
A simpler proof for O(congestion+dilation)

packet routing

Thomas Rothvoß

Department of Mathematics, MIT

IPCO 2013



Packet Routing

◮ Input: directed graph G = (V,E)



Packet Routing

◮ Input: Paths Pi in a directed graph G = (V,E)



Packet Routing

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 0

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 0

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 0

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 0

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 1

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 1

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 1

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 1

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 1

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 2

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 2

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 2

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 2

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 2

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 3

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 3

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 3

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 3

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 3

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 4

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 4

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 4

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 4

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 4

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 5

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 5

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 5

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 5

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 5

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t = 6

0 1 2 3 4 5 6

◮ Input: Paths Pi in a directed graph G = (V,E)

◮ Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing (2)

Lower bounds:



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”
“very difficult

to understand”



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”
“very difficult

to understand”

“technical
tour de force”



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”
“very difficult

to understand”

“technical
tour de force”

◮ Polytime algorithm [Leighton, Maggs, Richa ’99]



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”
“very difficult

to understand”

“technical
tour de force”

◮ Polytime algorithm [Leighton, Maggs, Richa ’99]

◮ 39 · (C +D) suffices [Scheideler ’98]



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”
“very difficult

to understand”

“technical
tour de force”

◮ Polytime algorithm [Leighton, Maggs, Richa ’99]

◮ 39 · (C +D) suffices [Scheideler ’98]

◮ 24 · (C +D) suffices [Peis, Wiese ’11]



Packet Routing (2)

Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”
“very difficult

to understand”

“technical
tour de force”

◮ Polytime algorithm [Leighton, Maggs, Richa ’99]

◮ 39 · (C +D) suffices [Scheideler ’98]

◮ 24 · (C +D) suffices [Peis, Wiese ’11]

◮ O(1)-apx for finding paths + schedule [Srinivasan, Teo ’00]



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

◮ [Wiese ’12]: Is (1 + o(1)) · (congestion + dilation) possible?

◮ True if congestion ≫ dilation!



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

◮ [Wiese ’12]: Is (1 + o(1)) · (congestion + dilation) possible?

◮ True if congestion ≫ dilation!
No

!!

Theorem (R. ’13)

∃ instance requiring (1 + ε) · (congestion + dilation) time.



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

◮ [Wiese ’12]: Is (1 + o(1)) · (congestion + dilation) possible?

◮ True if congestion ≫ dilation!
No

!!

Theorem (R. ’13)

∃ instance requiring (1 + ε) · (congestion + dilation) time.

Assumptions:

◮ D := dilation = congestion = |Pi| ∀i



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

◮ [Wiese ’12]: Is (1 + o(1)) · (congestion + dilation) possible?

◮ True if congestion ≫ dilation!
No

!!

Theorem (R. ’13)

∃ instance requiring (1 + ε) · (congestion + dilation) time.

Assumptions:

◮ D := dilation = congestion = |Pi| ∀i
◮ O(1) packets can cross an edge per time unit



Preliminaries

Lemma (Lovász Local Lemma)

Let A1, . . . , Am be events such that

(1) Pr[Ai] ≤ p

(2) each Ai depends on ≤ d other events

(3) 4 · p · d ≤ 1

Then Pr
[⋂m

i=1 Āi

]
> 0.

◮ Constructive via [Moser, Tardos ’10]



Preliminaries

Lemma (Lovász Local Lemma)

Let A1, . . . , Am be events such that

(1) Pr[Ai] ≤ p

(2) each Ai depends on ≤ d other events

(3) 4 · p · d ≤ 1

Then Pr
[⋂m

i=1 Āi

]
> 0.

◮ Constructive via [Moser, Tardos ’10]

Lemma (Chernov-Hoeffding)

Let Z1, . . . , Zk ∈ [0, δ] be independently RV, sum Z :=
∑k

i=1 Zi.

Then

Pr[Z > (1 + ε)E[Z]] ≤ exp
(

− ε2

3
· E[Z]

δ

)

.



A probabilistic schedule



A probabilistic schedule



A probabilistic schedule

b b b b b b b b b b



A probabilistic schedule

b b b b b b b b b b

level 0

D



A probabilistic schedule

b b b b b b b b b b

level 0
level 1

D1 :=
√
D



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

Waiting rule:
◮ At source: wait α0 ∼ [D]

◮ When entering kth level ℓ interval: Wait αℓ,k ∼ [D
1/4
ℓ ]

◮ When leaving kth level ℓ interval: Wait D
1/4
ℓ − αℓ,k



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

time

0 O(D)

Level 0 waiting time

Level 1 waiting time

Level 2 waiting time

move



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

D
1/4
1

∼ [D] ∼ [D
1/4
1 ]

time

0 O(D)



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

Observations:
◮ total waiting time: D +

∑

ℓ≥1
D
Dℓ

·D1/4
ℓ = O(D)



A probabilistic schedule

e

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

e
b b

Observations:
◮ total waiting time: D +

∑

ℓ≥1
D
Dℓ

·D1/4
ℓ = O(D)

◮ time that i crosses e depends only on waiting times of
intervals containing e



A probabilistic schedule

e

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

e
b b

Observations:
◮ total waiting time: D +

∑

ℓ≥1
D
Dℓ

·D1/4
ℓ = O(D)

◮ time that i crosses e depends only on waiting times of
intervals containing e

◮ Pr[packet i crosses e at time t] ≤ 1
D & E[load(e, t)] ≤ 1



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

Claim

There exist waiting times s.t. load(e, t) ≤ O(1) ∀e, t



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

Claim

There exist waiting times s.t. load(e, t) ≤ O(1) ∀e, t

Idea:
◮ Fix waiting times on level ℓ = 0, 1, 2, . . . iteratively.



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

Claim

There exist waiting times s.t. load(e, t) ≤ O(1) ∀e, t

Idea:
◮ Fix waiting times on level ℓ = 0, 1, 2, . . . iteratively.

◮ Show maxe,t{E[load(e, t)]} increases ≤ D
− 1

32
ℓ in step ℓ.



A probabilistic schedule

b b b b b b b b b b

level 0
level 1
level 2

D2 :=
√
D1

Claim

There exist waiting times s.t. load(e, t) ≤ O(1) ∀e, t

Idea:
◮ Fix waiting times on level ℓ = 0, 1, 2, . . . iteratively.

◮ Show maxe,t{E[load(e, t)]} increases ≤ D
− 1

32
ℓ in step ℓ.

◮ Eventually load(e, t) ≤ 1 +
∑

ℓ≥0D
− 1

32
ℓ ≤ O(1).



Proof

◮ Pick level-0 waiting times α ∼ [D]n.

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α

Lemma

Pr[Y (e, t) ≤ 1 +D− 1
32 ∀e, t] > 0



Proof

◮ Pick level-0 waiting times α ∼ [D]n.

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α

Lemma

Pr[Y (e, t) ≤ 1 +D− 1
32 ∀e, t] > 0

◮ E[Y (e, t)] ≤ 1



Proof

◮ Pick level-0 waiting times α ∼ [D]n.

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α

Lemma

Pr[Y (e, t) ≤ 1 +D− 1
32 ∀e, t] > 0

◮ E[Y (e, t)] ≤ 1

◮ Y (e, t) =
∑n

i=1 Pr[i crosses e at t | α]
︸ ︷︷ ︸

∈[0, 1

(
√
D)1/4

]



Proof

◮ Pick level-0 waiting times α ∼ [D]n.

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α

Lemma

Pr[Y (e, t) ≤ 1 +D− 1
32 ∀e, t] > 0

◮ E[Y (e, t)] ≤ 1

◮ Y (e, t) =
∑n

i=1 Pr[i crosses e at t | α]
︸ ︷︷ ︸

∈[0, 1

(
√
D)1/4

]

◮ Pr[Y (e, t) > 1 +D− 1
32 ] ≤ e−Ω(D1/16)



Proof

◮ Pick level-0 waiting times α ∼ [D]n.

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α

Lemma

Pr[Y (e, t) ≤ 1 +D− 1
32 ∀e, t] > 0

◮ E[Y (e, t)] ≤ 1

◮ Y (e, t) =
∑n

i=1 Pr[i crosses e at t | α]
︸ ︷︷ ︸

∈[0, 1

(
√
D)1/4

]

◮ Pr[Y (e, t) > 1 +D− 1
32 ] ≤ e−Ω(D1/16)

Rand. var. packets

Y (e, t)

Y (e′, t′)

i

≤ D

≤ O(D2)



Proof

◮ Pick level-0 waiting times α ∼ [D]n.

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α

Lemma

Pr[Y (e, t) ≤ 1 +D− 1
32 ∀e, t] > 0

◮ E[Y (e, t)] ≤ 1

◮ Y (e, t) =
∑n

i=1 Pr[i crosses e at t | α]
︸ ︷︷ ︸

∈[0, 1

(
√
D)1/4

]

◮ Pr[Y (e, t) > 1 +D− 1
32 ] ≤ e−Ω(D1/16)

◮◮◮ Dependence degree ≤ O(D3)

Rand. var. packets

Y (e, t)

Y (e′, t′)

i

≤ D

≤ O(D2)



Proof

◮ Suppose waiting times on level 0, . . . , ℓ− 1 already fixed.

◮ Pick level-ℓ waiting times α ∼ [∆1/4]n×
D
∆ . ∆ := Dℓ

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α

Lemma

Pr[Y (e, t) ≤ E[Y (e, t)] + ∆− 1
32 ∀e, t] > 0

◮ E[Y (e, t)] ≤ 1+o(1)

◮ Y (e, t) =
∑n

i=1 Pr[i crosses e at t | α]
︸ ︷︷ ︸

∈[0, 1

(
√
∆)1/4

]

◮ Pr[Y (e, t) > E[Y (e, t)] + ∆− 1
32 ] ≤ e−Ω(∆1/16)

◮ If nonzero,
Pr[i crosses e at t] ≥ ∏

ℓ′≥ℓ
1

D
1/4

ℓ′

≥ 1
∆2

◮ Possible positions & time frame ≤ O(∆)

◮ Dependence degree ≤ O(∆4)

Rand. var. packets

Y (e, t)

Y (e′, t′)

i

≤ O(∆2)

≤ O(∆2)



Proof

◮ Suppose waiting times on level 0, . . . , ℓ− 1 already fixed.

◮ Pick level-ℓ waiting times α ∼ [∆1/4]n×
D
∆ . ∆ := Dℓ

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α

Lemma

Pr[Y (e, t) ≤ E[Y (e, t)] + ∆− 1
32 ∀e, t] > 0

◮ E[Y (e, t)] ≤ 1+o(1)

◮ Y (e, t) =
∑n

i=1 Pr[i crosses e at t | α]
︸ ︷︷ ︸

∈[0, 1

(
√
∆)1/4

]

◮ Pr[Y (e, t) > E[Y (e, t)] + ∆− 1
32 ] ≤ e−Ω(∆1/16)

◮ If nonzero,
Pr[i crosses e at t] ≥ ∏

ℓ′≥ℓ
1

D
1/4

ℓ′

≥ 1
∆2

◮ Possible positions & time frame ≤ O(∆)

◮ Dependence degree ≤ O(∆4)

Rand. var. packets

Y (e, t)

Y (e′, t′)

i

≤ O(∆2)

≤ O(∆2)



O(1)-size edge buffers



O(1)-size edge buffers

Theorem

∃ O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0, 1} time units
per node.



O(1)-size edge buffers

Theorem

∃ O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0, 1} time units
per node.

b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b

level 0

level 1

level 2

◮ Assign path edges to intervals s.t. level ℓ interval gets D
1/4
ℓ

edges



O(1)-size edge buffers

Theorem

∃ O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0, 1} time units
per node.

b b b b b b b b b b b b b b b b b b b

2 2 2 2 2 2 2 2 2
b b b b b b b b b b b b b b b b b b b

level 0

level 1

level 2

◮ Assign path edges to intervals s.t. level ℓ interval gets D
1/4
ℓ

edges



O(1)-size edge buffers

Theorem

∃ O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0, 1} time units
per node.

b b b b b b b b b b b b b b b b b b b

2 2 2 2 2 2 2 2 21 1 1 1 1
b b b b b b b b b b b b b b b b b b b

level 0

level 1

level 2

◮ Assign path edges to intervals s.t. level ℓ interval gets D
1/4
ℓ

edges



O(1)-size edge buffers

Theorem

∃ O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0, 1} time units
per node.

b b b b b b b b b b b b b b b b b b b

2 2 2 2 2 2 2 2 21 1 1 1 10 0
b b b b b b b b b b b b b b b b b b b

level 0

level 1

level 2

◮ Assign path edges to intervals s.t. level ℓ interval gets D
1/4
ℓ

edges



O(1)-size edge buffers

Theorem

∃ O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0, 1} time units
per node.

b b b b b b b b b b b b b b b b b b b

2 2 2 2 2 2 2 2 21 1 1 1 10 0
b b b b b b b b b b b b b b b b b b b

level 0

level 1

level 2

◮ Assign path edges to intervals s.t. level ℓ interval gets D
1/4
ℓ

edges

◮ Wait on first α ∼ [D
1/4
ℓ ] assigned edges



A lower bound construction

source sink

n packets

e1

e2

en



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n

◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n

◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1
◮ A routing strategy for a single packet is of the form

(park, park, go, wait, go, go, wait, wait, go, go, park)



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n

◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1
◮ A routing strategy for a single packet is of the form

(park, park, go, wait, go, go, wait, wait, go, go, park)

time horizon (3 + ε)n



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n

◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1
◮ A routing strategy for a single packet is of the form

(park, park, go, wait, go, go, wait, wait, go, go, park)

time horizon (3 + ε)n#go ≈ 2n



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n

◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1
◮ A routing strategy for a single packet is of the form

(park, park, go, wait, go, go, wait, wait, go, go, park)

time horizon (3 + ε)n#go ≈ 2n

E[# park] ≥ n



A lower bound construction

source sink

n packets

e1

e2

en
◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n

◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1
◮ A routing strategy for a single packet is of the form

(park, park, go, wait, go, go, wait, wait, go, go, park)

time horizon (3 + ε)n#go ≈ 2n

E[# park] ≥ n
E[#wait] ≤ εn



A lower bound construction

source sink

n packets

e1

e2

en

◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n

◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1

◮ total # routing strategies ≤ (2n ·
(
4n
εn

)
)n ≤ 2o(n

2) for ε → 0



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en

n
4 packets



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en

◮ Pr[no collision] ≤ (18)
n/8



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en

◮ Pr[no collision] ≤ (18)
n/8

◮ ∃ n
16 time steps in which n

4 packets cross a random edge ej .



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en

◮ Pr[no collision] ≤ (18)
n/8

◮ ∃ n
16 time steps in which n

4 packets cross a random edge ej .

◮ Problem: Steps not independent!



Lemma

Fix a schedule. Pr[schedule feasible] ≤ (12)
Θ(n2)

source sink

e1

e2

en

◮ Pr[no collision] ≤ (18)
n/8

◮ ∃ n
16 time steps in which n

4 packets cross a random edge ej .

◮ Problem: Steps not independent! But more careful
analysis works.



The end

Open question

Can acyclic job shop with preemption be done in
O(congestion + dilation)?

◮ O((C +D) · log log(C +D)) suffices [Feige, Scheideler ’02]



The end

Open question

Can acyclic job shop with preemption be done in
O(congestion + dilation)?

◮ O((C +D) · log log(C +D)) suffices [Feige, Scheideler ’02]

Thanks for your attention



Acyclic job shop with preemption

Given:

◮ Directed (simple) paths Pi

◮ Processing times pi,e ∀i ∈ [n] ∀e ∈ Pi

Constraints:

◮ Packet i takes time pi,e to cross e ∈ Pi

◮ At most one packet can actively move on an edge per time
unit

◮ Preemption: Packet can “stop” in the middle of an edge
(and another packet can be processed)

Parameters:

◮ Congestion C := maxe∈E{
∑

i:e∈Pi
pi,e}

◮ Dilation D := maxi{
∑

e∈Pi
pi,e}

◮ L := max{C,D}
Question: Is O(L) possible? (Known: O(L · log logL))


