On the Log Rank Conjecture

Thomas Rothvoss

UW Seattle

Current Topics Seminar

Setting:

• Function $f: X \times Y \to \{0,1\}$

Alice

 Bob

Setting:

- ▶ Function $f: X \times Y \to \{0, 1\}$
- ▶ Players Alice and Bob agree apriori on a deterministic communication protocoll

Alice

Bob

Setting:

- ▶ Function $f: X \times Y \rightarrow \{0, 1\}$
- ▶ Players Alice and Bob agree apriori on a deterministic communication protocoll
- ▶ Alice receives $x \in X$, Bob receives $y \in X$

Alice $x \in X$

 $\mathbf{Bob}_{y \in Y}$

- ▶ Function $f: X \times Y \to \{0, 1\}$
- ▶ Players Alice and Bob agree apriori on a deterministic communication protocoll
- ▶ Alice receives $x \in X$, Bob receives $y \in X$
- ▶ They exchange messages to compute f(x,y)

Alice		Bob
$x \in X$	1	$y \in Y$

- Function $f: X \times Y \to \{0,1\}$
- ▶ Players Alice and Bob agree apriori on a deterministic communication protocoll
- ▶ Alice receives $x \in X$, Bob receives $y \in X$
- ▶ They exchange messages to compute f(x,y)

- ▶ Function $f: X \times Y \to \{0,1\}$
- ▶ Players Alice and Bob agree apriori on a deterministic communication protocoll
- ▶ Alice receives $x \in X$, Bob receives $y \in X$
- ▶ They exchange messages to compute f(x,y)

- ▶ Function $f: X \times Y \to \{0, 1\}$
- ▶ Players Alice and Bob agree apriori on a deterministic communication protocoll
- ▶ Alice receives $x \in X$, Bob receives $y \in X$
- ▶ They exchange messages to compute f(x,y)

- ▶ Function $f: X \times Y \rightarrow \{0, 1\}$
- ▶ Players Alice and Bob agree apriori on a deterministic communication protocoll
- ▶ Alice receives $x \in X$, Bob receives $y \in X$
- ▶ They exchange messages to compute f(x,y)

Example:

- ▶ Input for Alice: $x \in \{0,1\}^n$
- ▶ Input for Bob: $y \in \{0, 1\}^n$

$$f(x,y) = x_1 + \ldots + x_n + y_1 + \ldots + y_n \mod 2$$

Example:

- ▶ Input for Alice: $x \in \{0,1\}^n$
- ▶ Input for Bob: $y \in \{0,1\}^n$

$$f(x,y) = x_1 + \ldots + x_n + y_1 + \ldots + y_n \mod 2$$

A 1-bit protocoll:

- (1) Alice send $x_1 + \ldots + x_n$ mod 2 to Bob.
- (2) Bob then knows the answer.

Example:

- ▶ Input for Alice: $x \in \{0,1\}^n$
- ▶ Input for Bob: $y \in \{0, 1\}^n$

$$f(x,y) = x_1 + \ldots + x_n + y_1 + \ldots + y_n \mod 2$$

Α	1-bit	protocoll:
4 •	T 1010	procour.

- (1) Alice send $x_1 + \ldots + x_n$ mod 2 to Bob.
- Bob then knows the answer.

odd y even y

 $\operatorname{odd} x = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}$

Example:

► Function

$$EQ: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$$
 $EQ(x,y) = \begin{cases} 1 & x = y \\ 0 & \text{otherwise} \end{cases}$

Example:

▶ Function

$$EQ: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$$
 $EQ(x,y) = \begin{cases} 1 & x = y \\ 0 & \text{otherwise} \end{cases}$

• Complexity theory 101: CC(EQ) = n

Example:

▶ Function

$$EQ: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$$
 $EQ(x,y) = \begin{cases} 1 & x = y \\ 0 & \text{otherwise} \end{cases}$

▶ Complexity theory 101: CC(EQ) = n

$$X \left[\begin{array}{c|cccc} Y & & & & & & & & & & & \\ \hline 1 & 0 & 0 & 0 & & & & & \\ 0 & 1 & 0 & 0 & & & & & \\ 0 & 0 & 1 & 0 & & & & & \\ 0 & 0 & 0 & 1 & & & & & \\ \end{array} \right]$$

Observations:

▶ For a leave v of tree, $R_v := \{(x, y) : \text{protocoll ends in } v\}$ is a monochromatic rectangle

Observations:

- For a leave v of tree, $R_v := \{(x, y) : \text{protocoll ends in } v\}$ is a monochromatic rectangle
- ▶ A protocol exchanging k bits \Rightarrow rank $(f) \le 2^k$

Observations:

- ▶ For a leave v of tree, $R_v := \{(x, y) : \text{protocoll ends in } v\}$ is a monochromatic rectangle
- ▶ A protocol exchanging k bits \Rightarrow rank $(f) \le 2^k$
- $ightharpoonup CC(f) \ge \log \operatorname{rank}(f)$

- $\blacktriangleright \ CC(f) \geq \log \mathrm{rank}(f)$
- $ightharpoonup CC(f) \le \operatorname{rank}(f).$

- $ightharpoonup CC(f) \ge \log \operatorname{rank}(f)$
- ▶ $CC(f) \le \operatorname{rank}(f)$.

Conjecture (Lovász & Saks '88)

 $CC(f) \le (\log \operatorname{rank}(f))^{O(1)}.$

- $ightharpoonup CC(f) \ge \log \operatorname{rank}(f)$
- $ightharpoonup CC(f) \le \operatorname{rank}(f).$

Conjecture (Lovász & Saks '88) $CC(f) < (\log \operatorname{rank}(f))^{O(1)}$.

Theorem (Lovett 14)
$$CC(f) \leq \tilde{O}(\sqrt{\operatorname{rank}(f)}).$$

- $ightharpoonup CC(f) \ge \log \operatorname{rank}(f)$
- $ightharpoonup CC(f) \le \operatorname{rank}(f).$

Conjecture (Lovász & Saks '88)

$$CC(f) \le (\log \operatorname{rank}(f))^{O(1)}.$$

Theorem (Lovett '14)

$$CC(f) \leq \tilde{O}(\sqrt{\operatorname{rank}(f)}).$$

▶ Here: A much shorter and direct proof by me.

The technical main result

▶ It suffices to show

Lemma

Any 0/1 matrix A

The technical main result

▶ It suffices to show

Lemma

Any 0/1 matrix A has a monochromatic submatrix R of size

$$|R| \ge 2^{-\tilde{O}(\sqrt{\operatorname{rank}(A)})} \cdot |A|$$

The technical main result

▶ It suffices to show

Lemma

Any 0/1 matrix A has a **almost** monochromatic submatrix R of size

$$|R| \ge 2^{-\tilde{O}(\sqrt{\operatorname{rank}(A)})} \cdot |A|$$

▶ Almost means $\frac{\#\text{zeroes}}{\#\text{ones}} \le \frac{1}{8 \cdot \text{rank}(A)}$

Let A be a 0/1 matrix of rank r. By definition,

$$A_{ij} = \langle u_i, v_j \rangle$$
 with $u_i, v_j \in \mathbb{R}^r$

Let A be a 0/1 matrix of rank r. By definition,

Let A be a 0/1 matrix of rank r. By definition,

▶ For any regular matrix $T: u_i' := Tu_i \& v_j' := (T^{-1})^T v_j$ ⇒ $\langle u_i', v_j' \rangle = \langle u_i, v_j \rangle$

Let A be a 0/1 matrix of rank r. By definition,

$$A_{ij} = \langle u_i, v_j \rangle$$
 with $u_i, v_j \in \mathbb{R}^r$

$$v_j$$

$$u_i$$

For any regular matrix $T: u'_i := Tu_i \& v'_j := (T^{-1})^T v_j$ $\Rightarrow \langle u'_i, v'_j \rangle = \langle u_i, v_j \rangle$

Lemma

Vectors can be chosen so that $||u_i||_2, ||v_j||_2 \le r^{1/4} \, \forall i, j$

John's theorem

John's Theorem

For any symmetric convex body $K \subseteq \mathbb{R}^n$, there is an ellipsoid E so that $E \subseteq K \subseteq \sqrt{n} \cdot E$.

John's theorem

John's Theorem

For any symmetric convex body $K \subseteq \mathbb{R}^n$, there is an ellipsoid E so that $E \subseteq K \subseteq \sqrt{n} \cdot E$.

John's theorem

John's Theorem

For any symmetric convex body $K \subseteq \mathbb{R}^n$, there is an ellipsoid E so that $E \subseteq K \subseteq \sqrt{n} \cdot E$.

 $ightharpoonup T: \mathbb{R}^n \to \mathbb{R}^n \text{ linear map} \Rightarrow T(\text{ball}) \text{ is an ellipsoid}$

John's Theorem (2)

Proof:

John's Theorem (2)

Proof:

ightharpoonup Suppose the **maximum volume ellipsoid** in K is a unit ball.

- ightharpoonup Suppose the **maximum volume ellipsoid** in K is a unit ball.
- ▶ Suppose some point $x \in K$ has $||x||_2 > \sqrt{n}$

- ightharpoonup Suppose the **maximum volume ellipsoid** in K is a unit ball.
- ▶ Suppose some point $x \in K$ has $||x||_2 > \sqrt{n}$

- ightharpoonup Suppose the **maximum volume ellipsoid** in K is a unit ball.
- ▶ Suppose some point $x \in K$ has $||x||_2 > \sqrt{n}$
- \triangleright Stretch ball along x; shrink orthogonal

- ightharpoonup Suppose the maximum volume ellipsoid in K is a unit ball.
- ▶ Suppose some point $x \in K$ has $||x||_2 > \sqrt{n}$
- \triangleright Stretch ball along x; shrink orthogonal
- $ightharpoonup \operatorname{vol}(E) > \operatorname{vol}(\operatorname{ball})$

▶ Given r-dim. vectors with $\langle u_i, v_j \rangle \in \{0, 1\}$

- ▶ Given r-dim. vectors with $\langle u_i, v_j \rangle \in \{0, 1\}$
- ▶ Choose $K := \text{conv}\{\pm u_i \mid i \text{ row index}\}$

- ▶ Given r-dim. vectors with $\langle u_i, v_j \rangle \in \{0, 1\}$
- ▶ Choose $K := \operatorname{conv}\{\pm u_i \mid i \text{ row index}\}$
- ▶ After linear transformation: $\frac{1}{r^{1/4}}B \subseteq K \subseteq r^{1/4}B$

- ▶ Given r-dim. vectors with $\langle u_i, v_j \rangle \in \{0, 1\}$
- ▶ Choose $K := \text{conv}\{\pm u_i \mid i \text{ row index}\}$
- ▶ After linear transformation: $\frac{1}{r^{1/4}}B \subseteq K \subseteq r^{1/4}B$
- Claim: $||v_j||_2 \le r^{1/4}$

- Given r-dim. vectors with $\langle u_i, v_i \rangle \in \{0, 1\}$
- ► Choose $K := \text{conv}\{\pm u_i \mid i \text{ row index}\}$
- ▶ After linear transformation: $\frac{1}{r^{1/4}}B \subseteq K \subseteq r^{1/4}B$
- Claim: $||v_j||_2 \le r^{1/4}$

$$1 \ge \max_{i} |\langle u_i, v_j \rangle|$$

- Given r-dim. vectors with $\langle u_i, v_i \rangle \in \{0, 1\}$
- ► Choose $K := \text{conv}\{\pm u_i \mid i \text{ row index}\}$
- ▶ After linear transformation: $\frac{1}{r^{1/4}}B \subseteq K \subseteq r^{1/4}B$
- Claim: $||v_j||_2 \le r^{1/4}$

$$1 \ge \max_{i} |\langle u_i, v_j \rangle| \ge \langle w, v_j \rangle$$

- Given r-dim. vectors with $\langle u_i, v_j \rangle \in \{0, 1\}$
- ▶ Choose $K := \text{conv}\{\pm u_i \mid i \text{ row index}\}$
- ▶ After linear transformation: $\frac{1}{r^{1/4}}B \subseteq K \subseteq r^{1/4}B$
- Claim: $||v_i||_2 \le r^{1/4}$

$$1 \ge \max_{i} |\langle u_i, v_j \rangle| \ge \langle w, v_j \rangle = \frac{1}{r^{1/4}} \|v_j\|_2$$

Back to our problem

▶ There are unit vectors u_i, v_j so that

$$\langle u_i, v_j \rangle = \begin{cases} 0 & \text{if } A_{ij} = 0 \\ \frac{1}{\sqrt{T}} & \text{if } A_{ij} = 1 \end{cases}$$

Back to our problem

▶ There are unit vectors u_i, v_j so that

$$\langle u_i, v_j \rangle = \begin{cases} 0 & \text{if } A_{ij} = 0 \\ \frac{1}{\sqrt{T}} & \text{if } A_{ij} = 1 \end{cases}$$

Sheppard's formula

Sheppard's formula

For unit vectors $u, v \in \mathbb{R}^2$, take a random direction g. Then

$$\Pr[\langle g, \mathbf{u} \rangle \ge 0 \text{ and } \langle g, \mathbf{v} \rangle \ge 0] = \frac{1}{2} \left(1 - \frac{\arccos(\langle \mathbf{u}, \mathbf{v} \rangle)}{\pi} \right)$$

Sheppard's formula

Sheppard's formula

For unit vectors $u, v \in \mathbb{R}^2$, take a random direction g. Then

$$\Pr[\langle g, u \rangle \ge 0 \text{ and } \langle g, v \rangle \ge 0] = \frac{1}{2} \left(1 - \frac{\arccos(\langle u, v \rangle)}{\pi} \right)$$

Sheppard's formula

Sheppard's formula

For unit vectors $u, v \in \mathbb{R}^2$, take a random direction g. Then

$$\Pr[\langle g, u \rangle \ge 0 \text{ and } \langle g, v \rangle \ge 0] \approx \frac{1}{4} + const \cdot \langle u, v \rangle$$

Suppose A is 0/1 matrix with $\#ones(A) \ge \#zeroes(A)$

- Suppose A is 0/1 matrix with $\#ones(A) \ge \#zeroes(A)$
- ightharpoonup Sample random Gaussian g

$$B = \{i : \langle g, u_i \rangle \ge 0\}$$
$$\times \{j : \langle g, v_j \rangle \ge 0\}$$

- \triangleright Suppose A is 0/1 matrix with #ones(A) > #zeroes(A)
- ► Sample random Gaussian q

$$B = \{i : \langle g, u_i \rangle \ge 0\}$$
$$\times \{j : \langle g, v_j \rangle \ge 0\}$$

We know

$$\mathbb{E}\left[\frac{\text{\#zeroes in }B}{\text{\#ones in }B}\right] \approx \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{\sqrt{r}}} = 1 - \Theta(\frac{1}{\sqrt{r}})$$

$$\mathbb{E}[\text{fract of entries in }B] \approx \frac{1}{4}$$

- Suppose A is 0/1 matrix with #ones(A) > #zeroes(A)
- Sample random $T := \Theta(\sqrt{r} \log(r))$ Gaussians g_1, \dots, g_T

Gaussians
$$g_1, \dots, g_T$$

$$B = \{i : \langle g_t, u_i \rangle \ge 0 \ \forall t \in [T]\}$$

$$\times \{j : \langle g_t, v_j \rangle \ge 0 \ \forall t \in [T]\}$$

▶ We know

$$\mathbb{E}\left[\frac{\text{\#zeroes in }B}{\text{\#ones in }B}\right] \approx \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{\sqrt{r}}} = 1 - \Theta(\frac{1}{\sqrt{r}})$$

$$\mathbb{E}[\text{fract of entries in }B] \approx \frac{1}{4}$$

- \triangleright Suppose A is 0/1 matrix with #ones(A) > #zeroes(A)
- Sample random $T := \Theta(\sqrt{r} \log(r))$ Gaussians g_1, \ldots, g_T

$$= \{i : \langle g_t, u_i \rangle \ge 0 \ \forall t \in [T]\}$$

$$\times \{j : \langle g_t, v_j \rangle \ge 0 \ \forall t \in [T]\}$$

We know

$$\mathbb{E}\left[\frac{\text{\#zeroes in }B}{\text{\#ones in }B}\right] \approx \frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{\sqrt{r}}} = 1 - \Theta(\frac{1}{\sqrt{r}})$$

$$\mathbb{E}[\text{fract of entries in }B] \approx \frac{1}{4}$$

- \triangleright Suppose A is 0/1 matrix with #ones(A) > #zeroes(A)
- Sample random $T := \Theta(\sqrt{r} \log(r))$

Gaussians
$$g_1, \ldots, g_T$$

Sample random
$$T := \Theta(\sqrt{r} \log(r))$$

Gaussians g_1, \dots, g_T

$$B = \{i : \langle g_t, u_i \rangle \ge 0 \ \forall t \in [T]\}$$

$$\times \{j : \langle g_t, v_j \rangle \ge 0 \ \forall t \in [T]\}$$

$$\begin{vmatrix}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{vmatrix}$$

We know

$$\mathbb{E}\left[\frac{\text{\#zeroes in }B}{\text{\#ones in }B}\right] \approx \left(\frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{\sqrt{r}}}\right)^T = \frac{1}{8r}$$

$$\mathbb{E}[\text{fract of entries in }B] \approx \left(\frac{1}{4}\right)^T = 2^{-\Theta(\sqrt{r}\log r)}$$

The end

▶ The following is equivalent to log-rank conjecture:

Conjecture

Any rank-r 0/1-matrix A has a submatrix with

- $|B| \ge 2^{-(\log(r))^{O(1)}}$
- ▶ B is monochromatic (except of a $\frac{1}{8r}$ -fraction of entries).

The end

▶ The following is equivalent to log-rank conjecture:

Conjecture

Any rank-r 0/1-matrix A has a submatrix with

- $|B| > 2^{-(\log(r))^{O(1)}}$
- ▶ B is monochromatic (except of a $\frac{1}{8r}$ -fraction of entries).

Thanks for your attention