Math 308 P Conceptual Problems #5

Due Friday, February 22

Please write your name and your quiz section (PA, PB, or PC) on your homework paper.

(1) Let S be a plane in \mathbb{R}^3 passing through the origin, so that S is a two-dimensional subspace of \mathbb{R}^3 . There is a linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ called the *reflection about* S which is defined as follows. If **v** is any vector in S, then $T(\mathbf{v}) = \mathbf{v}$. And if **n** is a vector which is perpendicular to S, then $T(\mathbf{n}) = -\mathbf{n}$.

Let T be the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$, where A is the matrix

$$\frac{1}{3} \begin{bmatrix} -1 & -2 & 2\\ -2 & 2 & 1\\ 2 & 1 & 2 \end{bmatrix}.$$

This linear transformation is the reflection about a plane S. Find an equation for S and find a basis for S.

Hint: Which matrix has null space equal to S? Which matrix has null space equal to span $\{n\}$?

(2) Let *L* be a line through the origin in \mathbb{R}^2 , so that *L* is a one-dimensional subspace of \mathbb{R}^2 . There is a linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ called the *projection onto L* which is defined as follows. If **v** is any vector in *L*, then $T(\mathbf{v}) = \mathbf{v}$. And if **n** is a vector which is perpendicular to *L*, then $T(\mathbf{n}) = 0$.

Let *L* be the line
$$\left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} : 3x_1 = x_2 \right\}$$
.

- (a) Find a basis for ker(T) and find a basis for range(T).
- (b) Find the matrix A of T, which satisfies T(x) = Ax. You can do this however you like, but here are some hints/steps that you might follow.
 - Remember that range(T) is the span of the columns of A. So what must the columns of A look like?
 - Pick a nonzero vector in ker(T). What does this tell you about A?
 - Pick a nonzero vector \mathbf{v} in L. What does the condition that $T(\mathbf{v}) = \mathbf{v}$ tell you about A?
- (3) (a) Determine the dimension of the subspace S of \mathbb{R}^4 defined by

$$S = \{ \mathbf{x} \in \mathbb{R}^4 : x_1 + x_2 + x_3 + x_4 = 0 \}.$$

(b) Add one or more vectors to the set $\left\{ \begin{bmatrix} -1\\0\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\-1\\0\\1\end{bmatrix} \right\}$ to obtain a basis for S.

Explain your reasoning.