
Directed Steiner Tree and the

Lasserre Hierarchy

Thomas Rothvoß

Department of Mathematics, M.I.T.

Directed Steiner Tree

r

4

8 9
7

6

7
4 8

Directed Steiner Tree

Input:

◮ directed weighted graph G = (V,E, c)

r

4

8 9
7

6

7
4 8

3 2

3 5 2

2 0
1

1

Directed Steiner Tree

Input:

◮ directed weighted graph G = (V,E, c)

◮ root r ∈ V

r

4

8 9
7

6

7
4 8

3 2

3 5 2

2 0
1

1

root

Directed Steiner Tree

Input:

◮ directed weighted graph G = (V,E, c)

◮ root r ∈ V , terminals X

r

4

8 9
7

6

7
4 8

3 2

3 5 2

2 0
1

1

terminals

Directed Steiner Tree

Input:

◮ directed weighted graph G = (V,E, c)

◮ root r ∈ V , terminals X

Find: Tree T connecting r and X, minimizing c(T)

r

4

8 9
7

6

7
4 8

3 2

3 5 2

2 0
1

1

Directed Steiner Tree

Input:

◮ directed weighted graph G = (V,E, c)

◮ root r ∈ V , terminals X

Find: Tree T connecting r and X, minimizing c(T)

r

4

8 9
7

6

7
4 8

3 2

3 5 2

2 0
1

1

◮ W.l.o.g. G is acyclic

Directed Steiner Tree

Input:

◮ directed weighted graph G = (V,E, c)

◮ root r ∈ V , terminals X

Find: Tree T connecting r and X, minimizing c(T)

layer ℓ

...

layer 1

layer 0 r

4

8 9
7

6

7
4 8

3 2

3 5 2

2 0
1

1

◮ W.l.o.g. G is acyclic

◮ Modulo O(log |X|) factor, may assume ℓ = log |X| levels
(∃ℓ-level tree of cost ℓ · |X|1/ℓ ·OPT [Zelikovsky ’97])

What’s known?

Generalizes:

◮ Set Cover

◮ (Non-metric / Multi-level) Facility Location

◮ Group Steiner Tree

What’s known?

Generalizes:

◮ Set Cover

◮ (Non-metric / Multi-level) Facility Location

◮ Group Steiner Tree

Known results:

◮ Ω(log2−ε n)-hard [Halperin, Krauthgamer ’03]

What’s known?

Generalizes:

◮ Set Cover

◮ (Non-metric / Multi-level) Facility Location

◮ Group Steiner Tree

Known results:

◮ Ω(log2−ε n)-hard [Halperin, Krauthgamer ’03]

◮ |X|ε-apx in polytime (for any ε > 0)
→ sophisticated greedy algo [Zelikovsky ’97]

What’s known?

Generalizes:

◮ Set Cover

◮ (Non-metric / Multi-level) Facility Location

◮ Group Steiner Tree

Known results:

◮ Ω(log2−ε n)-hard [Halperin, Krauthgamer ’03]

◮ |X|ε-apx in polytime (for any ε > 0)
→ sophisticated greedy algo [Zelikovsky ’97]

◮ O(log3 |X|)-apx in nO(log |X|) time
→ (more) sophisticated greedy algo
[Charikar, Chekuri, Cheung, Goel, Guha and Li ’99]

What’s known?

Generalizes:

◮ Set Cover

◮ (Non-metric / Multi-level) Facility Location

◮ Group Steiner Tree

Known results:

◮ Ω(log2−ε n)-hard [Halperin, Krauthgamer ’03]

◮ |X|ε-apx in polytime (for any ε > 0)
→ sophisticated greedy algo [Zelikovsky ’97]

◮ O(log3 |X|)-apx in nO(log |X|) time
→ (more) sophisticated greedy algo
[Charikar, Chekuri, Cheung, Goel, Guha and Li ’99]

What about LPs?

A flow based LP

Variables:

◮ ye = “use edge e?”

◮ fs,e = “r-s flow uses e?”

r

Constraints:

min
∑

e∈E
ceye

∑

e∈δ+(v)

fs,e −
∑

e∈δ−(v)

fs,e =







1 v = r

−1 v = s

0 otherwise

∀s ∈ X ∀v ∈ V

fs,e ≤ ye ∀s ∈ X ∀e ∈ E

y(δ−(v)) ≤ 1 ∀v ∈ V

0 ≤ ye ≤ 1 ∀e ∈ E

0 ≤ fs,e ≤ 1 ∀s ∈ X ∀e ∈ E

A flow based LP

Variables:

◮ ye = “use edge e?”

◮ fs,e = “r-s flow uses e?”

r

1/2
1/2

1/2

1/2

Constraints:

min
∑

e∈E
ceye

∑

e∈δ+(v)

fs,e −
∑

e∈δ−(v)

fs,e =







1 v = r

−1 v = s

0 otherwise

∀s ∈ X ∀v ∈ V

fs,e ≤ ye ∀s ∈ X ∀e ∈ E

y(δ−(v)) ≤ 1 ∀v ∈ V

0 ≤ ye ≤ 1 ∀e ∈ E

0 ≤ fs,e ≤ 1 ∀s ∈ X ∀e ∈ E

A flow based LP

Variables:

◮ ye = “use edge e?”

◮ fs,e = “r-s flow uses e?”

r

1/2
1/2

1/2

1/2
1/2 1/2

1/2

1/2Constraints:

min
∑

e∈E
ceye

∑

e∈δ+(v)

fs,e −
∑

e∈δ−(v)

fs,e =







1 v = r

−1 v = s

0 otherwise

∀s ∈ X ∀v ∈ V

fs,e ≤ ye ∀s ∈ X ∀e ∈ E

y(δ−(v)) ≤ 1 ∀v ∈ V

0 ≤ ye ≤ 1 ∀e ∈ E

0 ≤ fs,e ≤ 1 ∀s ∈ X ∀e ∈ E

A flow based LP

Variables:

◮ ye = “use edge e?”

◮ fs,e = “r-s flow uses e?”

r

1/2
1/2

1/2

1/2
1/2 1/2

1/2

1/2

1/2
1/2

1/2

1/2Constraints:

min
∑

e∈E
ceye

∑

e∈δ+(v)

fs,e −
∑

e∈δ−(v)

fs,e =







1 v = r

−1 v = s

0 otherwise

∀s ∈ X ∀v ∈ V

fs,e ≤ ye ∀s ∈ X ∀e ∈ E

y(δ−(v)) ≤ 1 ∀v ∈ V

0 ≤ ye ≤ 1 ∀e ∈ E

0 ≤ fs,e ≤ 1 ∀s ∈ X ∀e ∈ E

A flow based LP

Variables:

◮ ye = “use edge e?”

◮ fs,e = “r-s flow uses e?”

r

1/2
1/2

1/2

1/2
1/2 1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2 1/2 1/2

1/2
1/2

1/2 1/2

1/2
1/2Constraints:

min
∑

e∈E
ceye

∑

e∈δ+(v)

fs,e −
∑

e∈δ−(v)

fs,e =







1 v = r

−1 v = s

0 otherwise

∀s ∈ X ∀v ∈ V

fs,e ≤ ye ∀s ∈ X ∀e ∈ E

y(δ−(v)) ≤ 1 ∀v ∈ V

0 ≤ ye ≤ 1 ∀e ∈ E

0 ≤ fs,e ≤ 1 ∀s ∈ X ∀e ∈ E

Integrality gap instance [Zosin - Khuller ’02]

r

i

if i ∈ S′

if S ⊆ S′

|S′| =
√
k + 1

cS′

|S′| =
√
k + 1

bS′

|S| =
√
k

aS

k terminals

cost 0

cost
√
k

cost 0

cost k

◮ Integrality gap is Ω(
√
k) already for 5 layers.

(though n = 2Θ̃(
√
k); no ω(log2 n) gap instance known)

Integrality gap instance [Zosin - Khuller ’02]

r

i

if i ∈ S′

if S ⊆ S′

|S′| =
√
k + 1

cS′

|S′| =
√
k + 1

bS′

|S| =
√
k

aS

k terminals

cost 0

cost
√
k

cost 0

cost k

◮ Integrality gap is Ω(
√
k) already for 5 layers.

(though n = 2Θ̃(
√
k); no ω(log2 n) gap instance known)

Integrality gap instance [Zosin - Khuller ’02]

r

i

if i ∈ S′

if S ⊆ S′

|S′| =
√
k + 1

cS′

|S′| =
√
k + 1

bS′

|S| =
√
k

aS

k terminals

cost 0

cost
√
k

cost 0

cost k

◮ Integrality gap is Ω(
√
k) already for 5 layers.

(though n = 2Θ̃(
√
k); no ω(log2 n) gap instance known)

Integrality gap instance [Zosin - Khuller ’02]

r

i

if i ∈ S′

if S ⊆ S′

|S′| =
√
k + 1

cS′

|S′| =
√
k + 1

bS′

|S| =
√
k

aS

k terminals

cost 0

cost
√
k

cost 0

cost k

What about the Lasserre strengthening?

◮ Integrality gap is Ω(
√
k) already for 5 layers.

(though n = 2Θ̃(
√
k); no ω(log2 n) gap instance known)

Round-t Lasserre relaxation

◮ Given: K = {x ∈ R
n | Ax ≥ b}.

Round-t Lasserre relaxation

◮ Given: K = {x ∈ R
n | Ax ≥ b}.

◮ Introduce variables yI ≡ ∧

i∈I(xi = 1) for I ⊆ {1, . . . , n}
with |I| ≤ 2t+ 2

Round-t Lasserre relaxation

◮ Given: K = {x ∈ R
n | Ax ≥ b}.

◮ Introduce variables yI ≡ ∧

i∈I(xi = 1) for I ⊆ {1, . . . , n}
with |I| ≤ 2t+ 2

Round-t Lasserre relaxation

(yI∪J)|I|,|J |≤t+1 � 0
(∑

i∈[n]
AℓiyI∪J∪{i} − bℓyI∪J

)

|I|,|J |≤t
� 0 ∀ℓ ∈ [m]

y∅ = 1

Properties of Lasserre hierarchy

Theorem

Let K = {x ∈ R
n | Ax ≥ b}; y ∈ Last(K); |I|, |J | ≤ t

y

Last

0 1

y{i}

R
([n]
2t+2)

Properties of Lasserre hierarchy

Theorem

Let K = {x ∈ R
n | Ax ≥ b}; y ∈ Last(K); |I|, |J | ≤ t

y

Last
b

b

z{i} = 0 z

z′ z′{i} = 1

Last−1

0 1

y{i}

R
([n]
2t+2)

Properties of Lasserre hierarchy

Theorem

Let K = {x ∈ R
n | Ax ≥ b}; y ∈ Last(K); |I|, |J | ≤ t

(a) Local consistency:
y ∈ conv{z ∈ Last−|I|(K) | z{i} ∈ {0, 1} ∀i ∈ I}

y

Last
b

b

z{i} = 0 z

z′ z′{i} = 1

Last−1

0 1

y{i}

R
([n]
2t+2)

Properties of Lasserre hierarchy

Theorem

Let K = {x ∈ R
n | Ax ≥ b}; y ∈ Last(K); |I|, |J | ≤ t

(a) Local consistency:
y ∈ conv{z ∈ Last−|I|(K) | z{i} ∈ {0, 1} ∀i ∈ I}

(b) Decomposition: [Karlin-Mathieu-Nguyen ’11]
Let S ⊆ [n]; k := max{|I| : I ⊆ S;x ∈ K;xi = 1 ∀i ∈ I} ≤ t.
Then y ∈ conv{z ∈ Last−k(K) | z{i} ∈ {0, 1} ∀i ∈ S}.

y

Last
b

b

z{i} = 0 z

z′ z′{i} = 1

Last−1

0 1

y{i}

R
([n]
2t+2)

Properties of Lasserre hierarchy

Theorem

Let K = {x ∈ R
n | Ax ≥ b}; y ∈ Last(K); |I|, |J | ≤ t

(a) Local consistency:
y ∈ conv{z ∈ Last−|I|(K) | z{i} ∈ {0, 1} ∀i ∈ I}

(b) Decomposition: [Karlin-Mathieu-Nguyen ’11]
Let S ⊆ [n]; k := max{|I| : I ⊆ S;x ∈ K;xi = 1 ∀i ∈ I} ≤ t.
Then y ∈ conv{z ∈ Last−k(K) | z{i} ∈ {0, 1} ∀i ∈ S}.

◮ Example: For Knapsack take S := {large items}

Properties of Lasserre hierarchy

Theorem

Let K = {x ∈ R
n | Ax ≥ b}; y ∈ Last(K); |I|, |J | ≤ t

(a) Local consistency:
y ∈ conv{z ∈ Last−|I|(K) | z{i} ∈ {0, 1} ∀i ∈ I}

(b) Decomposition: [Karlin-Mathieu-Nguyen ’11]
Let S ⊆ [n]; k := max{|I| : I ⊆ S;x ∈ K;xi = 1 ∀i ∈ I} ≤ t.
Then y ∈ conv{z ∈ Last−k(K) | z{i} ∈ {0, 1} ∀i ∈ S}.

◮ Example: For Knapsack take S := {large items}
◮ Decomposition not true for Sherali-Adams or

Lovász-Schrijver hierarchies

Properties of Lasserre hierarchy

Theorem

Let K = {x ∈ R
n | Ax ≥ b}; y ∈ Last(K); |I|, |J | ≤ t

(a) Local consistency:
y ∈ conv{z ∈ Last−|I|(K) | z{i} ∈ {0, 1} ∀i ∈ I}

(b) Decomposition: [Karlin-Mathieu-Nguyen ’11]
Let S ⊆ [n]; k := max{|I| : I ⊆ S;x ∈ K;xi = 1 ∀i ∈ I} ≤ t.
Then y ∈ conv{z ∈ Last−k(K) | z{i} ∈ {0, 1} ∀i ∈ S}.

(c) Convergence: conv(K ∩ {0, 1}n) = Las
proj
n (K)

(d) Monotonicity: I ⊇ J =⇒ 0 ≤ yI ≤ yJ ≤ 1

(e) yI = 1 ⇐⇒ ∧

i∈I(y{i} = 1).

(f) (∀i ∈ I : y{i} ∈ {0, 1}) =⇒ yI =
∏

i∈I y{i}.
(g) yI = 1 =⇒ yI∪J = yJ .

Our contribution

Theorem

The integrality gap of an O(ℓ)-round Lasserre solution for an
ℓ-level Directed Steiner Tree instance is O(ℓ log |X|).

◮ Recall: gap is Ω(
√

|X|) (for ℓ = 4) without strengthening.

◮ This gives an O(log3 |X|)-apx in nO(log |X|) time (matching
the greedy algo of [Charikar et al. ’99])

Our contribution

Theorem

The integrality gap of an O(ℓ)-round Lasserre solution for an
ℓ-level Directed Steiner Tree instance is O(ℓ log |X|).

◮ Recall: gap is Ω(
√

|X|) (for ℓ = 4) without strengthening.

◮ This gives an O(log3 |X|)-apx in nO(log |X|) time (matching
the greedy algo of [Charikar et al. ’99])

◮ Garg-Konjevod-Ravi rounding:

Our contribution

Theorem

The integrality gap of an O(ℓ)-round Lasserre solution for an
ℓ-level Directed Steiner Tree instance is O(ℓ log |X|).

◮ Recall: gap is Ω(
√

|X|) (for ℓ = 4) without strengthening.

◮ This gives an O(log3 |X|)-apx in nO(log |X|) time (matching
the greedy algo of [Charikar et al. ’99])

◮ Garg-Konjevod-Ravi rounding:

Input: Group Steiner Tree instance

Our contribution

Theorem

The integrality gap of an O(ℓ)-round Lasserre solution for an
ℓ-level Directed Steiner Tree instance is O(ℓ log |X|).

◮ Recall: gap is Ω(
√

|X|) (for ℓ = 4) without strengthening.

◮ This gives an O(log3 |X|)-apx in nO(log |X|) time (matching
the greedy algo of [Charikar et al. ’99])

◮ Garg-Konjevod-Ravi rounding:

Input: Group Steiner Tree instance

tree embedding

Our contribution

Theorem

The integrality gap of an O(ℓ)-round Lasserre solution for an
ℓ-level Directed Steiner Tree instance is O(ℓ log |X|).

◮ Recall: gap is Ω(
√

|X|) (for ℓ = 4) without strengthening.

◮ This gives an O(log3 |X|)-apx in nO(log |X|) time (matching
the greedy algo of [Charikar et al. ’99])

◮ Garg-Konjevod-Ravi rounding:

Input: Group Steiner Tree instance

tree embedding

LP-rounding on tree graph

Our contribution

Theorem

The integrality gap of an O(ℓ)-round Lasserre solution for an
ℓ-level Directed Steiner Tree instance is O(ℓ log |X|).

◮ Recall: gap is Ω(
√

|X|) (for ℓ = 4) without strengthening.

◮ This gives an O(log3 |X|)-apx in nO(log |X|) time (matching
the greedy algo of [Charikar et al. ’99])

◮ Garg-Konjevod-Ravi rounding:

Input: Group Steiner Tree instance

tree embedding

LP-rounding on tree graph

Dire
ct

ed

Our contribution

Theorem

The integrality gap of an O(ℓ)-round Lasserre solution for an
ℓ-level Directed Steiner Tree instance is O(ℓ log |X|).

◮ Recall: gap is Ω(
√

|X|) (for ℓ = 4) without strengthening.

◮ This gives an O(log3 |X|)-apx in nO(log |X|) time (matching
the greedy algo of [Charikar et al. ’99])

◮ Garg-Konjevod-Ravi rounding:

Input: Group Steiner Tree instance

tree embedding

LP-rounding on tree graph

Dire
ct

ed

O(ℓ
) roun

ds of

Las
serr

e

Our contribution

Theorem

The integrality gap of an O(ℓ)-round Lasserre solution for an
ℓ-level Directed Steiner Tree instance is O(ℓ log |X|).

◮ Recall: gap is Ω(
√

|X|) (for ℓ = 4) without strengthening.

◮ This gives an O(log3 |X|)-apx in nO(log |X|) time (matching
the greedy algo of [Charikar et al. ’99])

◮ Garg-Konjevod-Ravi rounding:

Input: Group Steiner Tree instance

tree embedding

LP-rounding on tree graph

Dire
ct

ed

O(ℓ
) roun

ds of

Las
serr

e

with
yI v

aria
bles

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add {e}] = y{e}

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add {e}] = y{e}

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add {e}] = y{e}

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add {e}] = y{e}

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add {e}] = y{e}

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

e Pr[add P ∪ {e}] = yP∪{e}

yP

P

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

e Pr[add P ∪ {e}] = yP∪{e}

yP

P

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

e Pr[add P ∪ {e}] = yP∪{e}

yP

P

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

Pr[add P ∪ {e}] = yP∪{e}

yP

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

T =
{
sampled paths

}

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

T =
{
sampled paths

}

Road map:

◮ Show Pr[e ∈ T] = y{e}

The rounding algorithm

◮ Let Y ∈ LasO(ℓ)(LP) (yP value for {ye | e ∈ P}-variables)

(1) T := {∅}
(2) FOR all P ∈ T and incident e ∈ E DO

(3) Pr[add P ∪ {e} to T] =
yP∪{e}

yP

r

T =
{
sampled paths

}

Road map:

◮ Show Pr[e ∈ T] = y{e}
◮ Pr[s connected] ≥ Ω(1

#levels) for each terminal s

Probability to sample a particular path

Lemma

For any root-path P : Pr[P ∈ T] = yP .

Pr[P ∈ T] = y{e1} ·
y{e1,e2}
y{e1}

·
y{e1,e2,e3}
y{e1,e2}

· . . . · yP
yP\{ej}

= yP .

r
e1

e2
. . .

ej

Upper bounding the expected cost

Lemma
∑

P ending in e

yP ≤ y{e}

r

u
e

Upper bounding the expected cost

Lemma
∑

P ending in e

yP ≤ y{e}

◮ It suffices to consider case y{e} ∈ {0, 1} (costs 1 level).

r

u
e

Y

Last
b

b

y′{e} = 0 Y ′
Y ′′ y′′{e} = 1

Last−1

0 1

y{e}

R
([n]
2t+2)

Upper bounding the expected cost

Lemma
∑

P ending in e

yP ≤ y{e}

◮ It suffices to consider case y{e} ∈ {0, 1} (costs 1 level).

r

u
ey{e} = 1

Upper bounding the expected cost

Lemma
∑

P ending in e

yP ≤ y{e}

◮ It suffices to consider case y{e} ∈ {0, 1} (costs 1 level).

r

u
ey{e} = 1

∑

e′∈δ−(u)

y{e′} ≤ 1

Upper bounding the expected cost

Lemma
∑

P ending in e

yP ≤ y{e}

◮ It suffices to consider case y{e} ∈ {0, 1} (costs 1 level).
◮ By induction

∑

P ending in e′ yP ≤ y{e′}

r

u
ey{e} = 1

e′
∑

e′∈δ−(u)

y{e′} ≤ 1

Upper bounding the expected cost

Lemma
∑

P ending in e

yP ≤ y{e}

◮ It suffices to consider case y{e} ∈ {0, 1} (costs 1 level).
◮ By induction

∑

P ending in e′ yP ≤ y{e′}
◮ Since y{e} = 1 =⇒ yP∪{e} = yP ,

∑

P ending in e

yP =
∑

e′∈δ−(v)

∑

P ending in e′

yP ≤ 1

r

u
ey{e} = 1

e′
∑

e′∈δ−(u)

y{e′} ≤ 1

Upper bounding the expected cost

Lemma
∑

P ending in e

yP ≤ y{e}

◮ It suffices to consider case y{e} ∈ {0, 1} (costs 1 level).
◮ By induction

∑

P ending in e′ yP ≤ y{e′}
◮ Since y{e} = 1 =⇒ yP∪{e} = yP ,

∑

P ending in e

yP =
∑

e′∈δ−(v)

∑

P ending in e′

yP ≤ 1

r

u
ey{e} = 1

e′
∑

e′∈δ−(u)

y{e′} ≤ 1
⇒E[c(T)] ≤ OPT

Each terminal connected once in expectation

Lemma

For terminal s:
∑

P ending in s

yP = 1.

r

s

Each terminal connected once in expectation

Lemma

For terminal s:
∑

P ending in s

yP = 1.

◮ No feasible frac. flow with |{e : fs,e = 1}| > ℓ

r

s

0.3 0.7

0.3 0.4
0.3

0.3
0.3

Each terminal connected once in expectation

Lemma

For terminal s:
∑

P ending in s

yP = 1.

◮ No feasible frac. flow with |{e : fs,e = 1}| > ℓ
◮ Decomposition: Write sol. as convex comb. of sol. that

are integral on fs,∗ (costs ℓ levels)

r

s

f = 1

f = 1

f = 1

Each terminal connected once in expectation

Lemma

For terminal s:
∑

P ending in s

yP = 1.

◮ No feasible frac. flow with |{e : fs,e = 1}| > ℓ
◮ Decomposition: Write sol. as convex comb. of sol. that

are integral on fs,∗ (costs ℓ levels)
◮ Suffices to show claim if fs,e ∈ {0, 1} ∀e ∈ E

r

s

f = 1

f = 1

f = 1

Each terminal connected once in expectation

Lemma

For terminal s:
∑

P ending in s

yP = 1.

◮ No feasible frac. flow with |{e : fs,e = 1}| > ℓ
◮ Decomposition: Write sol. as convex comb. of sol. that

are integral on fs,∗ (costs ℓ levels)
◮ Suffices to show claim if fs,e ∈ {0, 1} ∀e ∈ E

r

s

y = f = 1

y = f = 1

y = f = 1

Each terminal connected once in expectation

Lemma

For terminal s:
∑

P ending in s

yP = 1.

◮ No feasible frac. flow with |{e : fs,e = 1}| > ℓ
◮ Decomposition: Write sol. as convex comb. of sol. that

are integral on fs,∗ (costs ℓ levels)
◮ Suffices to show claim if fs,e ∈ {0, 1} ∀e ∈ E
◮ Use LP-constraint: “Incoming capacity ≤ 1”

r

s

×
×

y = f = 1

y = f = 1

y = f = 1

Each terminal connected once in expectation

Lemma

For terminal s:
∑

P ending in s

yP = 1.

◮ No feasible frac. flow with |{e : fs,e = 1}| > ℓ
◮ Decomposition: Write sol. as convex comb. of sol. that

are integral on fs,∗ (costs ℓ levels)
◮ Suffices to show claim if fs,e ∈ {0, 1} ∀e ∈ E
◮ Use LP-constraint: “Incoming capacity ≤ 1”

r

s

×
×

y = f = 1

y = f = 1

y = f = 1

For fixed s, Z := #paths connecting s

⇒E[Z] = 1

Upper bounding the conditional expectation

Lemma

E[Z | Z ≥ 1] ≤ ℓ+ 1.

r

s

Upper bounding the conditional expectation

Lemma

E[Z | Z ≥ 1] ≤ ℓ+ 1.

◮ E[Z | Z ≥ 1] ≤ E[Z | P ∈ T] for some P

r

s

P

Upper bounding the conditional expectation

Lemma

E[Z | Z ≥ 1] ≤ ℓ+ 1.

◮ E[Z | Z ≥ 1] ≤ E[Z | P ∈ T] for some P

r

s

P

Q

Upper bounding the conditional expectation

Lemma

E[Z | Z ≥ 1] ≤ ℓ+ 1.

◮ E[Z | Z ≥ 1] ≤ E[Z | P ∈ T] for some P
◮ Suffices to prove E[#S : S ⊇ Q, s ∈ S | Q ∈ T] ≤ 1.

r

s

P

Q

S

Upper bounding the conditional expectation

Lemma

E[Z | Z ≥ 1] ≤ ℓ+ 1.

◮ E[Z | Z ≥ 1] ≤ E[Z | P ∈ T] for some P
◮ Suffices to prove E[#S : S ⊇ Q, s ∈ S | Q ∈ T] ≤ 1.

∑

S:S⊇Q,s∈S
Pr[S ∈ T | Q ∈ T]

cond. prob.

≤
∑

S:S⊇Q,s∈S

yS
yQ

as in previous
lemma≤ 1

r

s

P

Q

S

Done. . .

◮ Recall: Z = #paths connecting a fixed terminal s

Lemma

Pr[Z ≥ 1] ≥ 1
ℓ+1 .

Done. . .

◮ Recall: Z = #paths connecting a fixed terminal s

Lemma

Pr[Z ≥ 1] ≥ 1
ℓ+1 .

1 = E[Z]

Done. . .

◮ Recall: Z = #paths connecting a fixed terminal s

Lemma

Pr[Z ≥ 1] ≥ 1
ℓ+1 .

1 = E[Z] = Pr[Z = 0]·E[Z | Z = 0]
︸ ︷︷ ︸

=0

+Pr[Z ≥ 1]·E[Z | Z ≥ 1]
︸ ︷︷ ︸

≤ℓ+1

Open problems

Open problem

Is there a convex relaxation for Directed Steiner Tree

that

◮ has polylog(|X|) integrality gap

◮ can be solved in polytime?

Open problems

Open problem

Is there a convex relaxation for Directed Steiner Tree

that

◮ has polylog(|X|) integrality gap

◮ can be solved in polytime?

Thanks for your attention

