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The Highway Problem

Def: HIGHWAY PROBLEM
» a line graph G = (ey, ..., e,) (highway)
» subpaths D, ..., D, (drivers)
> b € Q>0 (budget)
Find: tolls w : E — Q>¢, max. the profit Z w(Dj)
j:w(Dj)<b;
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The Highway Problem

Def: HIGHWAY PROBLEM
» a line graph G = (ey, ..., e,) (highway)
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Known Results
» Is NP-hard? [Guruswami, Hartline, Karlin, Kempe, Kenyon,
McSherry ’05]
» Weakly NP-hard [Briest, Krysta '06]
» Strongly NP-hard [Elbassioni, Raman, Ray '09]
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Our Results

Theorem
There is a (deterministic) PTAS for the highway problem.

» Even O(1)-apx was open



Preprocessing

» By rounding: b; € {1,...,m/e*}

» By total unimodularity, optimal weights w* : E — Z,

» By edge duplication, w* : E — {0,1}

» By dummy edges, W* =Y, w*(e) =+, £ € N and
v =(1/e)Ve.
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Dissection of the optimum solution

» Let w*: E — {0,1} optimum weight assignment

N

weight

2
~
» Iterate until paths have weight O(1).

» We obtain a dissection of degree v = (1/¢)'/¢
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Why is such a dissection useful?

driver D),

shortened driver D; .

P : 1

» For a good driver
w(driver D)
w(shortened driver Dj)

=1+0(¢)

Theorem

We can find a w: E — Q4 in poly-time that maximizes profit
from good shortened drivers.




The Dynamic program

Table entries: For any subpath P C G, weights W € 4"
profits from good

PW) .= max .
HEW) dissections of P shortened drivers D; C P
installing weight W on P

Computing ¢(P, W):
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The Dynamic program

Table entries: For any subpath P C G, weights W € 4"

{ profits from good }

PLW) = s shortened drivers D; C P

dissections of P
installing weight W on P

Computing ¢(P, W): good: % . #P; C D,
b; exceeded: 0
bad: 0

o, L) g(P, ) $(Py, )
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A pathological situation

» Maybe there is no dissection such that most drivers are
good!

— —
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Randomization

» Choose z € {1,...,W*} randomly
» Choose y € {1,...,1/¢} randomly

weight z weight W*
A A
r Y D
O O OO O e e e e e e e e e e e e e e Qe e e e OO
N G J
Y

weight (1/¢)¥ - W*

> New randomized optimum solution!

Lemma

For any driver D; and the dissection induced by the randomized
optimum solution: Pr[D; is good] > 1 — 3e.




» Consider boundary sizes in the dissection: (1/¢)¥*%/*

1 tick = 1/¢ factor
! (1/e)rwe
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» Consider boundary sizes in the dissection: (1/¢)¥*%/*

w*(D;) 1 tick = 1/e factor
~

I1‘/5 ticks = (1/¢)!/¢ :’YI y ticks
Pr{w*(D;) is within a < 1/¢ factor such a boundary] < 2¢

» Condition on event "w*(D;) far away from boundary sizes”

: driver D; ) <e-w'(Dy)

e
1
> ¢ - w'(Dj)
» D; contains > % —-1> 2% smaller subintervals
» Pr[D; crosses bigger boundary] < e O



Extensions (1)

Theorem

There is a PTAS for the generalization, where the input graph
is a tree with O(1) leafs.




Extensions (2)

Def: MAX FEASIBLE SUBSYSTEM PROBLEM FOR
INTERVAL M ATRICES

a
Given: Interval matrix A = (d-l-) € {0, 1}mxn
(consecutive ones in rows a;), bounds £;,u; € Q.
Find: Vector w > 0 maximizing the number of satisfied
constraints

L < ajw < uj

Example:

W = N
O = O
O = =
O = =
—_ o O
INA
O O

({6

» APX-hard [Elbassioni, Raman, Ray, Sitters '09]



Extensions (3)

Theorem

For any £ > 0, one can find in time poly(n, m, fmax) weights
w > 0 with
fj < a;w < (1—|—€) " Uj

for at least (1—¢)OPT constraints.

» Previously known: Multicriteria QPTAS, multicriteria
polylog-apx [Elbassioni, Raman, Ray, Sitters '09]



Open problems

» Is there an O(1)-apx if G is a tree? (TOLLBOOTH
PROBLEM) (until now O(logn/loglogn)-apx)

» PTAS for UNSPLITTABLE FLOW PROBLEM (on line
graphs)?
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Thanks for your attention



