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Lower bounds:

» congestion = magg{#i ree P}
ec

» dilation = max; |P;|

3 schedule of length O(congestion + dilation)

(even with O(1)-size edge buffers).
“very difficult “technical
to understand” tour de force”

Polytime algorithm [Leighton, Maggs, Richa ’99]

39 - (C + D) suffices [Scheideler 98]

24 - (C + D) suffices [Peis, Wiese '11]

O(1)-apx for finding paths + schedule [Srinivasan, Teo ’00]

Theorem (Leighton, Maggs, Rao '94) |

“highly involved”
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Much simpler proof of O(congestion + dilation)-packet
routing (also with O(1)-size edge buffers).

> [Wiese "12]: Is (1 4 o(1)) - (n + dilation) possible?
» True if congestion > dilation!

Theorem (R. ’13)

3 instance requiring (1 + €) - (congestion + dilation) time.

Assumptions:
» D := dilation = congestion = |P;| Vi

» O(1) packets can cross an edge per time unit
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Lemma (Chernov-Hoeffding)
Let Zy,...,Zy € [0,0] be independently RV, sum Z = Zle Z;.

Then
Pr[Z > (14 ¢)E[Z]] < exp ( — ? : EES_Z])
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Waiting rule:
» At source: wait ag ~ [D]

» When entering kth level ¢ interval: Wait g, ~ [Dl}/ 4]
» When leaving kth level ¢ interval: Wait Dé/ - Qy
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level 1
level 2

[ | =

(&

Observations:
> total waiting time: D + Z£>1 LD Dl/4 = O(D)

» time that ¢ crosses e depends only on waiting times of
intervals containing e

» Prlpacket i crosses e at time t] < & & E[load(e,t)] <

1
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level 0
level 1
level 2

Claim
There exist waiting times s.t. load(e,t) < O(1) Ve, t

Idea:
» Fix waiting times on level £ = 0,1,2, ... iteratively.

1
» Show max,;{E[load(e,t)]} increases < D, * in step /.

i
» Eventually load(e,t) <1+ > ,50D, ** < O(1).
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» Pick level-0 waiting times a ~ [D]™.

» Y(e,t) := Elload(e, t) | a] = ave. load on e at ¢ dep. on «

Lemma

1 Rand. var. packets
n

1
6[07(\/5)1/4}

> Pr[Y(e,t) > 1+ D 32] < e~ 2DV

» Dependence degree < O(D?)
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O(1)-size edge buffers

Theorem
3 O(congestion + dilation)-time, O(1)-load
schedule where packets wait {0,1} time units

per node. ——>o
level 0
level 1
level 2
> Assign path edges to intervals s.t. level ¢ interval gets Dl}/ 4

edges
» Wait on first a ~ [D;/ 4] assigned edges
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» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 4 ¢)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1

» A routing strategy for a single packet is of the form
E|#wait] < en
E[# park] >n  je—o ... [p#wait] <
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n packets { H

source sink
€n
» Choose Pi,..., P, : go through ey, ..., e, in random order
Observations:
» Congestion n » makespan > 3n
» Dilation 2n + 3 » Suppose makespan < (3 +&)n

» Goal: # schedules - Pr{fixed schedule collision free] < 1
» total # routing strategies < (2n - (gg))” < 20(n*) for ¢ — 0
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Lemma
Fix a schedule. Pr[schedule feasible] < (%)6(”2)

>

source sink

n/8

» Pr[no collision] < (3)
» Jdit time steps in which § packets cross a random edge e;.

» Problem: Steps not independent! But more careful
analysis works. O



The end

Open question

Can acyclic job shop with preemption be done in
O(congestion + dilation)?

» O((C + D) -loglog(C + D)) suffices [Feige, Scheideler '02]



The end

Open question

Can acyclic job shop with preemption be done in
O(congestion + dilation)?

» O((C + D) -loglog(C + D)) suffices [Feige, Scheideler '02]

Thanks for your attention



Acyclic job shop with preemption

Given:
» Directed (simple) paths P;
» Processing times p; . Vi € [n] Ve € P;
Constraints:
» Packet ¢ takes time p; . to cross e € P;
» At most one packet can actively move on an edge per time
unit
» Preemption: Packet can “stop” in the middle of an edge
(and another packet can be processed)
Parameters:
> Congestion C':= maXecp{) ;.ccp, Pire}
» Dilation D :=max;{} .cp. Pic}
» L:=max{C,D}
Question: Is O(L) possible? (Known: O(L -loglog L))



