
On the complexity of the asymmetric

VPN problem

Thomas Rothvoß & Laura Sanità

Institute of Mathematics
EPFL, Lausanne

ISMP’09

Concave Cost VPN

Given:

◮ Undirected graph G = (V,E), costs c : E → Q+

◮ Outgoing traffic bound b+
v ∈ N0, ingoing traffic bound

b−v ∈ N0

◮ Concave non-decreasing function f : Q+ → Q+

Find: Paths Puv , capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimized

and every valid traffic matrix (Du,v)u,v∈V can be routed.
D is valid if v sends ≤ b+

v and receives ≤ b−v

Concave Cost VPN

Given:

◮ Undirected graph G = (V,E), costs c : E → Q+

◮ Outgoing traffic bound b+
v ∈ N0, ingoing traffic bound

b−v ∈ N0

◮ Concave non-decreasing function f : Q+ → Q+

Find: Paths Puv , capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimized

and every valid traffic matrix (Du,v)u,v∈V can be routed.
D is valid if v sends ≤ b+

v and receives ≤ b−v

xe

f(xe)

Concave Cost VPN

Given:

◮ Undirected graph G = (V,E), costs c : E → Q+

◮ Outgoing traffic bound b+
v ∈ N0, ingoing traffic bound

b−v ∈ N0

◮ Concave non-decreasing function f : Q+ → Q+

Find: Paths Puv , capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimized

and every valid traffic matrix (Du,v)u,v∈V can be routed.
D is valid if v sends ≤ b+

v and receives ≤ b−v

xe

f(xe)
W.l.o.g.:

◮ senders s ∈ S: b+
s = 1, b−s = 0

◮ receivers r ∈ R: b+
r = 0, b−r = 1

◮ non-terminals v: b+
v = b−v = 0

Example

s1

s2

s3

r2

r1

r3
r4

e

Example

s1

s2

s3

r2

r1

r3
r4

Ps1r2

e

Example

s1

s2

s3

r2

r1

r3
r4

Ps1r2

Ps1r1

e

Example

s1

s2

s3

r2

r1

r3
r4

Ps1r2

Ps1r1

Ps2r3

e

Example

s1

s2

s3

r2

r1

r3
r4

Ps1r2

Ps1r1

Ps2r3

Ps3r3

e

Example

s1

s2

s3

r2

r1

r3
r4

Ps1r2

Ps1r1

Ps2r3

Ps3r3

e

S R

s1

s2

s3

r2

r1

r3

r4

Example

s1

s2

s3

r2

r1

r3
r4

Ps1r2

Ps1r1

Ps2r3

Ps3r3

e

S R

s1

s2

s3

r2

r1

r3

r4

Example

s1

s2

s3

r2

r1

r3
r4

Ps1r2

Ps1r1

Ps2r3

Ps3r3

e

S R

s1

s2

s3

r2

r1

r3

r4

xe = maximal cardinality of a matching in Ge = (S ∪ R,Ee)

with (s, r) ∈ Ee ⇔ e ∈ Psr

Example

s1

s2

s3

r2

r1

r3
r4

Ps1r2

Ps1r1

Ps2r3

Ps3r3

e

S R

s1

s2

s3

r2

r1

r3

r4

vertex cover C

xe = maximal cardinality of a matching in Ge = (S ∪ R,Ee)

with (s, r) ∈ Ee ⇔ e ∈ Psr

Known results

Linear costs:

◮ APX-hard

◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03]

◮ 4.74-apx [Eisenbrand, Grandoni ’05]

◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07]

Known results

Linear costs:

◮ APX-hard

◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03]

◮ 4.74-apx [Eisenbrand, Grandoni ’05]

◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07]

Linear costs/symmetric (b+
v = b−v):

◮ Opt. solution is a tree [Goyal, Olver, Shepherd ’08]

◮ Opt. tree solution = best shortest path tree
[Fingerhut et al. ’97; Gupta et al. ’01]

Known results

Linear costs:

◮ APX-hard

◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03]

◮ 4.74-apx [Eisenbrand, Grandoni ’05]

◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07]

Linear costs/symmetric (b+
v = b−v):

◮ Opt. solution is a tree [Goyal, Olver, Shepherd ’08]

◮ Opt. tree solution = best shortest path tree
[Fingerhut et al. ’97; Gupta et al. ’01]

Linear costs/balanced (|R| = |S|):

◮ Opt. tree solution = best shortest path tree
[Italiano, Leonardi, Oriolo ’06]

Known results

Linear costs:

◮ APX-hard

◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03]

◮ 4.74-apx [Eisenbrand, Grandoni ’05]

◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07]

Linear costs/symmetric (b+
v = b−v):

◮ Opt. solution is a tree [Goyal, Olver, Shepherd ’08]

◮ Opt. tree solution = best shortest path tree
[Fingerhut et al. ’97; Gupta et al. ’01]

Linear costs/balanced (|R| = |S|):

◮ Opt. tree solution = best shortest path tree
[Italiano, Leonardi, Oriolo ’06]

Theorem

There is a polytime 50-approximation for Concave Cost VPN

that also gives a tree solution.

Single Sink Buy-at-Bulk

xe

f(xe)

Given:

◮ G = (V,E), costs c : E → Q+

◮ clients D ⊆ V , root r

◮ Concave non-decreasing function f : Q+ → Q+

Find: Capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimize

and each client can send a flow of 1 to r (simultaneously).

root r

client

Single Sink Buy-at-Bulk

xe

f(xe)

Given:

◮ G = (V,E), costs c : E → Q+

◮ clients D ⊆ V , root r

◮ Concave non-decreasing function f : Q+ → Q+

Find: Capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimize

and each client can send a flow of 1 to r (simultaneously).

root r

client

1

1

12

3
1 1

5
1

Single Sink Buy-at-Bulk

xe

f(xe)

Given:

◮ G = (V,E), costs c : E → Q+

◮ clients D ⊆ V , root r

◮ Concave non-decreasing function f : Q+ → Q+

Find: Capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimize

and each client can send a flow of 1 to r (simultaneously).
Known results:

◮ APX-hard

◮ Opt. solution is tree [Karger, Minkoff ’00]

◮ For cable-based formulation:
◮ 76.8-apx [Gupta, Kumar, Roughgarden ’03]
◮ improved to 25-apx [Grandoni, Italiano ’06]

The algorithm

Algorithm:

+1

+1

+1

−1

−1

−1 −1

The algorithm

Algorithm:

1. Choose a sender s∗ ∈ S uniformly at random

+1

+1

+1

s∗

−1

−1

−1 −1

The algorithm

Algorithm:

1. Choose a sender s∗ ∈ S uniformly at random

2. Define central hub instance with single sender s∗ (but
b+
s∗ = |S|), receivers S ∪ R

+|S|

−1

−1

s∗

−1

−1

−1 −1

The algorithm

Algorithm:

1. Choose a sender s∗ ∈ S uniformly at random

2. Define central hub instance with single sender s∗ (but
b+
s∗ = |S|), receivers S ∪ R

3. Compute 25-apx solution x′

e using a SSBB algo for the
central hub VPN instance

+|S|

−1

−1

s∗

−1

−1

−1 −1

The algorithm

Algorithm:

1. Choose a sender s∗ ∈ S uniformly at random

2. Define central hub instance with single sender s∗ (but
b+
s∗ = |S|), receivers S ∪ R

3. Compute 25-apx solution x′

e using a SSBB algo for the
central hub VPN instance

+|S|

−1

−1

s∗

−1

−1

−1 −1

Claim: Capacities x′

e suffice for orig. instance

The algorithm

Algorithm:

1. Choose a sender s∗ ∈ S uniformly at random

2. Define central hub instance with single sender s∗ (but
b+
s∗ = |S|), receivers S ∪ R

3. Compute 25-apx solution x′

e using a SSBB algo for the
central hub VPN instance

k terminals

+|S|

−1

−1

s∗

−1

−1

−1 −1

e

x′

e = min{k, |S|}

Claim: Capacities x′

e suffice for orig. instance

SSBB vs. VPN with central hub

VPN:

◮ sender s∗ (b+
s∗ = |S|), receivers S ∪ R

◮ cost function
∑

e∈E ce · f(xe)

SSBB:

◮ root s∗, clients S ∪ R

◮ cost function
∑

e∈E ce · f(min{xe, |S|})

+|S|

−1

−1

s∗

−1

−1

−1 −1

SSBB vs. VPN with central hub

VPN:

◮ sender s∗ (b+
s∗ = |S|), receivers S ∪ R

◮ cost function
∑

e∈E ce · f(xe)

|S|

xe

f(xe)

SSBB:

◮ root s∗, clients S ∪ R

◮ cost function
∑

e∈E ce · f(min{xe, |S|}) → concave

+|S|

−1

−1

s∗

−1

−1

−1 −1

SSBB vs. VPN with central hub

VPN:

◮ sender s∗ (b+
s∗ = |S|), receivers S ∪ R

◮ cost function
∑

e∈E ce · f(xe)

SSBB:

◮ root s∗, clients S ∪ R

◮ cost function
∑

e∈E ce · f(min{xe, |S|}) → concave

+|S|

−1

−1

s∗

−1

−1

−1 −1

e

SSBB vs. VPN with central hub

VPN:

◮ sender s∗ (b+
s∗ = |S|), receivers S ∪ R

◮ cost function
∑

e∈E ce · f(xe)

SSBB:

◮ root s∗, clients S ∪ R

◮ cost function
∑

e∈E ce · f(min{xe, |S|}) → concave

k receivers/clients

+|S|

−1

−1

s∗

−1

−1

−1 −1

e

capacity on e cost for e

VPN
SSBB

SSBB vs. VPN with central hub

VPN:

◮ sender s∗ (b+
s∗ = |S|), receivers S ∪ R

◮ cost function
∑

e∈E ce · f(xe)

SSBB:

◮ root s∗, clients S ∪ R

◮ cost function
∑

e∈E ce · f(min{xe, |S|}) → concave

k receivers/clients

+|S|

−1

−1

s∗

−1

−1

−1 −1

e

capacity on e cost for e

VPN min{k, |S|} c(e) · f(min{k, |S|})
SSBB

SSBB vs. VPN with central hub

VPN:

◮ sender s∗ (b+
s∗ = |S|), receivers S ∪ R

◮ cost function
∑

e∈E ce · f(xe)

SSBB:

◮ root s∗, clients S ∪ R

◮ cost function
∑

e∈E ce · f(min{xe, |S|}) → concave

k receivers/clients

+|S|

−1

−1

s∗

−1

−1

−1 −1

e

capacity on e cost for e

VPN min{k, |S|} c(e) · f(min{k, |S|})
SSBB k c(e) · f(min{k, |S|})

Analysis

Theorem

There is a central hub solution of expected cost ≤ 2 · OPT .

s∗

Analysis

Theorem

There is a central hub solution of expected cost ≤ 2 · OPT .

Proof:

◮ Let (xe, Psr) be optimal solution for orig. instance

s∗

Analysis

Theorem

There is a central hub solution of expected cost ≤ 2 · OPT .

Proof:

◮ Let (xe, Psr) be optimal solution for orig. instance

◮ Choose a receiver r∗ randomly

s∗

r∗

Analysis

Theorem

There is a central hub solution of expected cost ≤ 2 · OPT .

Proof:

◮ Let (xe, Psr) be optimal solution for orig. instance

◮ Choose a receiver r∗ randomly

◮ Install |S| units of capacity on Ps∗r∗

s∗

r∗

|S|

Analysis

Theorem

There is a central hub solution of expected cost ≤ 2 · OPT .

Proof:

◮ Let (xe, Psr) be optimal solution for orig. instance

◮ Choose a receiver r∗ randomly

◮ Install |S| units of capacity on Ps∗r∗

◮ Install (cumulatively) 1 unit on each Psr∗ and Ps∗r

(in total never more then |S|)

s∗

r∗

|S|

1

1

Analysis

Theorem

There is a central hub solution of expected cost ≤ 2 · OPT .

Proof:

◮ Let (xe, Psr) be optimal solution for orig. instance

◮ Choose a receiver r∗ randomly

◮ Install |S| units of capacity on Ps∗r∗

◮ Install (cumulatively) 1 unit on each Psr∗ and Ps∗r

(in total never more then |S|)

s∗

r∗

|S|

1

1

1

1

1

Analysis

Theorem

There is a central hub solution of expected cost ≤ 2 · OPT .

Proof:

◮ Let (xe, Psr) be optimal solution for orig. instance

◮ Choose a receiver r∗ randomly

◮ Install |S| units of capacity on Ps∗r∗

◮ Install (cumulatively) 1 unit on each Psr∗ and Ps∗r

(in total never more then |S|)

◮ Claim: E[capacity on e] ≤ 2 · xe

s∗

r∗

|S|

1

1

1

1

1

Analysis (2)

Lemma

E[capacity on e] ≤ 2 · xe.

Analysis (2)

Lemma

E[capacity on e] ≤ 2 · xe.

S R
◮ Consider Ge = (S ∪ R,Ee) with

edges (s, r) ∈ Ee ⇔ e ∈ Ps,r

Analysis (2)

Lemma

E[capacity on e] ≤ 2 · xe.

S R

C

◮ Consider Ge = (S ∪ R,Ee) with
edges (s, r) ∈ Ee ⇔ e ∈ Ps,r

◮ Let C be vertex cover with |C| = xe

Analysis (2)

Lemma

E[capacity on e] ≤ 2 · xe.

S R

C

s∗
r∗

◮ Consider Ge = (S ∪ R,Ee) with
edges (s, r) ∈ Ee ⇔ e ∈ Ps,r

◮ Let C be vertex cover with |C| = xe

◮ Case: s∗ or r∗ are in C
◮ Prob: ≤ |S∩C|

|S| + |R∩C|
|R| ≤ |C|

|S|

◮ Capacity: ≤ |S|
◮ Contribution: ≤ |C|

|S| · |S| = |C| = xe

Analysis (2)

Lemma

E[capacity on e] ≤ 2 · xe.

S R

C

s∗

r∗
◮ Consider Ge = (S ∪ R,Ee) with

edges (s, r) ∈ Ee ⇔ e ∈ Ps,r

◮ Let C be vertex cover with |C| = xe

◮ Case: s∗ or r∗ are in C
◮ Prob: ≤ |S∩C|

|S| + |R∩C|
|R| ≤ |C|

|S|

◮ Capacity: ≤ |S|
◮ Contribution: ≤ |C|

|S| · |S| = |C| = xe

◮ Case: Neither s∗ nor r∗ are in C
◮ Prob: ≤ 1
◮ (s∗, r∗) /∈ Ee ⇒ e /∈ Ps∗r∗

◮ Capacity: ≤ deg(s∗) + deg(r∗) ≤ |R ∩ C| + |S ∩ C| = |C|
◮ Contribution: ≤ |C| = xe

Balanced VPN is NP-hard

Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

◮ G = (V,E) Steiner tree instance with terminals v1, . . . , vk+1

◮ C >
∑

e∈E c(e), M ≫ (k + 1)C

Balanced VPN is NP-hard

Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

◮ G = (V,E) Steiner tree instance with terminals v1, . . . , vk+1

◮ C >
∑

e∈E c(e), M ≫ (k + 1)C

Gvk+1

v1

v2

...
vk

Balanced VPN is NP-hard

Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

◮ G = (V,E) Steiner tree instance with terminals v1, . . . , vk+1

◮ C >
∑

e∈E c(e), M ≫ (k + 1)C

Gvk+1

v1

v2

...
vk

a1

a2

a3

a4

w1 w2

. . .
wk u1 u2 u3

. . .
u2k−1

M

M kM

kM

C

C
C

0 0 0 0 0 0 0

sender receiver

Balanced VPN is NP-hard

Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

◮ G = (V,E) Steiner tree instance with terminals v1, . . . , vk+1

◮ C >
∑

e∈E c(e), M ≫ (k + 1)C

Gvk+1

v1

v2

...
vk

a1

a2

a3

a4

w1 w2

. . .
wk u1 u2 u3

. . .
u2k−1

M

M kM

kM

C

C
C

0 0 0 0 0 0 0

sender receiver

Balanced VPN is NP-hard

Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

◮ G = (V,E) Steiner tree instance with terminals v1, . . . , vk+1

◮ C >
∑

e∈E c(e), M ≫ (k + 1)C

Gvk+1

v1

v2

...
vk

a1

a2

a3

a4

w1 w2

. . .
wk u1 u2 u3

. . .
u2k−1

M

M kM

kM

C

C
C

0 0 0 0 0 0 0

sender receiver

Balanced VPN is NP-hard

Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

◮ G = (V,E) Steiner tree instance with terminals v1, . . . , vk+1

◮ C >
∑

e∈E c(e), M ≫ (k + 1)C

Gvk+1

v1

v2

...
vk

a1

a2

a3

a4

w1 w2

. . .
wk u1 u2 u3

. . .
u2k−1

M/1

M/1 kM/k

kM/k

C/1

C/1

C/1

0 0 0 0 0 0 0

sender receiver

1 1

1

1

1

1

Conclusions

Conclusions

Theorem

There is a 50-apx for Concave Cost VPN

Conclusions

Theorem

There is a 50-apx for Concave Cost VPN

Corollary

ρ-apx for SSBB ⇒ 2ρ-apx for Concave Cost VPN

Conclusions

Theorem

There is a 50-apx for Concave Cost VPN

Corollary

ρ-apx for SSBB ⇒ 2ρ-apx for Concave Cost VPN

Corollary

OPTtree ≤ 2 · OPT for Concave Cost VPN

Conclusions

Theorem

There is a 50-apx for Concave Cost VPN

Corollary

ρ-apx for SSBB ⇒ 2ρ-apx for Concave Cost VPN

Corollary

OPTtree ≤ 2 · OPT for Concave Cost VPN

Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

Conclusions

Theorem

There is a 50-apx for Concave Cost VPN

Corollary

ρ-apx for SSBB ⇒ 2ρ-apx for Concave Cost VPN

Corollary

OPTtree ≤ 2 · OPT for Concave Cost VPN

Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

Thanks for your attention

