Steiner Tree Approximation via
Iterative Randomized Rounding

Jarostaw Byrka, Fabrizio Grandoni,

Thomas Rothvof3, Laura Sanita

EPFL, Lausanne,
Switzerland

Lugano, 20.07.10

@6 L

pT|m|znT1on ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Steiner Tree
Given:
» undirected graph G = (V, E)
> cost c: B — Q4
> terminals R CV

Find: Min-cost Steiner tree, spanning R.

OPT := min{c(S) | S spans R}

0\ /terminals

W.l.o.g.: c is metric.

Steiner Tree
Given:
» undirected graph G = (V, E)
> cost c: B — Q4
> terminals R CV

Find: Min-cost Steiner tree, spanning R.

OPT := min{c(S) | S spans R}

Steiner node

)) Steiner tree
W.l.o.g.: c is metric.

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):
» Can be computed in poly-time.

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):
» Can be computed in poly-time.

» Costs <2-0OPT.

Known results for Steiner tree:

Approximations:
» 2-apx (minimum spanning tree heuristic)
» 1.83-apx [Zelikovsky 93]
1.667-apx [Promel & Steger '97]
1.644-apx [Karpinski & Zelikovsky '97]
1.598-apx [Hougardy & Promel ’99]
1.55-apx [Robins & Zelikovsky '00]

v

vV vy

Known results for Steiner tree:

Approximations:
» 2-apx (minimum spanning tree heuristic)
» 1.83-apx [Zelikovsky 93]
1.667-apx [Promel & Steger '97]
1.644-apx [Karpinski & Zelikovsky '97]
1.598-apx [Hougardy & Promel ’99]
» 1.55-apx [Robins & Zelikovsky '00]
Hardness:
» NP-hard even if edge costs € {1,2} [Bern & Plassmann '89]
> no < 32-apx unless NP = P [Chlebik & Chlebikova '02]

v

v

v

Our results:

Theorem
There is a polynomial time 1.39-approximation.

» LP-based! (Directed-Component Cut Relazation)

> Algorithmic framework: Iterative Randomized Rounding

Our results:

Theorem
There is a polynomial time 1.39-approximation.

» LP-based! (Directed-Component Cut Relazation)
> Algorithmic framework: Iterative Randomized Rounding

» Here: Simpler (1.5 + €)-apx

Our results:

Theorem J

There is a polynomial time 1.39-approximation.

» LP-based! (Directed-Component Cut Relazation)
> Algorithmic framework: Iterative Randomized Rounding

» Here: Simpler (1.5 + €)-apx

Theorem

The Directed-Component Cut Relaxation has an integrality gap
of at most 1.55.

» First < 2 bound for any LP-relaxation.

Bi-directed cut relaxation

Bi-directed cut relaxation

» Pick aroot r € R

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z c(e)ze (BCR) root r

eck
Y z>1 VUCV\{r}:UnR#0 ’m

10\ _@®. ®

ccor () J .
Zze > 0 Vee F. '\)

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z c(e)ze (BCR)
Z ze>1 NYUCV\{r}:UNR#D

Zze > 0 Vee F.

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

mian(e)ze (BCR) root r
eck /? “e = 3
Z ze>1 NYUCV\{r}:UNR#D e
Zze > 0 Vee F.

Theorem (Edmonds ’67)
R =V = BCR integral ’

» Integrality gap < 4/3 for quasi-bipartite graphs
[Chakrabarty, Devanur, Vazirani 08|
» Integrality gap € [1.16,2]

How to exploit BCR?

» Is there always an edge e with z, > 1/27

N[
[N

1
2

How to exploit BCR?

» Is there always an edge e with z, > 1/2?7 No!

N[
[N

1
2

How to exploit BCR?

» Is there always an edge e with z, > 1/2?7 No!

» Primal dual algorithm?

N[
[N

1
2

How to exploit BCR?

» Is there always an edge e with z, > 1/2?7 No!

» Primal dual algorithm?
[CDV ’08] ”dual solution lacks structure”

N[
[N

1
2

How to exploit BCR?

» Is there always an edge e with z, > 1/2?7 No!

» Primal dual algorithm?
[CDV ’08] ”dual solution lacks structure”

» Randomized rounding of a single edge?

N[
[N

1
2

How to exploit BCR?

» Is there always an edge e with z, > 1/2?7 No!

» Primal dual algorithm?
[CDV ’08] ”dual solution lacks structure”

» Randomized rounding of a single edge?
[Rajagopalan, Vazirani '99] Doesn’t work!

N[
[N

1
2

How to exploit BCR?

» Is there always an edge e with z, > 1/2?7 No!

» Primal dual algorithm?
[CDV ’08] ”dual solution lacks structure”

» Randomized rounding of a single edge?
[Rajagopalan, Vazirani '99] Doesn’t work!

» Can a solution be decomposed into components?

How to exploit BCR?

» Is there always an edge e with z, > 1/2?7 No!

» Primal dual algorithm?
[CDV ’08] ”dual solution lacks structure”

» Randomized rounding of a single edge?
[Rajagopalan, Vazirani '99] Doesn’t work!

» Can a solution be decomposed into components? No!

Components

directed component C

sink(C)

» C = set of directed components

Directed component cut relaxation

min Z c(C) - z¢ (DCR)
ceC
> zc > 1 YPCUCR\{r}
CeC:RC)NU £,
sink(C) ¢ U

zc > 0 VCeC

root r

Directed component cut relaxation

min Z c(C) - z¢ (DCR)
ceC
> zc > 1 YPCUCR\{r}
CeC:RC)NU £,
sink(C) ¢ U

zc > 0 VCeC

root r

;{ Ll

b9 T
,¢’ NN

Ut]
~

Sam ="

Directed component cut relaxation

min Z c(C) - z¢ (DCR)
ceC
> zc > 1 YPCUCR\{r}
CeC:RC)NU £,
sink(C) ¢ U

zc > 0 VCeC

Properties:
» Number of variables: exponential
» Number of constraints: exponential

» Approximable within 1 + ¢ (we ignore the ¢ here).

Solvability of the LP

Lemma

For any € > 0, a solution = of cost < (1 +¢)OPT} can be
computed in polynomaial time.

NE S
"

Solvability of the LP

Lemma

For any € > 0, a solution = of cost < (1 +¢)OPT} can be
computed in polynomaial time.

N
"

» Use only components of size 2[1/¢1 = O(1)
[Borchers & Du ’97]: Increases cost by <1+¢
— # variables polynomial

Solvability of the LP

Lemma
For any € > 0, a solution = of cost < (1 +¢)OPT} can be

1/51 '

computed in polynomaial time.
» Use only components of size 2[1/¢1 = O(1)

[Borchers & Du ’97]: Increases cost by <1+¢
— # variables polynomial

Solvability of the LP

Lemma
For any € > 0, a solution = of cost < (1 +¢)OPT} can be

1/51 '

computed in polynomaial time.
» Use only components of size 2[1/¢1 = O(1)

[Borchers & Du ’97]: Increases cost by <1+¢
— # variables polynomial

» Compact flow formulation — # constraints polynomial
(or solve with ellipsoid method).

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:
e
P 1 = —
r[sample C] 1T,
and contract it.
(4) IF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:
e
P 1 = —
r[sample C] 1T,
and contract it.
(4) IF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

Prlsample C] = 137TC
T

and contract it.
(4) IF all terminals connected THEN output sampled
components

o /
o

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:
e
P 1 = —
r[sample C] 1T,
and contract it.
(4) IF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:
e
P 1 = —
r[sample C] 1T,
and contract it.
(4) IF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:
e
P 1 = —
r[sample C] 1T,
and contract it.
(4) IF all terminals connected THEN output sampled
components

(]

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:
e
P 1 = —
r[sample C] 1T,
and contract it.
(4) IF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:
e
P 1 = —
r[sample C] 1T,
and contract it.
(4) IF all terminals connected THEN output sampled
components

» W.Lo.g. M := 1"z invariant

Roadmap
» In one iteration ¢:

(C) < —-OPT init ¢

Elc(comp. sampled in it. t)] = Z rC .
C M M

2-OPTT

1-OPT+

1-M 2-M t = #iterations

Roadmap

» In one iteration ¢:

E[c(comp. sampled in it. t)] = ; MC c(C) < M ‘OPT in it ¢
» In total
Z E[c(comp. sampled in it.)] Z E[OPT in iteration t]
t>1 t>1
2-0OPT+
1-OPTH

1-M 2-M t = #titerations

Roadmap

» In one iteration ¢:

E[c(comp. sampled in it. t)] = ; MC c(C) < M ‘OPT in it ¢
» In total
Z E[c(comp. sampled in it.)] Z E[OPT in iteration t]
t>1 t>1
2-0OPT+
L. OPTA E[OPT after t it] < (1 — 5+7)! - OPT

/

1-M 2-M t = #titerations

Roadmap

» In one iteration ¢:

E[c(comp. sampled in it. t)] = ; MC c(C) < M ‘OPT in it ¢
» In total
Z E[c(comp. sampled in it.)] Z E[OPT in iteration t]
t>1 t>1
2-OPTH

E[OPT after t it) < (1 — 3;)!-2- OPT

/

it < (1 — L\t
- OPT- E[OPT after t it] < (1 — 537)" - OPT

1-M 2-M t = #titerations

Bridges

» Let S be Steiner tree

0 O
./D

Bridges

» Let S be Steiner tree, C' a component

P
o]

Bridges

» Let S be Steiner tree, C' a component

/.é.é.c
o/ 0 @
O O

» Bridges:

Brg(C) = argmax{c(B) | B C S, S\BUC is connected}

Bridges

» Let S be Steiner tree, C' a component

/oéoéoc
o—(] [
(]

» Bridges:

Brg(C) = argmax{c(B) | B C S, S\BUC is connected}

The saving function

Definition

For a Steiner tree S, the saving function w : £ — Q is
defined as

w(u,v) := max{c(e) | e on u — v path in S}.

w(u,v) := max{c(e) | e on u — v path in S}

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

ATIN

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

» Consider forest S\Brg(C)

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

» Consider forest S\Brg(C)

saving tree
& b; connects trees of u and v

» Take edge e; = (u,v) into I—D
» Then w(e;) = c(b;). ‘L

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

€1
" e @ @ @
» Consider forest S\Brg(C) T /
» Take edge e; = (u,v) into o—] pe
saving tree by

& b; connects trees of u and v
» Then w(e;) = c(b;).

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

» Consider forest S\Brg(C) T/z
» Take edge e; = (u,v) into [
saving tree
& b; connects trees of u and v ‘L
» Then w(e;) = c(b;).

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

—

=
» Consider forest S\Brg(C) T
» Take edge e; = (u,v) into
saving tree
& b; connects trees of u and v
» Then w(e;) = c(b;).

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

=
» Consider forest S\Brg(C) T
» Take edge e; = (u,v) into
saving tree
& b; connects trees of u and v
» Then w(e;) = c(b;).

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

saving tree

ST\
A~ m g
» Consider forest S\Brg(C) /2 by /
» Take edge e; = (u,v) into ® O bs Py
saving tree by

& b; connects trees of u and v
» Then w(e;) = c(b;). O

A saving lemma

Lemma

For any Steiner tree S and component C, 3 saving tree
spanning the terminals of C with

¢(Brs(C)) = w(saving tree)

saving tree

€3
/7\ 2 . €4 .
» Consider forest S\Brg(C) 1 1 %2 bTV
» Take edge e; = (u,v) into 7 pe 1 0 b3 ¢
saving tree by 6

4
3 4
& b; connects trees of u and v
» Then w(e;) = c(b;). O

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> e T e(Brr(C)) 2 o(T)

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> e T e(Brr(C)) 2 o(T)

» For any C, d saving tree:
¢(Brp(C)) = w(saving tree of C)

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> e T e(Brr(C)) 2 o(T)

» For any C, d saving tree: root r
¢(Brp(C)) = w(saving tree of C)

» Transfer capacity from component to
its saving tree
— capacity reservation y : ' — Q4

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> e T e(Brr(C)) 2 o(T)

» For any C, J saving tree: root r
¢(Brp(C)) = w(saving tree of C)

» Transfer capacity from component to
its saving tree

- . 1/2
— capacity reservation y : ' — Q4 1/2 /

1/2 e

172

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> e T e(Brr(C)) 2 o(T)

» For any C, J saving tree: root r
¢(Brp(C)) = w(saving tree of C)

» Transfer capacity from component to
its saving tree

- . 1/2
— capacity reservation y : ' — Q4 1/2 /

1/2 e

172

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> e T e(Brr(C)) 2 o(T)

» For any C, d saving tree:
¢(Brp(C)) = w(saving tree of C)

» Transfer capacity from component to
its saving tree
— capacity reservation y : ' — Q4

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> e T e(Brr(C)) 2 o(T)

» For any C, d saving tree: root r
¢(Brp(C)) = w(saving tree of C)

» Transfer capacity from component to
its saving tree
— capacity reservation y : ' — Q4

Y zc - o(Brr(C)) = w(y)

ceC

The Bridge Lemma (2)

S a0 e(Bri(C)) = w(y)

ceC

root r

The Bridge Lemma (2)

Edmonds Thm

Zxc ¢(Bryp(C w(y) 2 w(F)
ceC

root r

The Bridge Lemma (2)
Cycle rule

Edmonds Thm

> e e(Bry(C)) = wly) > w(F) > c(T)

root r

A 1st bound on OPT

Lemma

E[OPT after it. 1] < (1 - &) -2-OPT.

A 1st bound on OPT

Lemma

E[OPT after it. 1] < (1 - &) -2-OPT.

» Initially ¢(MST) <2-OPT

A 1st bound on OPT

Lemma

E[OPT after it. 1] < (1 - &) -2-OPT.

» Initially ¢(MST) <2-OPT

» In any iteration

E[c(new MST)] < c¢(old MST) — E[¢(Broq mst(C))]

A 1st bound on OPT

Lemma
E[OPT after it. 1] < (1 - &) -2-OPT. J

» Initially ¢(MST) <2-OPT
» In any iteration

E[c(new MST)] < c¢(old MST) — E[¢(Broq mst(C))]

1
= c(old MST) — — > ¢ - ¢(Brog wst(C))
Cec

A 1st bound on OPT

Lemma

E[OPT after it. 1] < (1 - &) -2-OPT.

» Initially ¢(MST) <2-OPT

» In any iteration

Elc(new MST)] < ¢(old MST) — E[¢(Broiq mst(C))]

1
= c(old MST) — — > ¢ - ¢(Brog wst(C))
Cec

J

e

>c(old MST)

A 1st bound on OPT

Lemma

E[OPT after it. 1] < (1 - &) -2-OPT.

» Initially ¢(MST) <2-OPT

» In any iteration

Elc(new MST)] < ¢(old MST) — E[¢(Broiq mst(C))]

1
= c(old MST) — — > ¢ - ¢(Brog wst(C))
Cec

J

e

>c(old MST)

1
< (1 - M) -c(old MST) O

A 2nd bound on OPT

Theorem
In any iteration

1
E[new OPT] < (1 _ W) - old OPT

)
» Let S be opt. Steiner tree % \
n/ .\u D/ .\u

A 2nd bound on OPT

Theorem
In any iteration

1
E[new OPT] < (1 _ W) - old OPT

[)
» Let S be opt. Steiner tree % \
» From each inner node in S: Contract o

the cheapest edge going to a child ‘/ \’ J X’

A 2nd bound on OPT

Theorem
In any iteration

1
E[new OPT] < (1 _ W) - old OPT

» Let S be opt. Steiner tree

» From each inner node in §: Contract
the cheapest edge going to a child T

» A terminal spanning tree T m\ﬂ
remains O

A 2nd bound on OPT

Theorem
In any iteration

1
E[new OPT] < (1 _ W) - old OPT

» Let S be opt. Steiner tree

» From each inner node in S: Contract

the cheapest edge going to a child T
» A terminal spanning tree T m\ﬂ
remains O
Bridge Lem] 1
E[save on S| > E[save on T > —- (T) > =—-¢(9)
M <> 2
1
2 EC(S)

The approximation guarantee

Theorem
E[APX] < (1.5+¢)- OPT.

2-0PT
1-OPT+
1-M 9. M t= #iterations
» Cost of sampled components:

=1
tzl o7 BlOPT i it. 1]

The approximation guarantee

Theorem
E[APX] < (1.5+¢)- OPT.

2.0PT E[OPT after tit] < (1—4;)'-2-OPT
/ < 2 YM.OpT
E[OPT after tit] < (1— 57)! - OPT
1 OPT7 S eit/(2M) . OPT
1. M 9. M t= #iterations
» Cost of sampled components:

o0

1
tzl o7 BlOPT i it. 1]

The approximation guarantee

Theorem
E[APX] < (1.5+¢)- OPT.

E[OPT after t it]

/

(1-4)t-2-0PT
2¢ UM . OPT
E[OPT after tit] < (1— 57)! - OPT
< e YEM) . opT

2-0OPT

<
<

1-M 9. M t= Hiterations

» Cost of sampled components:
o0
1
> — - E[OPT in it. 1]

M
t=1

o
Mzge0 OPT-/ min{2e%, e~%/?} dz
0

The approximation guarantee

Theorem
E[APX] < (1.5+¢)- OPT.

E[OPT after t it]

/

(1-4)t-2-0PT
2¢ UM . OPT
E[OPT after tit] < (1— 57)! - OPT
< e YEM) . opT

2-0OPT

<
<

1-M 9. M t= Hiterations

» Cost of sampled components:
[oe]
1
tzl o7 BlOPT i it. 1]

M—0

o
3 OPT-/ min{2e~%, "%} dz = 1.5- OPT O
0

Open problems

Open Problem
1.01 < Steiner tree approximability < 1.39

Open problems

Open Problem
1.01 < Steiner tree approximability < 1.39 J

» Byrka, Grandoni, Rothvof}; Sanita - STOC’10:
An improved LP-based approximation for Steiner Tree
http://infoscience.epfl.ch /record /148220 /files /Steiner Tree-STOC2010.pdf

Thanks for your attention

http://infoscience.epfl.ch/record/148220/files/SteinerTree-STOC2010.pdf

