A simpler proof for O(congestion + dilation)
packet routing

Thomas Rothvof
Department of Mathematics, MIT

IPCO 2013

H B Massachusetts
I Institute of
Technology



Packet Routing

» Input: directed graph G = (V| E)



Packet Routing

[ >

» Input: Paths P; in a directed graph G = (V, E)



Packet Routing

[ >

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

A,

Time: t =0
. 1 | | 1 1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t =0
- 1 | | 1 1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

N

Time: t =0
- 1 | | 1 1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t =0
- 1 | | 1 1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routilﬁ

. E—
' N
Time: t =1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. E—
Time: t =1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t =1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

Time: t =1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. —
Time: t =1
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. —
Time: t = 2
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. —
Time: t = 2
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

N N
Time: t = 2
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

N N
Time: t = 2
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. —
Time: t = 2
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

N I N
[ —
Time: t =3
Y A N
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. ——
Time: t =3
1 1 1r
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

N
Time: t =3
1 11
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

N
Time: t =3
I A N
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. ——
Time: t =3
I A N
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)

» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. I 0 0
[
Time: t =4
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. £ H
[
Time: t =4
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. £ H
[
Time: t =4
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. £ H
[
Time: t =4
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. £ H
[
Time: t =4
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. . N B B
[ |
Time: t =05
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. B
[
[ |
Time: t =05
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. B
[
[ |
Time: t =05
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. B
[
[ |
Time: t =05
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. B
[
[ |
Time: t =05
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing

. ——
[ |
Time: t =6
0 1 2 3 4 5 6

» Input: Paths P; in a directed graph G = (V, E)
» Goal: Route packets along paths to minimize makespan
Constraint: edge can be crossed by 1 packet per time unit



Packet Routing (2)

Lower bounds:



Packet Routing (2)

Lower bounds:

» congestion = mabzc{#i ree P}
ec



Packet Routing (2)

Lower bounds:

» congestion = magg{#i ree P}
ec

» dilation = max; |P;|



Packet Routing (2)

Lower bounds:

» congestion = maé({#i ree P}
ec
» dilation = max; |P;|

Theorem (Leighton, Maggs, Rao '94)

3 schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).




Packet Routing (2)
Lower bounds:
» congestion = max{#i:e € P;}
eckE

» dilation = max; |P;|

Theorem (Leighton, Maggs, Rao '94)

3 schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”



Packet Routing (2)
Lower bounds:
» congestion = max{#i:e € P;}
eckE

» dilation = max; |P;|

Theorem (Leighton, Maggs, Rao '94)

3 schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

49 R . ) “Very dlﬁCUIt
highly involved to understand”




Packet Routing (2)

Lower bounds:
» congestion = maéc{#i ree P}
ec

» dilation = max; |P;|

Theorem (Leighton, Maggs, Rao '94)
3 schedule of length O(congestion + dilation) |

(even with O(1)-size edge buffers).
“technical
tour de force”

“highly involved”

“very difficult
to understand”




Packet Routing (2)

Lower bounds:

» congestion = magg{#i ree P}
ec

» dilation = max; |P;|

3 schedule of length O(congestion + dilation)

(even with O(1)-size edge buffers).
“very difficult “technical
to understand” tour de force”

» Polytime algorithm [Leighton, Maggs, Richa ’99]

Theorem (Leighton, Maggs, Rao '94) |

“highly involved”




Packet Routing (2)

Lower bounds:

» congestion = magg{#i ree P}
ec

» dilation = max; |P;|

3 schedule of length O(congestion + dilation)

(even with O(1)-size edge buffers).
“very difficult “technical
to understand” tour de force”

» Polytime algorithm [Leighton, Maggs, Richa ’99]
» 39 (C + D) suffices [Scheideler "98]

Theorem (Leighton, Maggs, Rao '94) |

“highly involved”




Packet Routing (2)

Lower bounds:

» congestion = magg{#i ree P}
ec

» dilation = max; |P;|

3 schedule of length O(congestion + dilation)

(even with O(1)-size edge buffers).
“very difficult “technical
to understand” tour de force”

» Polytime algorithm [Leighton, Maggs, Richa ’99]
» 39 (C + D) suffices [Scheideler "98]
» 24 (C + D) suffices [Peis, Wiese '11]

Theorem (Leighton, Maggs, Rao '94) |

“highly involved”




Packet Routing (2)

Lower bounds:

» congestion = magg{#i ree P}
ec

» dilation = max; |P;|

3 schedule of length O(congestion + dilation)

(even with O(1)-size edge buffers).
“very difficult “technical
to understand” tour de force”

Polytime algorithm [Leighton, Maggs, Richa ’99]

39 - (C + D) suffices [Scheideler 98]

24 - (C + D) suffices [Peis, Wiese '11]

O(1)-apx for finding paths + schedule [Srinivasan, Teo ’00]

Theorem (Leighton, Maggs, Rao '94) |

“highly involved”

vV v VY

v



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).




Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

> [Wiese "12]: Is (1 4 o(1)) - (congestion + dilation) possible?

» True if congestion > dilation!



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

> [Wiese "12]: Is (1 4 o(1)) - (n + dilation) possible?
» True if congestion > dilation!

Theorem (R. ’13)

3 instance requiring (1 + €) - (congestion + dilation) time.




Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

> [Wiese "12]: Is (1 4 o(1)) - (n + dilation) possible?
» True if congestion > dilation!

Theorem (R. ’13)

3 instance requiring (1 + €) - (congestion + dilation) time.

Assumptions:

» D := dilation = congestion = |P;| Vi



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

> [Wiese "12]: Is (1 4 o(1)) - (n + dilation) possible?
» True if congestion > dilation!

Theorem (R. ’13)

3 instance requiring (1 + €) - (congestion + dilation) time.

Assumptions:
» D := dilation = congestion = |P;| Vi

» O(1) packets can cross an edge per time unit



Preliminaries

Lemma (Lovész Local Lemma)

Let Ay, ..., A, be events such that

(1) PrA] <p

(2) each A; depends on < d other events
(3)4-p-d<1

Then Pr [(2, 4] > 0.

» Constructive via [Moser, Tardos "10]



Preliminaries

Lemma (Lovész Local Lemma)

Let Ay, ..., A, be events such that

(1) PrA] <p

(2) each A; depends on < d other events
(3)4-p-d<1

Then Pr [(2, 4] > 0.

» Constructive via [Moser, Tardos "10]

Lemma (Chernov-Hoeffding)
Let Zy,...,Zy € [0,0] be independently RV, sum Z = Zle Z;.

Then
Pr[Z > (14 ¢)E[Z]] < exp ( — ? : EES_Z])




A probabilistic schedule

A




A probabilistic schedule




A probabilistic schedule




A probabilistic schedule

level 0




A probabilistic schedule

level 0

RE T s s m—




A probabilistic schedule

level 0
level 1
level 2




A probabilistic schedule

level 0
level 1
level 2

Waiting rule:
» At source: wait ag ~ [D]

» When entering kth level ¢ interval: Wait g, ~ [Dl}/ 4]
» When leaving kth level ¢ interval: Wait Dé/ - Qy



A probabilistic schedule

[
Dy :=+/D1
level 0
level 1
level 2
[ .

Level 0 waiting time Level 2 waiting time

time

0 O(D)

Level 1 waiting time



A probabilistic schedule

level 0
level 1
level 2




A probabilistic schedule

level 0
level 1
level 2

Observations:
D

> total waiting time: D + 37,5, 5

D" = 0(D)



A probabilistic schedule

level 0
level 1
level 2

[ | =

e
Observations:
> total waiting time: D + Yo, 5 - D,/ = O(D)
» time that i crosses e depends only on waiting times of
intervals containing e



A probabilistic schedule

level 0
level 1
level 2

[ | =

(&

Observations:
> total waiting time: D + Z£>1 LD Dl/4 = O(D)

» time that ¢ crosses e depends only on waiting times of
intervals containing e

» Prlpacket i crosses e at time t] < & & E[load(e,t)] <

1



A probabilistic schedule

L7

level 0
level 1
level 2

Claim
There exist waiting times s.t. load(e,t) < O(1) Ve, t




A probabilistic schedule

L7

level 0
level 1
level 2

Claim
There exist waiting times s.t. load(e,t) < O(1) Ve, t

Idea:
» Fix waiting times on level £ = 0,1,2, ... iteratively.



A probabilistic schedule

L7

level 0
level 1
level 2

Claim
There exist waiting times s.t. load(e,t) < O(1) Ve, t

Idea:
» Fix waiting times on level £ = 0,1,2, ... iteratively.

1
» Show max,;{E[load(e,t)]} increases < D, * in step /.



A probabilistic schedule

L7

level 0
level 1
level 2

Claim
There exist waiting times s.t. load(e,t) < O(1) Ve, t

Idea:
» Fix waiting times on level £ = 0,1,2, ... iteratively.

1
» Show max,;{E[load(e,t)]} increases < D, * in step /.

i
» Eventually load(e,t) <1+ > ,50D, ** < O(1).



Proof
» Pick level-0 waiting times a ~ [D]".
» Y(e,t) := Elload(e, t) | a] = ave. load on e at ¢ dep. on «

Lemma

Pr[Y(e,t) < 1+ D73 Ve,t] > 0




Proof

» Pick level-0 waiting times a ~ [D]™.

» Y(e,t) := Elload(e, t) | a] = ave. load on e at ¢ dep. on «

Lemma

Pr[Y(e,t) < 1+ D73 Ve,t] > 0

» E[Y (e, )] <1



Proof

» Pick level-0 waiting times a ~ [D]™.

» Y(e,t) := Elload(e,t) | a] = ave. load on e at ¢ dep. on «

Lemma

i, Pr[i crosses e at t | o]

1
6[07(\/5)1/4}



Proof

» Pick level-0 waiting times a ~ [D]™.

» Y(e,t) := Elload(e,t) | a] = ave. load on e at ¢ dep. on «

Lemma

- BV (e,1)] <1
> Y(e,t) =>"" Prfi crosses e at ¢ | a
EK)’W}

» Pr[Y(e,t) > 1+ D_é] < e~ UDYI



Proof

» Pick level-0 waiting times a ~ [D]™.

» Y(e,t) := Elload(e, t) | a] = ave. load on e at ¢ dep. on «

Lemma

> E[Y(e,t)] <1 Rand. var. packets
> Y(e,t) =>"" Prfi crosses e at ¢ | a
6[0,7(\/51)1/4}

> Pr[Y(e,t) > 1+ D 32] < e~ 2DV




Proof

» Pick level-0 waiting times a ~ [D]™.

» Y(e,t) := Elload(e, t) | a] = ave. load on e at ¢ dep. on «

Lemma

1 Rand. var. packets
n

1
6[07(\/5)1/4}

> Pr[Y(e,t) > 1+ D 32] < e~ 2DV

» Dependence degree < O(D?)



Proof

» Suppose waiting times on level 0,...,¢ — 1 already fixed.

» Pick level-/ waiting times o ~ [Al/‘l]”x%. A:=Dy

» Y(e,t) := Elload(e, ) | a] = ave. load on e at ¢ dep. on «

Lemma
Pr[Y (e, t) < E[Y (e, )] + A™32 Ve, t] > 0 J

> E[Y (e, 1)] < 1+40(1)

» Y(e,t) => 1", Prfi crosses e at t | o]

Rand. var. packets

<0 )
Pr[Y (e, t) > E[Y (e, 1)] + A~32] < e~
If nonzero,
Pri crosses e at t] > [[ ;> D}/4 >

1
AQ
Z/
Possible positions & time frame < O(

Dependence degree < O(A%)

v

v

v

v



Proof

» Suppose waiting times on level 0,...,¢ — 1 already fixed.

» Pick level-/ waiting times o ~ [Al/‘l]”x%. A:=Dy

» Y(e,t) := Elload(e, ) | a] = ave. load on e at ¢ dep. on «

Lemma
Pr[Y (e, t) < E[Y (e, )] + A™32 Ve, t] > 0 J

> E[Y (e, 1)] < 1+40(1)

» Y(e,t) => 1", Prfi crosses e at t | o]

Rand. var. packets

<0 )
Pr[Y (e, t) > E[Y (e, 1)] + A~32] < e~
If nonzero,
Pri crosses e at t] > [[ ;> D}/4 >

1
AQ
Z/
Possible positions & time frame < O(

Dependence degree < O(A%)

v

v

v

v



O(1)-size edge buffers



O(1)-size edge buffers

Theorem

3 O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0,1} time units
per node.




O(1)-size edge buffers

Theorem
3 O(congestion + dilation)-time, O(1)-load

schedule where packets wait {0,1} time units
per node. ——>o

level 0
level 1
level 2

€—>0—=>0—>0>0>0>0>0>0> 0> 0> 0> 00> 0> 0>0>0>0

> Assign path edges to intervals s.t. level ¢ interval gets Dl}/ 4

edges



O(1)-size edge buffers

Theorem
3 O(congestion + dilation)-time, O(1)-load

schedule where packets wait {0,1} time units
per node. ——>o

level 0
level 1
level 2

o =0 >0 >0 >0 >0 >0 >0 >0 >0

> Assign path edges to intervals s.t. level ¢ interval gets Dl}/ 4

edges



O(1)-size edge buffers

Theorem
3 O(congestion + dilation)-time, O(1)-load

schedule where packets wait {0,1} time units
per node. ——>o

level 0
level 1
level 2

1 1 1 1 1

> Assign path edges to intervals s.t. level ¢ interval gets Dl}/ 4

edges



O(1)-size edge buffers

Theorem
3 O(congestion + dilation)-time, O(1)-load

schedule where packets wait {0,1} time units
per node. ——>o

level 0
level 1
level 2

> Assign path edges to intervals s.t. level ¢ interval gets Dl}/ 4

edges



O(1)-size edge buffers

Theorem
3 O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0,1} time units

per node. ——>o
level 0
level 1
level 2
> Assign path edges to intervals s.t. level ¢ interval gets Dl}/ 4

edges
» Wait on first a ~ [D;/ 4] assigned edges



A lower bound construction

€1
n packets {
source sink
n

e



A lower bound construction

€1
n packets {
source sink
n

e
» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

€1
n packets {
source sink
n

e
» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

€1
n packets {
source sink

€n
» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

€1
n packets{ ! }‘@{
=X
source '—‘,“‘5 sink
2\

€n
» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction
e1

n packets { !

source

sink

€n
» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction
e1

n packets { H

source

sink

€n
» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction
e1

n packets { H

source

sink

» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

n packets { H

source

sink

» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

n packets { H

source

sink

» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

n packets { H

source

sink

» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

n packets { H

source

sink

» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

n packets { H

source

» Choose Pi,..., P, : go through ey, ..., e, in random order



A lower bound construction

n packets { H

source sink
€n
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:

» Congestion n



A lower bound construction

n packets { H

source sink
€n
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:

» Congestion n
» Dilation 2n + 3



A lower bound construction

n packets { H

source sink
€n
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n

» Dilation 2n + 3



A lower bound construction

n packets { H

source sink
€n
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n

» Dilation 2n + 3 » Suppose makespan < (3 4 ¢)n



A lower bound construction

n packets { H

source sink
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 4 ¢)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1



A lower bound construction

n packets { H

source sink
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 4 ¢)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1
» A routing strategy for a single packet is of the form

(park, park, 80, wait, 80, g0, wait, wait, 80, 80, park)



A lower bound construction

n packets { H

source
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 4 ¢)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1
» A routing strategy for a single packet is of the form
(park, park, 80, wait, 80, g0, wait, wait, 80, 80, park)
time horizon (3 +¢)n




A lower bound construction

n packets { H

source
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 4 ¢)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1
» A routing strategy for a single packet is of the form
(park, park, 80, wait, 80, g0, wait, wait, 80, 80, park)
H— ..... #'

#g0 ~ 2n time horizon (3 +¢)n




A lower bound construction

n packets { H

source sink
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 4 ¢)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1
» A routing strategy for a single packet is of the form




A lower bound construction

n packets { H

source sink
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 4 ¢)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1

» A routing strategy for a single packet is of the form
E|#wait] < en
E[# park] >n  je—o ... [p#wait] <
fe——




A lower bound construction

n packets { H

source sink
€n
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 +&)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1
» total # routing strategies < (2n - (gg))” < 20(n*) for ¢ — 0



Lemma
Fix a schedule. Pr[schedule feasible] < (1)©(*)

[ ——
source




Lemma

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (1)©(*)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (%)6(”2)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (%)6(”2)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (1)©(*)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (1)©(*)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (1)©(*)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (%)6(”2)

€1

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (%)6(”2)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (%)6(”2)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (1)©(*)

>

source sink




Lemma
Fix a schedule. Pr[schedule feasible] < (1)©(*)

*r—>

o sink

» Pr[no collision] < (%)n/g



Lemma

>

source sink

» Pr[no collision] < (%)n/ s

» Ji¢ time steps in which 7 packets cross a random edge e;.



Lemma
Fix a schedule. Pr[schedule feasible] < (%)6(”2)

>

source sink

n/8

» Pr[no collision] < (3)
» Jdit time steps in which § packets cross a random edge e;.

» Problem: Steps not independent!



Lemma
Fix a schedule. Pr[schedule feasible] < (%)6(”2)

>

source sink

n/8

» Pr[no collision] < (3)
» Jdit time steps in which § packets cross a random edge e;.

» Problem: Steps not independent! But more careful
analysis works. O



The end

Open question

Can acyclic job shop with preemption be done in
O(congestion + dilation)?

» O((C + D) -loglog(C + D)) suffices [Feige, Scheideler '02]



The end

Open question

Can acyclic job shop with preemption be done in
O(congestion + dilation)?

» O((C + D) -loglog(C + D)) suffices [Feige, Scheideler '02]

Thanks for your attention



Acyclic job shop with preemption

Given:
» Directed (simple) paths P;
» Processing times p; . Vi € [n] Ve € P;
Constraints:
» Packet ¢ takes time p; . to cross e € P;
» At most one packet can actively move on an edge per time
unit
» Preemption: Packet can “stop” in the middle of an edge
(and another packet can be processed)
Parameters:
> Congestion C':= maXecp{) ;.ccp, Pire}
» Dilation D :=max;{} .cp. Pic}
» L:=max{C,D}
Question: Is O(L) possible? (Known: O(L -loglog L))



