A PTAS for the Highway Problem

Fabrizio Grandoni & Thomas Rothvoß

Institute of Mathematics EPFL, Lausanne

The Highway Problem

Def: Highway Problem

Given:

- ▶ a line graph $G = (e_1, ..., e_n)$ (highway)
- subpaths D_1, \ldots, D_m (drivers)
- $b_j \in \mathbb{Q}_{\geq 0} \ (\mathit{budget})$

<u>Find:</u> tolls $w: E \to \mathbb{Q}_{\geq 0}$, max. the profit $\sum_{j: w(D_j) < b_j} w(D_j)$

The Highway Problem

Def: Highway Problem

Given:

- ▶ a line graph $G = (e_1, \ldots, e_n)$ (highway)
- subpaths D_1, \ldots, D_m (drivers)
- $b_j \in \mathbb{Q}_{\geq 0} \ (budget)$

<u>Find:</u> tolls $w: E \to \mathbb{Q}_{\geq 0}$, max. the profit $\sum_{j: w(D_j) \leq b_j} w(D_j)$

$$D_1$$
 D_2
 D_3
 D_4
 D_5
 D_5
 D_5
 D_6
 D_6
 D_7
 D_8
 D_9
 D_9

The Highway Problem

Def: Highway Problem

Given:

- ightharpoonup a line graph $G = (e_1, \ldots, e_n)$ (highway)
- \triangleright subpaths D_1, \ldots, D_m (drivers)
- $b_i \in \mathbb{Q}_{>0} \ (budget)$

<u>Find:</u> tolls $w: E \to \mathbb{Q}_{>0}$, max. the profit $j: w(D_i) < b_i$

Known Results

- ▶ Is **NP**-hard? [Guruswami, Hartline, Karlin, Kempe, Kenyon, McSherry '05]
- ▶ Weakly **NP**-hard [Briest, Krysta '06]
- ▶ Strongly **NP**-hard [Elbassioni, Raman, Ray '09]

Known Results

- ▶ Is **NP**-hard? [Guruswami, Hartline, Karlin, Kempe, Kenyon, McSherry '05]
- ▶ Weakly **NP**-hard [Briest, Krysta '06]
- ▶ Strongly **NP**-hard [Elbassioni, Raman, Ray '09]
- $O(\log m + \log n)$ -apx [Guruswami et al. '05]
- $ightharpoonup O(\log n)$ -apx [Balcan, Blum '06]
- $ightharpoonup O(\log n/\log\log n)$ -apx [Gamzu, Segev '10]
- ▶ QPTAS [Elbassioni, Sitters, Zhang '07]

Known Results

- ▶ Is **NP**-hard? [Guruswami, Hartline, Karlin, Kempe, Kenyon, McSherry '05]
- ▶ Weakly **NP**-hard [Briest, Krysta '06]
- ▶ Strongly **NP**-hard [Elbassioni, Raman, Ray '09]
- ▶ $O(\log m + \log n)$ -apx [Guruswami et al. '05]
- $ightharpoonup O(\log n)$ -apx [Balcan, Blum '06]
- $ightharpoonup O(\log n/\log\log n)$ -apx [Gamzu, Segev '10]
- ▶ QPTAS [Elbassioni, Sitters, Zhang '07]
- ightharpoonup O(1)-apx for uniform-length drivers [Balcan, Blum '06]
- ▶ FPTAS for n = O(1) [Hartline, Koltun '05]
- ▶ FPTAS for $|D_i| = O(1)$ [Guruswami et al. '05]
- ▶ FPTAS for $b_j = O(1)$ [Guruswami et al. '05]
- ▶ FPTAS for laminar drivers [Briest, Krysta '06]

Our Results

Theorem

There is a (deterministic) PTAS for the highway problem.

 \blacktriangleright Even O(1)-apx was open

Preprocessing

- ▶ By rounding: $b_i \in \{1, ..., m/\varepsilon^2\}$
- ▶ By total unimodularity, optimal weights $w^*: E \to \mathbb{Z}_+$
- ▶ By edge duplication, $w^*: E \to \{0, 1\}$
- ▶ By dummy edges, $W^* := \sum_{e \in E} w^*(e) = \gamma^{\ell}$, $\ell \in \mathbb{N}$ and $\gamma = (1/\varepsilon)^{1/\varepsilon}$.

- ▶ Iterate until paths have weight O(1).
- We obtain a **dissection** of degree $\gamma = (1/\varepsilon)^{1/\varepsilon}$

▶ Driver D_j is **good** w.r.t. a weight function/dissection if

$$\#(P_i \subseteq D_j) \ge \frac{1}{2\varepsilon}$$

1

$$\#(P_i \subseteq D_j) \ge \frac{1}{2\varepsilon}$$

► For a good driver

$$\frac{w(\text{driver } D_j)}{w(\text{shortened driver } D_j)} = 1 + O(\varepsilon)$$

Theorem

We can find a $w: E \to \mathbb{Q}_+$ in poly-time that maximizes profit from good shortened drivers.

Table entries: For any subpath $P \subseteq G$, weights $W \in \gamma^{\mathbb{N}}$

$$\phi(P,W) := \max_{\substack{\text{dissections of } P\\ \text{installing weight } W \text{ on } P}} \left\{ \begin{array}{c} \text{profits from good}\\ \text{shortened drivers } D_j \subseteq P \end{array} \right\}$$

Table entries: For any subpath $P \subseteq G$, weights $W \in \gamma^{\mathbb{N}}$

$$\phi(P,W) := \max_{\substack{\text{dissections of } P\\ \text{installing weight } W \text{ on } P}} \left\{ \begin{array}{c} \text{profits from good}\\ \text{shortened drivers } D_j \subseteq P \end{array} \right\}$$

Table entries: For any subpath $P \subseteq G$, weights $W \in \gamma^{\mathbb{N}}$

$$\phi(P,W) := \max_{\substack{\text{dissections of } P\\ \text{installing weight } W \text{ on } P}} \left\{ \begin{array}{c} \text{profits from good}\\ \text{shortened drivers } D_j \subseteq P \end{array} \right\}$$

Table entries: For any subpath $P \subseteq G$, weights $W \in \gamma^{\mathbb{N}}$

$$\phi(P,W) := \max_{\substack{\text{dissections of } P\\ \text{installing weight } W \text{ on } P}} \left\{ \begin{array}{c} \text{profits from good}\\ \text{shortened drivers } D_j \subseteq P \end{array} \right\}$$

Table entries: For any subpath $P \subseteq G$, weights $W \in \gamma^{\mathbb{N}}$

$$\phi(P,W) := \max_{\substack{\text{dissections of } P\\ \text{installing weight } W \text{ on } P}} \left\{ \begin{array}{c} \text{profits from good}\\ \text{shortened drivers } D_j \subseteq P \end{array} \right\}$$

A pathological situation

▶ Maybe there is no dissection such that most drivers are good!

▶ Choose $x \in \{1, ..., W^*\}$ randomly

- ▶ Choose $x \in \{1, ..., W^*\}$ randomly
- ▶ Choose $y \in \{1, ..., 1/\varepsilon\}$ randomly

- ▶ Choose $x \in \{1, ..., W^*\}$ randomly
- ▶ Choose $y \in \{1, ..., 1/\varepsilon\}$ randomly

▶ New randomized optimum solution!

Lemma

For any driver D_j and the dissection induced by the randomized optimum solution: $\Pr[D_j \text{ is } good] \geq 1 - 3\varepsilon$.

 $\Pr[w^*(D_j) \text{ is within a} \leq 1/\varepsilon \text{ factor such a boundary}] \leq 2\varepsilon$

 $\Pr[w^*(D_j) \text{ is within a } \leq 1/\varepsilon \text{ factor such a boundary}] \leq 2\varepsilon$

▶ Condition on event " $w^*(D_j)$ far away from boundary sizes"

 $\Pr[w^*(D_j) \text{ is within a} \leq 1/\varepsilon \text{ factor such a boundary}] \leq 2\varepsilon$

▶ Condition on event " $w^*(D_j)$ far away from boundary sizes"

 $\Pr[w^*(D_j) \text{ is within a } \leq 1/\varepsilon \text{ factor such a boundary}] \leq 2\varepsilon$

▶ Condition on event " $w^*(D_j)$ far away from boundary sizes"

▶ D_i contains $\geq \frac{1}{\varepsilon} - 1 \geq \frac{1}{2\varepsilon}$ smaller subintervals

 $\Pr[w^*(D_j) \text{ is within a } \leq 1/\varepsilon \text{ factor such a boundary}] \leq 2\varepsilon$

▶ Condition on event " $w^*(D_j)$ far away from boundary sizes"

- ▶ D_j contains $\geq \frac{1}{\varepsilon} 1 \geq \frac{1}{2\varepsilon}$ smaller subintervals
- ▶ $\Pr[D_i \text{ crosses bigger boundary}] \leq \varepsilon$

Extensions (1)

Theorem

There is a PTAS for the generalization, where the input graph is a tree with O(1) leafs.

Extensions (2)

Def: Max Feasible Subsystem Problem For Interval Matrices

Given: Interval matrix $A = \begin{pmatrix} a_1 \\ a_m \\ a_m \end{pmatrix} \in \{0, 1\}^{m \times n}$

(consecutive ones in rows a_j), bounds $\ell_j, u_j \in \mathbb{Q}_+$.

<u>Find:</u> Vector $w \ge \mathbf{0}$ maximizing the number of satisfied constraints

$$\ell_j \le a_j w \le u_j$$

Example:

$$\begin{pmatrix} 2\\4\\3 \end{pmatrix} \le \begin{pmatrix} 0 & 1 & 1 & 0\\1 & 1 & 1 & 0\\0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} w_1\\w_2\\w_3\\w_4 \end{pmatrix} \le \begin{pmatrix} 8\\6\\9 \end{pmatrix}$$

▶ **APX**-hard [Elbassioni, Raman, Ray, Sitters '09]

Extensions (3)

Theorem

For any $\varepsilon > 0$, one can find in time $poly(n, m, \ell_{\text{max}})$ weights w > 0 with

$$\ell_j \le a_j w \le (1 + \varepsilon) \cdot u_j$$

for at least $(1-\varepsilon)OPT$ constraints.

▶ Previously known: Multicriteria QPTAS, multicriteria polylog-apx [Elbassioni, Raman, Ray, Sitters '09]

Open problems

- ▶ Is there an O(1)-apx if G is a tree? (TOLLBOOTH PROBLEM) (until now $O(\log n/\log\log n)$ -apx)
- ► PTAS for Unsplittable Flow Problem (on line graphs)?

Open problems

- ▶ Is there an O(1)-apx if G is a tree? (TOLLBOOTH PROBLEM) (until now $O(\log n/\log\log n)$ -apx)
- ▶ PTAS for Unsplittable Flow Problem (on line graphs)?

Thanks for your attention