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Example:

» Input for Alice: z € {0,1}"
» Input for Bob: y € {0,1}"

f(z,y)

A 1-bit protocoll:

(1) Alice send x1 + ...+ x, odd =
mod 2 to Bob.
(2) Bob then knows the answer.
even x
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Communication complexity (2)

Example:

» Function

1 —
EQ:{0,1}"x{0,1}" » {0,1}  EQ.y)=1{ 7V

0 otherwise
» Complexity theory 101: CC(EQ) =n
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Observations:
» For a leave v of tree, R, := {(z,y) : protocoll ends in v} is
a monochromatic rectangle
» A protocol exchanging k bits = rank(f) < 2*

» CC(f) > logrank(f)
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Relation to rank

» CC(f) > logrank(f)
» CC(f) < rank(f).

Conjecture (Lovasz & Saks '88)
CC(f) < (logrank(f))°®.

Theorem (Lovett "14)
CC(f) < O(y/rank(f)).

» Here: A much shorter and direct proof by me.
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The technical main result
» It suffices to show

Lemma
Any 0/1 matrix A has a monochromatic submatrix R of size
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The technical main result

» It suffices to show

Lemma
Any 0/1 matrix A has a almost monochromatic submatrix R

of size )
|R| > 2—0(\/ra,nk(A)) . |A|

#zeroes 1
#ones — 8-rank(A)
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Lemma

Vectors can be chosen so that ||u]|2, [|v;]ls < /4 Vi, j
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John’s Theorem (2)
Proof:

v

Suppose the maximum volume ellipsoid in K is a unit
ball.

» Suppose some point z € K has ||z]ls > v/n

v

Stretch ball along z; shrink orthogonal
vol(E) > vol(ball)

v
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Rescaling vectors

v

Given r-dim. vectors with (u;,v;) € {0,1}
Choose K := conv{=tu; | i row index}
After linear transformation: 7%/4B C K Cri/‘B

Claim: ||v;[|, < rt/*

v

v

v

1
12 max|{ui,vj) | 2 (w,vj) = 7 llvill-
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Sheppard’s formula

Sheppard’s formula

For unit vectors u, v € R?, take a random direction g. Then

1
Pr[{g,u) > 0 and (g,v) > 0] = i + const - (u, v)

__ arccos(a) )
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» Suppose A is 0/1 matrix with
#ones(A) > #zeroes(A)

» Sample random T := ©(y/rlog(r)) (1)(1)%(1)%8%8
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Finding an almost monochr. submatrix

» Suppose A is 0/1 matrix with
#ones(A) > #zeroes(A)

» Sample random T := O(4/r log(r)) (1) (1) % (1) % 8 % 8
Gaussians ¢y, ..., gr 1 0111 A
0 1010
B = {i:{g,u;) >0Vt e[T]} 0 0101
. 0141010
10 1|() 1010
» We know B
IE[#zeroes in B} N ( ;11 )T 1
#onesin B 1 1 8

E[fract of entries in B] = <
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> B is monochromatic (except of a g--fraction of entries).
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Thanks for your attention



