1. Determine if the following limits exist. If they exist, compute them. Justify your answers.
(a) (4 points) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{2 x^{2}-3 x-2}$

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}-4}{2 x^{2}-3 x-2} & =\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(2 x+1)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x+2}{2 x+1} \\
& =\frac{4}{5}
\end{aligned}
$$

(b) (4 points) $\lim _{h \rightarrow 0}\left(\frac{2}{h^{3}+2 h}-\frac{1}{h}\right)$

$$
\begin{aligned}
\lim _{h \rightarrow 0}\left(\frac{2}{h^{3}+2 h}-\frac{1}{h}\right) & =\lim _{h \rightarrow 0}\left(\frac{2-\left(h^{2}+2\right)}{h^{3}+2 h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{-h^{2}}{h^{3}+2 h}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{-h}{h^{2}+2}\right) \\
& =\frac{0}{2}=0
\end{aligned}
$$

(c) (4 points) $\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}-3 x}-2 x\right)$

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}-3 x}-2 x\right) & =\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}-3 x}-2 x\right) \cdot \frac{\sqrt{4 x^{2}-3 x}+2 x}{\sqrt{4 x^{2}-3 x}+2 x} \\
& =\lim _{x \rightarrow \infty} \frac{-3 x}{\sqrt{4 x^{2}-3 x}+2 x} \cdot \frac{1 / x}{1 / x} \\
& =\lim _{x \rightarrow \infty} \frac{-3}{\sqrt{4-3 / x}+2} \\
& =\frac{-3}{\sqrt{4}+2}=-\frac{3}{4}
\end{aligned}
$$

2. (7 points) Use the limit definition of the derivative on this problem. Find the slope of the tangent line to the curve $y=\frac{1}{5-2 x}$ at the point $(2,1)$.

$$
\begin{aligned}
m_{\mathrm{tan}} & =\lim _{h \rightarrow 0} \frac{\frac{1}{5-2(2+h)}-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot\left(\frac{1-(5-2(2+h))}{5-2(2+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{h} \cdot\left(\frac{2 h}{5-2(2+h)}\right) \\
& =\lim _{h \rightarrow 0} \frac{2}{5-2(2+h)} \\
& =2
\end{aligned}
$$

3. (7 points) Calculate the equation of the tangent line to $g(x)=\frac{1+x}{1+x+x^{2}} \quad$ at $x=2$.

$$
\begin{aligned}
& g(2)=\frac{3}{7} \\
& g^{\prime}(x)=\frac{\left(1+x+x^{2}\right) \cdot 1-(1+x)(1+2 x)}{\left(1+x+x^{2}\right)^{2}} \\
& g^{\prime}(2)=\frac{7-3 \cdot 5}{7^{2}}=-\frac{8}{49}
\end{aligned}
$$

The equation of the tangent line is $y-\frac{3}{7}=-\frac{8}{49}(x-2)$
4. (8 points) Let $H(x)= \begin{cases}(x-1)^{2} & \text { if } x<0 ; \\ e^{x^{2}} & \text { if } x \geq 0 .\end{cases}$

Is $H(x)$ a continuous function? Use limits to give a careful justification of your answer.
When $x<0, H(x)=(x-1)^{2}$. This is a polynomial and is a continuous function.
When $x>0, H(x)=e^{x^{2}}$. This is also continuous (the composition of an exponential function and a polynomial).

Thus we only need check continuity at $x=0$.
First note that $H(0)=e^{0^{2}}=1$.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} H(x) & =\lim _{x \rightarrow 0^{+}} e^{x^{2}} \\
& =e^{0}=1 \\
\lim _{x \rightarrow 0^{-}} H(x) & =\lim _{x \rightarrow 0^{+}}(x-1)^{2} \\
& =(0-1)^{2}=1
\end{aligned}
$$

Since $\lim _{x \rightarrow 0^{-}} H(x)=\lim _{x \rightarrow 0^{+}} H(x)=H(0), H(x)$ is continuous at $x=0$.

Thus $H(x)$ is a continuous function.
5. (8 points) A particle is travelling in a straight line. Its position is given by $x=\left(t^{2}-7\right) e^{t}$, where x is in feet and t is in seconds. Find all times when the acceleration of the particle is zero.

$$
\begin{aligned}
\frac{d x}{d t} & =2 t e^{t}+\left(t^{2}-7\right) e^{t} \\
& =\left(t^{2}+2 t-7\right) e^{t} \\
\frac{d^{2} x}{d t^{2}} & =(2 t+2) e^{t}+\left(t^{2}+2 t-7\right) e^{t} \\
& =\left(t^{2}+4 t-5\right) e^{t}
\end{aligned}
$$

We must solve $\left(t^{2}+4 t-5\right) e^{t}=0$.
Since e^{t} is never zero, we only need to solve

$$
\begin{aligned}
0 & =t^{2}+4 t-5 \\
& =(t+5)(t-1) \\
t & =-5,1 \text { seconds }
\end{aligned}
$$

6. (8 points) Find two different points on the curve $y=\frac{x}{x-1}$ at which the tangent line passes through the point $(-14,2)$.

Let (a, b) be such a point.
The tangent line at (a, b) has the form $y-b=m(x-a)$.
Since it passes through $(-14,2)$, we get $\quad 2-b=m(-14-a)$.
We have $\quad b=\frac{a}{a-1}$ because (a, b) is on the curve.
To compute m, first compute $\frac{d y}{d x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{(x-1) \cdot 1-x \cdot 1}{(x-1)^{2}} \\
& =-\frac{1}{(x-1)^{2}} \\
m & =-\frac{1}{(a-1)^{2}}
\end{aligned}
$$

Now eliminate b and m in $2-b=m(-14-a)$

$$
\begin{aligned}
2-\frac{a}{a-1} & =-\frac{1}{(a-1)^{2}}(-14-a) \\
2(a-1)^{2}-a(a-1) & =-(-14-a) \\
0 & =a^{2}-4 a-12 \\
& =(a-6)(a+2) \\
a & =-2,6
\end{aligned}
$$

The points are $\left(-2, \frac{2}{3}\right)$ and $\left(6, \frac{6}{5}\right)$.

