1. (8 points) Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.

$$x = e^{-t}\cos t$$
, $y = e^{-t}\sin t$, $z = e^{-t}$ (1,0,1)

Let
$$\mathbf{r}(t) = \langle e^{-t} \cos t, e^{-t} \sin t, e^{-t} \rangle$$
.

Then
$$\mathbf{r}'(t) = \langle -e^{-t}\cos t - e^{-t}\sin t, -e^{-t}\sin t + e^{-t}\cos t, -e^{-t} \rangle$$
.

At
$$(1,0,1)$$
, we have $1=z=e^{-t}$ so $t=0$. (Check that this also works for x and y.)

The direction vector of the tangent line is $\mathbf{r}'(0) = \langle -1, 1, -1 \rangle$.

The vector equation of the tangent line is $\langle x, y, z \rangle = \langle 1, 0, 1 \rangle + t \cdot \langle -1, 1, -1 \rangle$.

The parametric equations are

$$\begin{cases} x = 1 - t \\ y = t \\ z = 1 - t \end{cases}$$

2. (8 points) Find symmetric equations for the line through the point (2,0,-5) that is parallel to the plane x-2y+z=3 and perpendicular to the line x=3-t, y=2+t, z=t-5.

 $N = \langle 1, -2, 1 \rangle$ is the normal vector to the plane x - 2y + z = 3.

 $\mathbf{v} = \langle -1, 1, 1 \rangle$ is the direction vector to the given line.

The direction vector of the line we want is orthogonal to both \mathbf{v} and \mathbf{N} .

Thus it is parallel to $\mathbf{v} \times \mathbf{N} = \langle 3, 2, 1 \rangle$.

The vector equation of the line is

$$\langle x, y, z \rangle = \langle 2, 0, 5 \rangle + t \cdot \langle 3, 2, 1 \rangle$$

The symmetric equations are

$$\frac{x-2}{3} = \frac{y}{2} = z - 5$$

3. (9 points) Find the length of the curve.

$$\mathbf{r}(t) = \frac{4}{3}t^{3/2}\mathbf{i} + 2t\mathbf{j} - \frac{1}{2}t^2\mathbf{k}$$

from t = 0 to t = 4.

$$\mathbf{r}'(t) = 2t^{1/2} \mathbf{i} + 2 \mathbf{j} - t \mathbf{k}$$

$$|\mathbf{r}'(t)| = \sqrt{4t + 4 + t^2}$$

$$= \sqrt{(t+2)^2}$$

$$= t+2 \quad (magnitude is positive)$$

$$s = \int_0^4 |\mathbf{r}'(t)| dt$$

$$= \int_0^4 t + 2 dt$$

$$= \frac{1}{2}t^2 + 2t \Big|_0^4$$

4. (8 points) Find the cosines of the angles between the curves at their points of intersection.

$$y = 2x$$
 and $y = -x^2 + 3x + 2$

Find the points of intersection:

$$2x = -x^{2} + 3x + 2$$

$$0 = -x^{2} + x + 2$$

$$= -(x-2)(x+1)$$

The points are (2,4) and (-1,-2).

The tangent vector to y = 2x is constant $\langle 1, 2 \rangle$.

The tangent vector to $y = -x^2 + 3x - 2$ is $\langle 1, -2x + 3 \rangle$.

At (2,4),
$$\cos \theta = \frac{\langle 1,2 \rangle \cdot \langle 1,-1 \rangle}{\sqrt{5} \cdot \sqrt{2}} = -\frac{1}{\sqrt{10}}$$

At
$$(-1, -2)$$
, $\cos \theta = \frac{\langle 1, 2 \rangle \cdot \langle 1, 5 \rangle}{\sqrt{5} \cdot \sqrt{26}} = \frac{11}{\sqrt{130}}$

5. (8 points) Find a vector function, $\mathbf{r}(t)$ that represents the curve of intersection of the following two surfaces: the hyperboloid $4x^2 + y^2 - z^2 = 1$ and the plane 2x - y - z = 0.

First eliminate z:

$$z = 2x - y$$

$$1 = 4x^{2} + y^{2} - (2x - y)^{2}$$

$$= 4xy$$

$$y = \frac{1}{4x}$$

Set
$$x = t$$
. Then $y = \frac{1}{4t}$ and $z = 2x - y = 2t - \frac{1}{4t}$.

The vector function is $\mathbf{r}(t) = \left\langle t, \frac{1}{4t}, 2t - \frac{1}{4t} \right\rangle$.

6. (9 points) Find an equation for the surface consisting of all points P for which the distance from P to the point (0,0,-1) is equal to the distance from P to the plane z=2. Identify the surface.

Write
$$P = (x, y, z)$$
.

The distance from P to
$$(0,0,-1)$$
 is $\sqrt{(x-0)^2 + (y-0)^2 + (z+1)^2}$.

 $N = \langle 0, 0, 1 \rangle$ is the normal vector of the plane z = 2.

Choose any point Q on the plane. I'll use Q = (0,0,2).

The distance from P to the plane equals $\operatorname{comp}_{\mathbf{N}} \overrightarrow{QP}$

$$\overrightarrow{QP} = \langle x, y, z - 2 \rangle$$

$$comp_{\mathbf{N}}\overrightarrow{QP} = \frac{\overrightarrow{QP} \cdot \mathbf{N}}{|\mathbf{N}|}$$
$$= z - 2$$

Set the two distances equal.

$$z-2 = \sqrt{x^2 + y^2 + (z+1)^2}$$

$$z^2 - 4z + 4 = x^2 + y^2 + z^2 + 2z + 1$$

$$-6z + 3 = x^2 + y^2$$

This is an elliptic paraboloid.