University of Washington Complex Analysis - Math 535 S. Rohde

Winter 2018

Exercise Set 3

In the first two problems, D and D' are rectangles of sidelengths a, b and a', b' respectively, and $f: D \to D'$ is a conformal map whose homeomorphic extension to \overline{D} sends a-sides to a'-sides and b-sides to b'-sides (hence corners to corners).

Problem 1: A continuous function (curve) $\gamma : (0,1) \to \mathbb{C}$ is locally rectifiable if $\gamma[r,s]$ has finite length for all 0 < r < s < 1. The modulus $M(\Gamma)$ of a set of locally rectifiable curves Γ in D is defined by

$$M(\Gamma) = \inf_{\rho} \int_{D} \rho^{2} dx dy$$

where the infimum is over all functions $\rho:D\to\mathbb{R}_+$ that are continuous on D and that satisfy

$$\int_{\gamma} \rho(z) |dz| \ge 1.$$

a) Prove that $M(\Gamma)$ is conformally invariant: If $\Gamma' = f(\Gamma)$ is the set of all curves $f \circ \gamma$, then $M(\Gamma') = M(\Gamma)$.

b) Denote Γ the set of locally rectifiable curves in D that join the a- sides of D. Show that $M(\Gamma) = b/a$ and conclude that a/b = a'/b'. Hint: Cauchy-Schwarz.

Problem 2: Assuming that $a/b \neq a'/b'$ and that D and D' "overlap" as sketched in class, consider the winding number of the curve f(z) - z where z ranges over ∂D to obtain a contradiction.

Problem 3. Provide the details to the proof of Runge's theorem in class, regarding the uniform approximation of an integral by Riemann sums.

Problem 4 Provide the details of the proofs of the following two statements:

a) If $U \subset \mathbb{C}$ is open and connected and if $b \in U$, then every rational function with poles in U can be uniformly approximated on $\mathbb{C} \setminus U$ by rational functions with poles only at b.

b) If $U \subset \mathbb{C}$ is open, connected and if there is R > 0 with $\{|z| > R\} \subset U$, then every rational function with poles in U can be uniformly approximated on $\mathbb{C} \setminus U$ by polynomials.

Problem 5 Prove the equivalence of the ten characterizations of simply connected domains stated in class.

Due date : Friday, February 9, before class.