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Concave Cost VPN

Given:

◮ Undirected graph G = (V,E), costs c : E → Q+

◮ Outgoing traffic bound b+
v ∈ N0, ingoing traffic bound

b−v ∈ N0

◮ Concave non-decreasing function f : Q+ → Q+

Find: Paths Puv , capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimized

and every valid traffic matrix (Du,v)u,v∈V can be routed.
D is valid if v sends ≤ b+

v and receives ≤ b−v
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Given:
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◮ Outgoing traffic bound b+
v ∈ N0, ingoing traffic bound

b−v ∈ N0

◮ Concave non-decreasing function f : Q+ → Q+

Find: Paths Puv , capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimized

and every valid traffic matrix (Du,v)u,v∈V can be routed.
D is valid if v sends ≤ b+

v and receives ≤ b−v

xe

f(xe)
W.l.o.g.:

◮ senders s ∈ S: b+
s = 1, b−s = 0

◮ receivers r ∈ R: b+
r = 0, b−r = 1

◮ non-terminals v: b+
v = b−v = 0
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vertex cover C

xe = maximal cardinality of a matching in Ge = (S ∪ R,Ee)

with (s, r) ∈ Ee ⇔ e ∈ Psr
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◮ APX-hard

◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03]

◮ 4.74-apx [Eisenbrand, Grandoni ’05]

◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07]

Linear costs/symmetric (b+
v = b−v ):

◮ Opt. solution is a tree [Goyal, Olver, Shepherd ’08]

◮ Opt. tree solution = best shortest path tree
[Fingerhut et al. ’97; Gupta et al. ’01]

Linear costs/balanced (|R| = |S|):

◮ Opt. tree solution = best shortest path tree
[Italiano, Leonardi, Oriolo ’06]

Theorem

There is a polytime 50-approximation for Concave Cost VPN

that also gives a tree solution.
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Single Sink Buy-at-Bulk

xe

f(xe)

Given:

◮ G = (V,E), costs c : E → Q+

◮ clients D ⊆ V , root r

◮ Concave non-decreasing function f : Q+ → Q+

Find: Capacities xe s.t.
∑

e∈E

c(e) · f(xe) → minimize

and each client can send a flow of 1 to r (simultaneously).
Known results:

◮ APX-hard

◮ Opt. solution is tree [Karger, Minkoff ’00]

◮ For cable-based formulation:
◮ 76.8-apx [Gupta, Kumar, Roughgarden ’03]
◮ improved to 25-apx [Grandoni, Italiano ’06]
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The algorithm

Algorithm:

1. Choose a sender s∗ ∈ S uniformly at random

2. Define central hub instance with single sender s∗ (but
b+
s∗ = |S|), receivers S ∪ R

3. Compute 25-apx solution x′

e using a SSBB algo for the
central hub VPN instance

k terminals

+|S|

−1

−1

s∗

−1

−1

−1 −1

e

x′

e = min{k, |S|}

Claim: Capacities x′

e suffice for orig. instance
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Proof:

◮ Let (xe, Psr) be optimal solution for orig. instance

◮ Choose a receiver r∗ randomly

◮ Install |S| units of capacity on Ps∗r∗

◮ Install (cumulatively) 1 unit on each Psr∗ and Ps∗r

(in total never more then |S|)

◮ Claim: E[capacity on e] ≤ 2 · xe
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Lemma

E[capacity on e] ≤ 2 · xe.

S R

C

s∗

r∗
◮ Consider Ge = (S ∪ R,Ee) with

edges (s, r) ∈ Ee ⇔ e ∈ Ps,r

◮ Let C be vertex cover with |C| = xe

◮ Case: s∗ or r∗ are in C
◮ Prob: ≤ |S∩C|

|S| + |R∩C|
|R| ≤ |C|

|S|

◮ Capacity: ≤ |S|
◮ Contribution: ≤ |C|

|S| · |S| = |C| = xe

◮ Case: Neither s∗ nor r∗ are in C
◮ Prob: ≤ 1
◮ (s∗, r∗) /∈ Ee ⇒ e /∈ Ps∗r∗

◮ Capacity: ≤ deg(s∗) + deg(r∗) ≤ |R ∩ C| + |S ∩ C| = |C|
◮ Contribution: ≤ |C| = xe
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Thanks for your attention


