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Improved hardness results for several problems
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Our result
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Use existing algorithms for subproblems:
» FACILITY LOCATION: 1.5-apx [Byrka ’07]
» STEINER TREE: 1.39-apx [Byrka,Grandoni,R.,Sanita 10]
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Analysis: Facility Location cost

Theorem
E[apz FACILITY LOCATION cost] < 1.5 - (O* 4+ 2C* + 0.815%)
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Improvement to 3.19:
» Adapting the sampling probability
» Using a bi-factor FACILITY LOCATION algorithm
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Our result

Our result
Simple 16.2-approximation algorithm for MULTI-COMMODITY
CONNECTED FACILITY LOCATION.

Ingredients:
» Random-sampling
» Use algorithms for

» PRICE-COLLECTING FACILITY LOCATION
» STEINER FOREST
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The reduction (1)
» Reduce SET COVER to SROB

remove!
clients/elements cle) € {1,2}
0.27
facilities/sets =5 PT:C

(1) WHILE not all elements covered DO

(2) Compute 1.27-apx SROB sol
(3) Buy facilities/sets in sol. & remove covered elements
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The reduction (2)
» Use idea from [Guha & Khuller ’99]

# clients
A

na

at dist 1
\

[ apx SROB sol. 0.27
[ ]

|

|
T T

1-OPTsc 2-OPTsc

Srteen + 0.3667n

# facilities in apx. sol

# needed sets < [...some calc...] <0.9991In(n) - OPTsc

» Contradiction!

Theorem (Feige '98)
Unless NP C DTIME (nC(°g108m))  there is no

(I —¢)-In(n)-

apz for SET COVER.




The end

Thanks for your attention



