢ of K onto a bounded subset of R(T) such that ||p(x*)— x*| <e
for every x* € K. Likewise, given any bounded subset K of

cl(conv {x|3x* e T(x), | x*|| < a}) 37)

and any ¢ >0, there exists a strongly continuous (single-valued) mapping ¢
of K onto a bounded subset of D(T) such that ||¢(x) — x| < ¢ for every x € K.
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Note added in proof. H. Brezis, M. G. Crandall and A. Pazy have now shown that P, is always

continuous from the strong topology to the weak topology. (See the remarks after Lemma 1.3 of
their forthcoming paper “Perturbations of nonlinear maximal monotone sets in Banach space.”)
Thus Theorem 2 can be strengthened to the following.

Theorem 2'. Let X be any reflexive Banach space, and let T: X — X* be a

maximal monotone mapping. Then D(T) and R(T) are “weakly” virtually convex,
that is, they satisfy the definition of virtual convexity, except that ¢ is not neces-
sarily continuous from the strong topology to the strong topology, but only from
the strong topology to the weak topology.
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