1. (7 points) Compute the curvature of $\mathbf{r}(t)=\left\langle t^{3},-\frac{1}{t}, 3 t\right\rangle$ at the point $(-1,1,-3)$.

$$
\begin{aligned}
t & =-1 \\
\mathbf{r}^{\prime}(t) & =\left\langle 3 t^{2}, \frac{1}{t^{2}}, 3\right\rangle \\
\mathbf{r}^{\prime}(-1) & =\langle 3,1,3\rangle \\
\mathbf{r}^{\prime \prime}(t) & =\left\langle 6 t,-\frac{2}{t^{3}}, 0\right\rangle \\
\mathbf{r}^{\prime \prime}(-1) & =\langle-6,2,0\rangle \\
\mathbf{r}^{\prime}(-1) \times \mathbf{r}^{\prime \prime}(-1) & =\langle-6,18,12\rangle \\
\kappa & =\frac{\left|\mathbf{r}^{\prime}(-1) \times \mathbf{r}^{\prime \prime}(-1)\right|}{\left|\mathbf{r}^{\prime}(-1)\right|^{3}} \\
& =\frac{6 \sqrt{14}}{\sqrt{19^{3}}} \\
& \approx 0.27
\end{aligned}
$$

2. (7 points) A force with magnitude 14 N acts directly downward from the $x y$-plane on an object with mass 5 kg . The object starts at the point $(0,0,1)$ with initial velocity $\mathbf{v}(0)=\mathbf{i}-\mathbf{j}+2 \mathbf{k}$. Find its position at time $t=2$.

$$
\begin{aligned}
F & =m a \\
14 & =5 a \\
a & =2.8 \\
\mathbf{a}(t) & =-2.8 \mathbf{k} \\
\mathbf{v}(t) & =-2.8 t \mathbf{k}+\mathbf{v}(0) \\
& =\mathbf{i}-\mathbf{j}+(2-2.8 t) \mathbf{k} \\
\mathbf{r}(t) & =t \mathbf{i}-t \mathbf{j}+\left(2 t-1.4 t^{2}\right) \mathbf{k}+\mathbf{r}(0) \\
& =t \mathbf{i}-t \mathbf{j}+\left(1+2 t-1.4 t^{2}\right) \mathbf{k} \\
\mathbf{r}(2) & =2 \mathbf{i}-2 \mathbf{j}-0.6 \mathbf{k}
\end{aligned}
$$

The object is at the point $(2,-2,-0.6)$ at $t=2$.
3. (7 points) Compute all first partial derivatives of the function $w=3 y^{x+z}$.

$$
\begin{aligned}
\frac{\partial w}{\partial y} & =3(x+z) y^{x+z-1} \\
\ln (w) & =\ln 3+(x+z) \ln y \\
\frac{1}{w} \cdot \frac{\partial w}{\partial x} & =\ln y \\
\frac{\partial w}{\partial x} & =3 y^{x+z} \cdot \ln y \\
\frac{1}{w} \cdot \frac{\partial w}{\partial z} & =\ln y \\
\frac{\partial w}{\partial z} & =3 y^{x+z} \cdot \ln y
\end{aligned}
$$

4. (7 points) Consider the surface given implicitly by $2 x z^{3}+y z+2 x^{2} y=0$.

Compute the tangent plane to this surface at the point $(1,2,-1)$. Use this tangent plane to approximate the z-coordinate of a point on the surface where $x=0.8$ and $y=2.01$.

$$
\begin{aligned}
0 & =2 z^{3}+6 x z^{2} \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial x}+4 x y \\
0 & =-2+6 \frac{\partial z}{\partial x}+2 \frac{\partial z}{\partial x}+8 \\
\frac{\partial z}{\partial x} & =-\frac{3}{4} \\
0 & =6 x z^{2} \frac{\partial z}{\partial y}+z+y \frac{\partial z}{\partial y}+2 x^{2} \\
0 & =6 \frac{\partial z}{\partial y}-1+2 \frac{\partial z}{\partial y}+2 \\
\frac{\partial z}{\partial y} & =-\frac{1}{8} \\
0 & =-\frac{3}{4}(x-1)-\frac{1}{8}(y-2)-(z+1) \\
z & \approx-1-\frac{3}{4}(0.8-1)-\frac{1}{8}(2.01-2) \\
& =-0.85125
\end{aligned}
$$

5. (10 points) Find the points on the surface $y^{2}=x z+3 x+12$ that are closest to the origin. Justify that your answer is a minimum.

We wish to minimize $D=x^{2}+y^{2}+z^{2}$, subject to the constraint that $y^{2}=x z+3 x+12$.
Use the constraint to eliminate y from our objective D.

$$
\begin{aligned}
D & =x^{2}+y^{2}+z^{2} \\
& =x^{2}+x z+3 x+12+z^{2} \\
D_{x} & =2 x+z+3 \\
D_{y} & =x+2 z \\
2 x+z & =-3 \\
x+2 z & =0 \\
z & =1 \\
x & =-2 \\
y^{2} & =(-2)(1)+3(-2)+12=4 \\
y & =-2,2
\end{aligned}
$$

There are two critical points: $(-2,2,1)$ and $(-2,-2,1)$. Note that they are both 3 units away from the origin.

We use the Hessian to check that this is a minimum.

$$
\begin{aligned}
D_{x x} & =2 \\
D_{x z}=D_{z x} & =1 \\
D_{z z} & =2 \\
H & =\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right|=3
\end{aligned}
$$

Since $H>0$ and $D_{x x}>0$, we conclude that the distance is a local minumum.
6. (12 total points) Evaluate the double integrals.
(a) (6 points) $\int_{0}^{1} \int_{\pi y}^{\pi} \cos \left(x^{2}\right) d x d y$

$$
\begin{aligned}
\int_{0}^{1} \int_{\pi y}^{\pi} \cos \left(x^{2}\right) d x d y & =\int_{0}^{\pi} \int_{0}^{\frac{1}{\pi} x} \cos \left(x^{2}\right) d y d x \\
& =\int_{0}^{\pi} \frac{1}{\pi} x \cos \left(x^{2}\right) d x \\
& =\left.\frac{1}{2 \pi} \sin \left(x^{2}\right)\right|_{0} ^{\pi} \\
& =\frac{1}{2 \pi} \sin \left(\pi^{2}\right)
\end{aligned}
$$

(b) (6 points) $\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x & =\int_{0}^{\pi / 2} \int_{0}^{2} r \cdot r d r d \theta \\
& =\int_{0}^{\pi / 2} d \theta \cdot \int_{0}^{2} r^{2} d r \\
& =\frac{\pi}{2} \cdot \frac{8}{3} \\
& =\frac{4 \pi}{3}
\end{aligned}
$$

