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Concave Cost VPN

Given:
» Undirected graph G = (V, E), costs ¢: E — Q4
» Outgoing traffic bound b € Ny, ingoing traffic bound
b; € Ny
» Concave non-decreasing function f: Q; — Q4
Find: Paths P,,, capacities z, s.t.

Z c(e) - f(xe) — minimized
eck

and every valid traffic matrix (D, )y vev can be routed.
D is valid if v sends < b} and receives < b,
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Concave Cost VPN

Given:
» Undirected graph G = (V, E), costs ¢: E — Q4
» Outgoing traffic bound b € Ny, ingoing traffic bound
b; € Ny
» Concave non-decreasing function f: Q; — Q4
Find: Paths P,,, capacities z, s.t.

Z c(e) - f(x.) — minimized

ecE

and every valid traffic matrix (D, )y vev can be routed.
D is valid if v sends < b} and receives < b,

f(xe)
W.lo.g.:
» senders s € S: b =1,b; =0

> receivers r € R: b = 0,0, =1

» non-terminals v: b =b; =0
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Known results

Linear costs:
» APX-hard
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» APX-hard
» 5.55-apx [Gupta, Kumar, Roughgarden ’03]
» 4.74-apx [Eisenbrand, Grandoni ’05]
» 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella '07]
Linear costs/symmetric (b = b, ):
» Opt. solution is a tree [Goyal, Olver, Shepherd ’08]
» Opt. tree solution = best shortest path tree
[Fingerhut et al. '97; Gupta et al. '01]
Linear costs/balanced (|R| = |5]):

» Opt. tree solution = best shortest path tree
[Italiano, Leonardi, Oriolo ’06]

Theorem

There is a polytime 50-approzimation for Concave Cost VPN
that also gives a tree solution.




Single Sink Buy-at-Bulk

Given:
» G=(V,E), costs c: B — Q4
» clients D C V| root r

» Concave non-decreasing function f: Q; — Q4

Find: Capacities x. s.t.

Z c(e) - f(xe) — minimize

ecE

and each client can send a flow of 1 to r (simultaneously).
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Single Sink Buy-at-Bulk

Given:
» G=(V,E), costs c: B — Q4
» clients D C V| root r

» Concave non-decreasing function f: Q; — Q4

Find: Capacities x. s.t.

Z c(e) - f(xe) — minimize

ecE

and each client can send a flow of 1 to r (simultaneously).
Known results:

» APX-hard
» Opt. solution is tree [Karger, Minkoff ’00]
» For cable-based formulation:

» 76.8-apx [Gupta, Kumar, Roughgarden ’03]
» improved to 25-apx [Grandoni, Italiano ’06]
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The algorithm
Algorithm:

1. Choose a sender s* € S uniformly at random

2. Deﬁne central hub instance with single sender s* (but
bl =S]), receivers SU R

3. Compute 25-apx solution z/ using a SSBB algo for the
central hub VPN instance

2, = min{k, ||}
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Claim: Capacities xz, suffice for orig. instance



SSBB vs. VPN with central hub
VPN:

» sender s* (bf. = |S|), receivers S U R
> cost function ) . pce - f(2e)
SSBB:
» root s*, clients SU R
> cost function ) .y ce - f(min{z,, |S|})
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Analysis

Theorem
There is a central hub solution of expected cost <2 - OPT.

Proof:

Let (ze, Psr) be optimal solution for orig. instance

v

Choose a receiver r* randomly

Install | S| units of capacity on Py«

vV vyvY

Install (cumulatively) 1 unit on each Py« and Pjs,
(in total never more then |S|)

v

Claim: E|capacity on e] <2 -z,
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Lemma
E[capacity on e] <2 - x,.

» Consider G, = (S U R, E,) with
edges (s,r) € B, & e€ Py,
» Let C be vertex cover with |C| =z,
» Case: s* or r* are in C
Isnc| |, |RNC|

> PrOb < |S| + ‘R‘
» Capacity: < |9]
» Contribution: S -S| =1C| = .
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Analysis (2)

Lemma
E[capacity on e] <2 - x,.

» Consider G, = (S U R, E,) with
edges (s,r) € B, & e€ Py,

» Let C be vertex cover with |C| =z,

» Case: s* or r* are in C'
R . < Isncl | |rnc| o]
Prob: < H5 + T < 13
» Capacity: < |9]

» Contribution: < % 18] =1C| = z.

» Case: Neither s* nor r* are in C

Prob: <1 (w]
(s*,7*) & E. = € & Pgrp

Capacity: < deg(s*) +deg(r*) <|RNC|+|SNC|=|C|
Contribution: < |C| =z,

vV Yy VvVvyy
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> C >3 cpcle), M> (k+1)C
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Theorem

VPN with linear costs and |S| = |R| is still NP-hard.

» G = (V, E) Steiner tree instance with terminals vy, ...
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Balanced VPN is NP-hard

Theorem
VPN with linear costs and |S| = |R| is still NP-hard. J
» G = (V, E) Steiner tree instance with terminals vq, ..., v

> C >3 cpcle), M> (k+1)C
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Conclusions

Theorem
There is a 50-apz for Concave Cost VPN

Corollary
p-apx for SSBB = 2p-apx for Concave Cost VPN

Corollary
OPTyee < 2-OPT for Concave Cost VPN

Theorem
VPN with linear costs and |S| = |R)| is still NP-hard.

Thanks for your attention



