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Lower bounds:

◮ congestion = max
e∈E

{#i : e ∈ Pi}
◮ dilation = maxi |Pi|

Theorem (Leighton, Maggs, Rao ’94)

∃ schedule of length O(congestion + dilation)
(even with O(1)-size edge buffers).

“highly involved”
“very difficult

to understand”

“technical
tour de force”

◮ Polytime algorithm [Leighton, Maggs, Richa ’99]

◮ 39 · (C +D) suffices [Scheideler ’98]

◮ 24 · (C +D) suffices [Peis, Wiese ’11]

◮ O(1)-apx for finding paths + schedule [Srinivasan, Teo ’00]



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

◮ [Wiese ’12]: Is (1 + o(1)) · (congestion + dilation) possible?

◮ True if congestion ≫ dilation!



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

◮ [Wiese ’12]: Is (1 + o(1)) · (congestion + dilation) possible?

◮ True if congestion ≫ dilation!
No

!!

Theorem (R. ’13)

∃ instance requiring (1 + ε) · (congestion + dilation) time.



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

◮ [Wiese ’12]: Is (1 + o(1)) · (congestion + dilation) possible?

◮ True if congestion ≫ dilation!
No

!!

Theorem (R. ’13)

∃ instance requiring (1 + ε) · (congestion + dilation) time.

Assumptions:

◮ D := dilation = congestion = |Pi| ∀i



Main result

Theorem (R. ’13)

Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

◮ [Wiese ’12]: Is (1 + o(1)) · (congestion + dilation) possible?

◮ True if congestion ≫ dilation!
No

!!

Theorem (R. ’13)

∃ instance requiring (1 + ε) · (congestion + dilation) time.

Assumptions:

◮ D := dilation = congestion = |Pi| ∀i
◮ O(1) packets can cross an edge per time unit
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Let A1, . . . , Am be events such that

(1) Pr[Ai] ≤ p

(2) each Ai depends on ≤ d other events

(3) 4 · p · d ≤ 1

Then Pr
[⋂m
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]
> 0.

◮ Constructive via [Moser, Tardos ’10]

Lemma (Chernov-Hoeffding)

Let Z1, . . . , Zk ∈ [0, δ] be independently RV, sum Z :=
∑k

i=1 Zi.

Then

Pr[Z > (1 + ε)E[Z]] ≤ exp
(

− ε2

3
· E[Z]

δ

)

.
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◮ total waiting time: D +

∑
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◮ time that i crosses e depends only on waiting times of
intervals containing e

◮ Pr[packet i crosses e at time t] ≤ 1
D & E[load(e, t)] ≤ 1
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Claim

There exist waiting times s.t. load(e, t) ≤ O(1) ∀e, t

Idea:
◮ Fix waiting times on level ℓ = 0, 1, 2, . . . iteratively.

◮ Show maxe,t{E[load(e, t)]} increases ≤ D
− 1

32
ℓ in step ℓ.

◮ Eventually load(e, t) ≤ 1 +
∑

ℓ≥0D
− 1

32
ℓ ≤ O(1).
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◮ Pick level-0 waiting times α ∼ [D]n.

◮ Y (e, t) := E[load(e, t) | α] = ave. load on e at t dep. on α
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∈[0, 1

(
√
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]

◮ Pr[Y (e, t) > 1 +D− 1
32 ] ≤ e−Ω(D1/16)

◮◮◮ Dependence degree ≤ O(D3)

Rand. var. packets

Y (e, t)

Y (e′, t′)

i

≤ D

≤ O(D2)



Proof

◮ Suppose waiting times on level 0, . . . , ℓ− 1 already fixed.
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O(1)-size edge buffers

Theorem

∃ O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0, 1} time units
per node.

b b b b b b b b b b b b b b b b b b b

2 2 2 2 2 2 2 2 21 1 1 1 10 0
b b b b b b b b b b b b b b b b b b b

level 0

level 1

level 2

◮ Assign path edges to intervals s.t. level ℓ interval gets D
1/4
ℓ

edges

◮ Wait on first α ∼ [D
1/4
ℓ ] assigned edges
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◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1
◮ A routing strategy for a single packet is of the form

(park, park, go, wait, go, go, wait, wait, go, go, park)

time horizon (3 + ε)n#go ≈ 2n

E[# park] ≥ n
E[#wait] ≤ εn
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source sink

n packets

e1

e2

en

◮ Choose P1, . . . , Pn : go through e1, . . . , en in random order

Observations:

◮ Congestion n

◮ Dilation 2n+ 3

◮ makespan ≥ 3n

◮ Suppose makespan ≤ (3 + ε)n

◮ Goal: # schedules · Pr[fixed schedule collision free] ≪ 1

◮ total # routing strategies ≤ (2n ·
(
4n
εn

)
)n ≤ 2o(n

2) for ε → 0
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e1

e2

en

◮ Pr[no collision] ≤ (18)
n/8

◮ ∃ n
16 time steps in which n

4 packets cross a random edge ej .

◮ Problem: Steps not independent! But more careful
analysis works.
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Thanks for your attention



Acyclic job shop with preemption

Given:

◮ Directed (simple) paths Pi

◮ Processing times pi,e ∀i ∈ [n] ∀e ∈ Pi

Constraints:

◮ Packet i takes time pi,e to cross e ∈ Pi

◮ At most one packet can actively move on an edge per time
unit

◮ Preemption: Packet can “stop” in the middle of an edge
(and another packet can be processed)

Parameters:

◮ Congestion C := maxe∈E{
∑

i:e∈Pi
pi,e}

◮ Dilation D := maxi{
∑

e∈Pi
pi,e}

◮ L := max{C,D}
Question: Is O(L) possible? (Known: O(L · log logL))


