Math 308 P Conceptual Problems \#5

Due Friday, February 22

Please write your name and your quiz section (PA, PB, or PC) on your homework paper.
(1) Let S be a plane in \mathbb{R}^{3} passing through the origin, so that S is a two-dimensional subspace of \mathbb{R}^{3}. There is a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ called the reflection about S which is defined as follows. If \mathbf{v} is any vector in S, then $T(\mathbf{v})=\mathbf{v}$. And if \mathbf{n} is a vector which is perpendicular to S, then $T(\mathbf{n})=-\mathbf{n}$.
Let T be the linear transformation given by $T(\mathbf{x})=A \mathbf{x}$, where A is the matrix

$$
\frac{1}{3}\left[\begin{array}{rrr}
-1 & -2 & 2 \\
-2 & 2 & 1 \\
2 & 1 & 2
\end{array}\right]
$$

This linear transformation is the reflection about a plane S. Find an equation for S and find a basis for S.

Hint: Which matrix has null space equal to S ? Which matrix has null space equal to $\operatorname{span}\{\mathbf{n}\}$?
(2) Let L be a line through the origin in \mathbb{R}^{2}, so that L is a one-dimensional subspace of \mathbb{R}^{2}. There is a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ called the projection onto L which is defined as follows. If \mathbf{v} is any vector in L, then $T(\mathbf{v})=\mathbf{v}$. And if \mathbf{n} is a vector which is perpendicular to L, then $T(\mathbf{n})=0$.
Let L be the line $\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]: 3 x_{1}=x_{2}\right\}$.
(a) Find a basis for $\operatorname{ker}(T)$ and find a basis for range (T).
(b) Find the matrix A of T, which satisfies $T(\mathbf{x})=A \mathbf{x}$.

You can do this however you like, but here are some hints/steps that you might follow.

- Remember that range (T) is the span of the columns of A. So what must the columns of A look like?
- Pick a nonzero vector in $\operatorname{ker}(T)$. What does this tell you about A ?
- Pick a nonzero vector \mathbf{v} in L. What does the condition that $T(\mathbf{v})=\mathbf{v}$ tell you about A ?
(3) (a) Determine the dimension of the subspace S of \mathbb{R}^{4} defined by

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{4}: x_{1}+x_{2}+x_{3}+x_{4}=0\right\} .
$$

(b) Add one or more vectors to the set $\left\{\left[\begin{array}{r}-1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ 0 \\ 1\end{array}\right]\right\}$ to obtain a basis for S.

Explain your reasoning.

