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Abstract

The socle of a graded Buchsbaum module is studied and is related to its local
cohomology modules. This algebraic result is then applied to face enumeration of
Buchsbaum simplicial complexes and posets. In particular, new necessary conditions
on face numbers and Betti numbers of such complexes and posets are established.
These conditions are used to settle in the affirmative Kiihnel’s conjecture for the
maximum value of the FKuler characteristic of a 2k-dimensional simplicial manifold
on n vertices as well as Kalai’s conjecture providing a lower bound on the number
of edges of a simplicial manifold in terms of its dimension, number of vertices, and
the first Betti number.

1 Introduction

In this paper we prove several long standing conjectures on the face numbers of simplicial
manifolds, and more generally Buchsbaum complexes. This is done via studying socles of
graded Buchsbaum modules and relating them to local cohomology modules.

A basic invariant of a simplicial complex A (or a simplicial poset, see Section 6) is its
f-vector f(A) = (fo, f1,---, fa—1), where d — 1 is the dimension of A and f; is the number
of its i-dimensional faces. One of the fundamental problems in geometric combinatorics
is to characterize, or at least to obtain significant new necessary conditions, on the f-
vectors of various classes of complexes. Here we study this problem for the class of
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Buchsbaum simplicial complexes and posets, and especially its subclass of complexes and
posets representing manifolds. We start by discussing the history of the problem and
describing our main results. All definitions are deferred to later sections.

Thirty years ago the pioneering work of Stanley and Hochster (see Chapter 2 of [37])
made the study of combinatorics of simplicial complexes inseparable from the study of
monomial ideals and graded algebras. Their insight was to associate with every simplicial
complex a certain graded ring, known today as the face ring or the Stanley-Reisner ring,
and to read various combinatorial and topological invariants/properties of the complex
off of the algebraic invariants of that ring.

Call a simplicial complex A Cohen-Macaulay, resp. Buchsbaum, if its Stanley-Reisner
ring is Cohen-Macaulay, resp. Buchsbaum. Reisner [31], building on (then unpublished)
work of Hochster, gave a purely combinatorial-topological characterization of Cohen-
Macaulay complexes, while Stanley worked out a complete characterization of f-vectors
of Cohen-Macaulay complexes [35], and later of f-vectors of Cohen-Macaulay simplicial
posets [36]. In [33], Schenzel analyzed general Buchsbaum rings and modules and used
these algebraic results to generalize both Reisner’s result to a combinatorial-topological
characterization of Buchsbaum complexes and the necessity portion of Stanley’s result to
certain necessary conditions on the f-vectors and Betti numbers of Buchsbaum complexes.

One motivation for the study of f-vectors of Cohen-Macaulay, resp. Buchsbaum, com-
plexes came from the desire to extend McMullen’s upper bound theorem [24] (UBT, for
short) which provided sharp upper bounds on the face numbers of polytopes in terms of
their dimension and the number of vertices, to the class of simplicial spheres and, more
generally, Fulerian simplicial manifolds. That such an extension does hold was conjec-
tured by Klee [16], and proved by Stanley [34] for the case of spheres, and then by Novik
28] for several classes of simplicial manifolds including all Eulerian ones. Novik’s proof
relied on Schenzel’s results and on the method of algebraic shifting introduced by Kalai,
see e.g. [13]. The main ingredient of the proof was a certain strengthening of Schenzel’s
conditions on the f-vectors and Betti numbers of Buchsbaum complexes.

In this paper we strengthen these conditions even further — see Theorems 3.4 and
4.3, verifying in the affirmative a part of Kalai’s conjecture on the dimensions of certain
kernels in the Stanley-Reisner rings of simplicial manifolds [13, Conjecture 36]. To derive
these conditions we establish a new commutative algebra result, see Theorems 2.2 and 2.4,
that relates the socle of a general Buchsbaum module to its local cohomology modules,
a result that we hope will be of interest in its own right. The same algebraic theorem is
then used to show that the lower bound part of our conditions on the f-vectors and Betti
numbers also applies to all Buchsbaum simplicial posets, (Theorem 6.4). Based on the
situation in dimensions up to four, we believe that these lower bounds provide a complete
characterization of the f-vectors of Buchsbaum simplicial posets with prescribed Betti
numbers.

Related to the UBT is a conjecture by Kiihnel [18, Conjecture B] for the maximum
value of the Euler characteristic of a 2k-dimensional simplicial manifold on n vertices.
This conjecture was previously known to hold only for manifolds with at least 4k + 3 or
at most 3k + 3 vertices [28, 29]. Here, in Theorem 4.4 we prove it for all values of n.



In [12], Kalai conjectured a lower bound for the number of edges of a simplicial mani-
fold in terms of its dimension, number of vertices, and first Betti number. This conjecture
was verified by Swartz [40] for manifolds whose first Betti number is one, as well as for
orientable manifolds of dimension at least four with vanishing second Betti number. In
Section 5 we prove this conjecture for all manifolds.

The structure of the paper is as follows. In Section 2, after providing the neces-
sary background on Buchsbaum modules, we state and prove our main algebraic result,
Theorem 2.2, on which all other theorems of this paper are based. Section 3 contains an
overview of simplicial complexes and their Stanley-Reisner rings as well as a combinatorial-
topological translation of Theorem 2.2 for the case of Buchsbaum simplicial complexes.
Section 4 is devoted to deriving new upper bounds on the face numbers of Buchsbaum sim-
plicial complexes and in particular includes the proof of Kiihnel’s conjecture. In Section 5
we prove Kalai’s lower bound conjecture. In Section 6 we study f-vectors of Buchsbaum
simplicial posets. Finally, in Section 7 we discuss several examples and open problems.

2 Socles in terms of local cohomology

In this section we state and prove our main algebraic result concerning the socle of a
Buchsbaum module. This theorem is the key to all the combinatorial applications dis-
cussed in the rest of the paper.

We start by reviewing necessary background material. For all undefined terminology
as well as for more details the reader is referred to [38]. Let k be an infinite field of an
arbitrary characteristic and let S := k[zy,...,z,] be a polynomial ring. We denote by 9t
the irrelevant ideal of S, and by 9, the jth homogeneous component of 9. All modules
considered in this paper are Noetherian (Z-)graded modules over S.

Let M be a Noetherian graded S-module of Krull dimension d > 0. A homogeneous
system of parameters of M, abbreviated h.s.o.p, is a sequence 6y, - - - , 6, of homogeneous
elements of 9 such that dim M/(6,---,04)M = 0 (equivalently, M/(01,--- ,04)M is
a finite-dimensional vector space over k). A h.s.o.p. all of whose elements belong to
M is called a linear system of parameters, 1.s.0.p. for short. It follows from the Noether
Normalization Lemma that a l.s.o0.p. always exists. A sequence of elements 6y, 6, € M
is a weak M -sequence if foreach 1 =1,...,r

(917' o 792'—1)M . 9; = (91, ce 791'—1)M : .

Our main object of study is the class of Buchsbaum modules. Following Definition 3.1
on page 95 of [38] combined with Theorem 3.7 on page 97, we say that a Noetherian graded
S-module M is Buchsbaum if every h.s.o.p. of M is a weak M-sequence. Since any regular
M-sequence is also a weak M-sequence, all Cohen-Macaulay modules are Buchsbaum. A
large family of Buchsbaum modules most of which are not Cohen-Macaulay is given by
the face rings of triangulated manifolds — see Section 3.

The following lemma summarizes several basic properties of Buchsbaum modules we
will rely on frequently. Here H*(M) denotes the ith local cohomology of M with respect



to M. In particular,
HO(M) =0: M = {y € M|9M"y =0 for some k > 0}
is a submodule of M. The modules H*(M) are graded provided M is.

Lemma 2.1 Let M be a graded Noetherian S-module of Krull dimension d > 0. If M is
Buchsbaum and 60+, ...,0, is a part of a h.s.o.p. for M, then

1. M/(0y,...,0,)M is a Buchsbaum module of Krull dimension d —r,
2. (91, .. .,Hr_l)M I = (91, o .,GT_l)M : 9,« - (91, o .,Hr_l)M : 93, and
3. M-H (M) =0 forall 0 <i<d.

All parts of the lemma can be found in [38]: for (1) see Corollary 1.11 on page 65, for (2)
see Proposition 1.10 on pages 64-65, and for (3) see Corollary 2.4 on page 75.
Recall that the socle of a module M is

SocM :=0:M={ye M|M-y=0}

We are now in a position to state our main theorem relating the socle to the local coho-
mology modules. We denote by M, the kth homogeneous component of a graded module
M, and by rM the direct sum of r copies of M.

Theorem 2.2 Let M be a Noetherian graded S-module of Krull dimension d, and let
01,...,04 be a l.s.o.p. If M is Buchsbaum, then for all integers k,

d—1
N\
(Soc M/(y,...,04)M), = (@ (j)HJ(M)k_]) P sBi-a.
j=0
where 8B is a graded submodule of Soc H4(M).

We begin the proof with the following lemma. For a graded module M, M(—a) is the
same module, but with grading M (—a), = Mj,_,.

Lemma 2.3 If M is a Buchsbaum S-module and 0 is a part of a l.s.0.p. for M, then
1. H(OM) = H{(M(—1)) for alli >0, and

2. the map * : H(OM) — H'(M) induced by inclusion ¢ : M — M is the zero map
for all 0 < i < dim M.



Proof: We verify both claims simultaneously. Let N = M/H°(M). Consider the following
diagram and the induced local cohomology diagram:

oM —— M Hi(OM) —“— Hi(M)
/| J! a |«
N(-1) -2~ N H{(N(-1)) —% Hi(N).

Here ¢ is the inclusion map, ¢ : z — x + H°(M) is the quotient map, and f is the
map defined by 0z +— x + H°(M). To see that f is well-defined, suppose that 0z = 6y.
Then O(x — y) = 0, and so, by the definition of a Buchsbaum module, 91 - (x — y) = 0.
Hence * —y € H°(M). We claim that f (and hence also f*) is an isomorphism. It is
surjective since for any x ¢ H°(M), 6z # 0. To show injectivity, assume x € H°(M).
Then M’ - 2 = 0 for some [ > 0. In particular, 0’z = 0, which, by Part (2) of Lemma 2.1,
implies that 0z = 0.

The map f was chosen to make the diagram on the left commute. By naturality
of local cohomology, the induced diagram also commutes. Now, since H°(M) has Krull
dimension 0, H(H°(M)) = 0 for all i > 0, and so ¢* is an isomorphism for ¢ > 0. If also
i < dim M, then Part (3) of Lemma 2.1 implies that the bottom horizontal map in the
induced diagram is the zero map, and we conclude that :* = 0 for all 0 < ¢ < dim M.
For ¢ = 0, another application of Part (2) of Lemma 2.1 shows that H°(6M) = 0, and so
t* = 0 in this case as well. This completes the proof of the second claim, while the string
of isomorphisms

%

HOM) L5 H(N(-1) Y5 H(M(~1))  fori>0
implies the first claim. O

It is convenient to introduce the following notation: for subsets A, C of {1,2,...,d} =
[d], write 6% to denote [ ], 0;, and write M (A) to denote M/(; : i ¢ A)M. In particular,
M(0) = M/(6y,...,04)M and M([d]) = M. By repeated application of Lemma 2.3(1),
to prove Theorem 2.2 it is enough to verify the following. (We distinguish between strict
and non-strict inclusions by using symbols ‘C’ and ‘C’, respectively.)

Theorem 2.4 Let M be a Noetherian graded S-module of Krull dimension d, and let
O1,...,04 be a l.s.o.p. If M is Buchsbaum, then

Soc(M(D)) = | € HI/(6°M) | @D SB,
Ccld]
where SB is a graded submodule of Soc H4(Q1W M),

The proof of Theorem 2.4 involves “chasing” a few commutative diagrams. Our start-
ing point is the short exact sequence

0—0,-0°M(A) == 0 M(A) == 9 M(A\ s) — 0,
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where A C [d],C C A, s € A\C, ¢ is the inclusion map, and 7 is the projection map. (The
subscript s indicates that 7y maps a module to its quotient by the submodule generated
by 0s.) We refer to such a sequence as an (A, C, s)-sequence. It gives rise to the long
exact local cohomology sequence, where we denote by ¢} the connecting homomorphism:

c— H(0OM(A)) S HI(0OM(A)) = HI(BOM(A\ 5)) S B (0O M(A) S .

If M is Buchsbaum, then, as follows from Lemma 2.1(1), M(A) is also Buchsbaum
and has Krull dimension |A|. Thus, by Lemma 2.3, /* : H (§°Y*M(A))—H (6 M(A))
is the zero map provided i < |A|. The above long exact sequence then breaks into the
following short exact sequences:

0 — H'(A°M(A)) 5, HI(0°M(A\ s)) B HT (O M(A) — 0, foralli<|A|—1 (1)
0 — HAL0CM(A)) & HA 0O M(A N $)) 5 HIA O M(A) S HAGCM(A)). (2)

For A={1}, s =1, and C = 0, (2) becomes

0 — H(M({1}) & HOM@) D B 0M({1) S B (M({1))), (3)

Since the Krull dimension of M ({1}) is one, the image of 7} is contained in the socle of
HO(M (D)) = M/(6y,...,04)M. This submodule of the socle can be analyzed using (1).

Lemma 2.5 Let M be a Buchsbaum module of Krull dimension d. If C C A C [d], and
i < |A|, then
H'(0“M(A) = 5 HTP(699PM). (4)
DCld)\A

Proof: The proof is by induction on d—|A|. If d—|A| = 0, then A = [d], and the lemma is
equivalent to H(§°M) = H'(§°M). For the induction step, the short exact sequence (1)
implies that for s € [d] \ A

HY(0M(A)) = H(O“M(AUs)) @ HT O M(AUs)).

The induction hypothesis applied to the two terms on the right-hand side finishes the
proof. O

Corollary 2.6 Let M be a Buchsbaum module of Krull dimension d. Then

H(M{1) = @ H0M).
CCld\{1}



In view of (3), we have accounted for those terms of the direct sum in Theorem 2.4
such that 1 ¢ C. To finish the proof we examine the image of the socle of H4I=1(AM(A\ s))
under ¢* in (2), then specialize to the case A = {1} and s = 1.

If r € A\ (CUs), then the (A, C,s)-sequence and the (A \ r,C,s)-sequence can be
combined together to form the following commutative diagram:

0 — O M(A\r) —— 0°M(A\r) == °M(A\ {r,s}) — 0

0 — O°UM(A) = °MA) = O°M(A\s) — 0.
Naturality of local cohomology then implies that the diagram whose rows consist of the
corresponding long exact local cohomology sequences and all of whose vertical maps are

induced by , also commutes. This observation together with equations (1) and (2) yields
the following.

Lemma 2.7 Let M be a Buchsbaum module of Krull dimension d. If C" C A C [d],
s€ A\C, andr € A\ (CUs), then for all i < |A| —1 we have the following commutative
diagram whose rows are exact

Hi(0CM(A\ 1)) —"> HI(OCM(A\ {r, s})) > HTL(OUM(A\ 1))

Hi(0OM(A\ 5)) —2 H”l(HJUSM(A)) —

Recall that our goal is to compute the image of Soc HIAI=1(M(A\ 5)) under ¢* in (2).
We do this by induction with the following lemma allowing the inductive step.

Lemma 2.8 With the assumptions of Lemma 2.7, for all i < |A| — 1, the preimage of
T (HTH (09 M(A))) under ¢% is contained in the socle of H'(°M(A\ {r,s})).

Proof: Let y € H1(9Y*M(A)). By surjectivity of ¢* (see the diagram of Lemma 2.7),
there exists # € H (0 M(A\ s)) such that ¢*(z) = y. Since dim(M(A\s)) = |A| —1 >
it follows from Lemma 2.1, that all elements of H'(“M(A \ s)), including z, are in
the socle of HY(O“M(A \ s)), and hence 7*(x) € Soc H{(@°M(A \ {r,s})). But the

diagram of Lemma 2.7 commutes, and so 7*(x) € (¢*)~}(7*(y)). We have proved that
each element y € H™(9°YsM(A)) has a representative § € (¢7)~'(7*(y)) that lies in
Soc H/(0“M(A \ {r,s})). Now choose a k-basis B = {y1,...,y} for H'(§°*M(A))
and let B = {y1,...,7:} be a set of their representatives in the pull-back that lie in the
socle. By Lemma 2.7,
(¢3) "'y (HTH(OO° M(A))) = 7 (H'(0°M(A\ 1)) © Span (B),

and the assertion follows, since Span (B) is in the socle by the choice of B, and the first
summand of the above decomposition is also in the socle by Lemma 2.1(3). O
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Using a fixed r and varying values of s in Lemma 2.7, we can chain the corresponding
commutative squares together to obtain that for subsets 7" = T}, = {s1,..., s}, A, and
C' of [d] satisfying T"C A\ C and r € A\ T, and for i < |A| — k, the following diagram
with @7 := @3, o---0¢; commutes:

Ker ¢35 Hi(6C M(A\ (T U r)) —22s Hi+E(@CUT ML (A 7))

HI(0CM(A\T)) — e HHF(CUT M (A)) ——> 0
Here ker QS} = @?:1(¢;+1 0...0 ¢:k)—1ﬂ.;iji+k—j(90U{Sj+1 ..... Sk}M(A \ (,Tj—l U 7”))), so the

same argument as in Lemma 2.8 plus induction on k£ then implies

Lemma 2.9 For all i < |A| — |T|, the preimage of m*H*T/(GCYTM(A)) under ¢% is
contained in the socle of HY(0° M(A\ (T Ur))).

Now consider the following diagram.
HO(M(0))
Lo
HYOWM([2]) = HY(OWM([1])
s
H* (9P M ([2]))
L¢3

H(0P M ([3]))

* i
HH O M([d]) = HOZHOIM([d - 1))
L o5
H(O M ([d])).
Lemma 2.9 shows that for all j, 1 <7 <d—1,
(@5 00 0) iy HI(OVIM([j +1]))

lies in the socle of H°(M(()). Using Lemma 2.5 on each H’(8UIM ([j + 1])) accounts for
all of the terms of the direct sum decomposition in Theorem 2.4 with 1 € C. Setting
SB = ¢50---0¢;(Soc H'(M(0)) finishes the proof of Theorem 2.4. O

Remark 2.10 Instead of graded Buchsbaum S-modules, one can work in the generality
of Buchsbaum modules over Noetherian local rings, see Definition 1.5 on page 63 in [38].
A proof identical to that of Theorem 2.4 then shows that if M is a Noetherian module of
Krull dimension d over a local ring A, and 61, ..., 60, is a system of parameters of M, then

Soc(M(0) = | € H/(6°M) | D SB,

ccld]
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provided M is a Buchsbaum module. Here SB is a certain submodule of Soc H4(61M).

3 Simplicial complexes and Stanley-Reisner rings

This section provides a short overview of several concepts and results related to simplicial
complexes and their Stanley-Reisner rings. A comprehensive reference to this topic is
Chapter 2 of [37]. The section concludes with a combinatorial-topological translation of
Theorem 2.2 for the case of Buchsbaum complexes and resulting new lower bounds on
their face numbers.

A simplicial complex A on the vertex set [n] is a collection of subsets of [n] that is
closed under inclusion and contains all singletons {i} for ¢ € [n]. The elements of A
are called faces and the maximal faces (with respect to inclusion) are called facets. The
dimension of a face F € A'is dim F' := |F| — 1. The dimension of A is then defined as
the maximal dimension of its faces. A simplicial complex is called pure if all its facets
have the same dimension.

If A is a simplicial complex and F'is a face of A, then the link of F'in A, 1k (F), is
the following subcomplex of A: lkA(F) :={G € A|GNF =0 and GU F € A}. Thus
the link of the empty face is the complex itself.

A basic combinatorial invariant of a simplicial complex A on the vertex set [n] is
its f-vector, f(A) = (f-1, fo,---, fa_1). Here d — 1 = dim A and f; is the number of
i-dimensional faces of A. In particular, f_; = 1 and fy = n. An invariant that contains
the same information as the f-vector, but sometimes is more convenient to work with, is

the h-vector of A, h(A) = (hg, h1, ..., hq) whose entries are defined by

d d

> hat =Y fi(w— 1) (5)

i=0 =0

The Stanley-Reisner ring of a simplicial complex provides an important algebraic tool
for studying f-numbers of simplicial complexes. If A is a simplicial complex on [n], then
its Stanley-Reisner ring (also called the face ring) is

k[A] = S/Ia == K[z1, ..., xp)/In,  where In = (T4 @iy - - @4y, {1 < lo < -+ < i} & A).

The ideal 14 is called the Stanley-Reisner ideal of A. (As in the previous section, here and
throughout the paper, we assume that k is an infinite field of an arbitrary characteristic.)
Since I is a monomial ideal, defining deg(x;) = 1 for all 1 < i < n makes k[A] into a
Z-graded ring, while defining deg(z;) = e;, where ey, ..., e, is the standard basis for Z",
makes k[A] into a Z"-graded ring.

The utmost significance of Stanley-Reisner rings in the theory of f-numbers is ex-
plained by the fact that many combinatorial and topological properties of A translate to
certain algebraic properties of k[A] and vice versa. For instance, the Krull dimension of
k[A] (as a module over itself or over S) equals dim A + 1, while the (Z-)Hilbert series of



k[A], F(k[A],2) := Y77 dimy k[A] ;27 can be expressed in terms of the h-vector of A:

d
F(k[A],z) = (1 —x)™ Z hiz',  where d = dim A + 1. (6)

=0

(Both results can be found in [34] or on pages 33, 54, and 58 of [37].) Moreover, the local
cohomology of k[A] (as a module over itself or over S) has a simple expression in terms

of simplicial homology of the links of the faces of A. This result is known as Hochster’s
formula, see [37, Theorem I1.4.1].

Theorem 3.1 (Hochster) For a simplicial complex A, a € Z", F' = {j € [n||; # 0},
and 1> 0,

; ~ /0 if F'¢ A ora; >0 for some j € [n]
A (K[A])o = { iir—1(Ik F; k), otherwise,

where H; denotes the ith reduced simplicial homology with coefficients in k.

Among the main objects of this paper are Cohen-Macaulay and Buchsbaum simplicial
complexes. A simplicial complex A is called Cohen-Macaulay (over k), if k[A] is Cohen-
Macaulay (considered as a module over itself or over S). Similarly, A is called Buchsbaum
(over k), if k[A] is Buchsbaum.

Using Hochster’s formula, Reisner [31] gave a purely combinatorial-topological charac-
terization of Cohen-Macaulay complexes. His criterion was later generalized by Schenzel
[33] to the class of Buchsbaum complexes. We combine both these results in the following
theorem.

Theorem 3.2 Let A be a simplicial (d — 1)-dimensional complex. Then A is Cohen-
Macaulay (over k) if and only if f[i(lk F;k) =0 for all F € A, including F =0, and all
i <d—|F|—1. A is Buchsbaum (over k) if and only if it is pure and the link of each
vertex is Cohen-Macaulay (over k).

A simplicial (d — 1)-dimensional complex A is a (k-)homology sphere if it is Cohen-
Macaulay (over k) and dimy I:jd_m_l(lk F:;k) =1 for all F' € A. The complex A is a
(k-)homology manifold if the links of all its vertices are (d — 2)-dimensional homology
spheres. Thus, all k-homology manifolds are Buchsbaum over k. The class of homology
spheres includes all triangulations of topological spheres, which we refer to as simplicial
spheres. Similarly, the class of homology manifolds includes all triangulations of topolog-
ical manifolds — called simplicial manifolds.

Let A be a (d—1)-dimensional simplicial complex. For the rest of the paper we denote
by (©) the ideal of k[A] generated by the elements 6y, ...,0, of a Ls.o.p. for k[A]. What
is the Hilbert series of k[A]/(©)? For Cohen-Macaulay complexes the answer was given
by Stanley. Schenzel [33] then generalized it to the Buchsbaum case.
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To state Schenzel’s result, for a (d — 1)-dimensional complex A and 0 < j < d, define

h;(A) = hj + (j) i(—l)]_l_lﬂl_l(A), where 61_1(A) = dlmk Hl_l(A7 k) (7)

i=0
Note that if A is Cohen-Macaulay, then h’(A) = h;(A).

Theorem 3.3 (Schenzel) Let A be a (d — 1)-dimensional Buchsbaum complex and let
01,...,0q be al.s.o.p. for K[A]. Then

dimy (k[A]/(©)); = h5(A),  for all 0 < j < d.
Using Hochster’s formula and Schenzel’s theorem, we can now derive a combinatorial-
topological version of our Theorem 2.2 for the case of Buchsbaum complexes as well as

new lower bounds on their face numbers. This material concludes this section.

Theorem 3.4 Let A be a (d — 1)-dimensional Buchsbaum complex and let 0y, ...,04 be
a l.s.o.p. for K[A]. Then for all0 < j <d,

dine (Sock[A]/(©)), > () 51-4(8),
In particular, W(A) > (9)B;-1(A), or, equivalently, h; > (§) X1, (=1)78;4(A).
Proof: For 1< j < d, we have
dim (Soc K[A]/(©)); > (j) dim F (K[A])o = (f) )

where the first step follows from Theorem 2.2 and the second one from Hochster’s formula.
Since, Sock[A]/(©) C k[A]/(©), Theorem 3.3 completes the proof. O

Corollary 3.5 Let A be a (d — 1)-dimensional Buchsbaum complex, let 61, ...,04 be a
Ls.o.p. for k|[A], and let w € My be a linear form. Then for all 0 < j < d,

: w d
i (ker ((A1/(©); = Kia}/(©)101)) = () 5214 )
Proof: Use Theorem 3.4 and the fact that ker(-w) 2 Sock[A]/(©). O
Corollary 3.5 settles in the affirmative a part of [13, Conjecture 36] — the conjecture

that served as main motivation and starting point for this paper.
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4 Upper bounds on Buchsbaum complexes

In this section we use Theorem 3.4 to derive new upper bounds on the face numbers of
Buchsbaum simplicial complexes. As an application, we prove Kiihnel’s conjecture on the
Euler characteristic of even-dimensional manifolds.

Somewhat surprisingly, to describe the upper bounds on the f-numbers of simplicial
complexes, one needs the notion of a multicomplex. A multicomplex M is a subset of
monomials, say in variables x1, ..., z,_4, that is closed under division, i.e. if 4 € M and
v|p, then also v € M. For a multicomplex M, we denote by M, the set of its elements
of degree j, and by F; = F;(M) the cardinality of M. We refer to (M) := (Fy, Fy,...)
as the F-vector of M.

The F-vectors of multicomplexes were completely characterized by Macaulay [23] (see
also [37, Theorem I1.2.2]). Given two positive integers [ and j there exists a unique
expression of [ in the form

[ = (n,j)+(nj_1)+-~-+<7f:), where n; >nj_1>--->ny>s>1.  (9)

J Jj—1

<5 <nj—|—1) N (nj_1—|—1> - <n8+1).
Jj+1 J s+1
We say that R is a standard graded k-algebra if it is a Z-graded k-algebra with R; = 0
for i < 0, Ry = k and is generated as an algebra by R; with dimy R < oco. Equivalently,

as a k-algebra, R = k[zy,...,x,,]/] for some homogeneous ideal I. The Hilbert function
of such an R is the sequence (dimy Ry, dimy Ry, ...).

Define

Theorem 4.1 (Macaulay) Let F = (Fy, F1,...) be a sequence of nonnegative integers.
The following are equivalent:

e F is the F-vector of a multicomplex.
o [h=1 andOSF}-+1SFJ,<j>forj21.
e F is the Hilbert function of a standard graded k-algebra.

Using Theorems 3.3 and 4.1, Stanley [35, Theorem 6] characterized all possible h-
vectors of Cohen-Macaulay simplicial complexes.

Theorem 4.2 (Stanley) A vector h = (hg, hy, ..., hg) € Z4 is the h-vector of a (d—1)-
dimensional Cohen-Macaulay complex on n vertices if and only if hg = 1, hy = n—d, and
0< hyyr Sh57” for1<j<d-—1.

A generalization of the necessity portion of Theorem 4.2 for Buchsbaum complexes
was given in [28, Theorem 1.7, where it was shown that if A is a (d — 1)-dimensional
Buchsbaum complex, then its h'-vector, (h{, h}, ..., h}), (as defined in (7)) satisfies

d—1 <=
Wiy < (hj - ( ; )ﬁj_l(A)) . forl<j<d-—1. (10)
The first result of this section is to use Theorem 3.4 to strengthen the above inequalities.
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Theorem 4.3 Let A be a (d — 1)-dimensional Buchsbaum complex on n vertices. Then
hy=1, hy =n—d, and

d <j>
Wy < (@ - <j)ﬁj_1<A)) , forl<j<d—1.

Proof: Let I = Sock[A]/(©). Since [ is killed by 9t (or in other words, the S-module
structure on [ is trivial), any vector subspace of I is an ideal of k[A]/(©). In particular,
I; is an ideal, so (k[A]/(©))/I; is a standard graded k-algebra. Let (Fy, Fh, ..., Fy,0,...)
be its Hilbert function. By Theorem 3.3 and Theorem 3.4, F; < R} — (‘;)ﬁj_l(A) and

Fji1 = Rl ;. Macaulay’s theorem finishes the proof. O

The inequalities (10) served in [28] as a key to extending the Upper Bound Theorem for
polytopes and spheres (UBT, for short) to several classes of orientable homology manifolds
(among them, the class of all odd-dimensional homology manifolds and the class of all
even-dimensional homology manifolds of Euler characteristic 2). This theorem, originally
proved by McMullen [24] for polytopes and later extended by Stanley [34] to homology
spheres, asserts that among all d-dimensional polytopes on n vertices, the cyclic polytope,
Cy(n), has componentwise maximal f-vector.

A conjecture related to the UBT was proposed by Kiihnel [18, Conjecture B]. It asserts
that if a simplicial complex A is a (combinatorial) 2k-dimensional manifold (without
boundary) on n vertices, then its Euler characteristic, x(A) := Z?io(—l)j fi =1+

Z?io(_l)jﬁj (A), satisfies

O AR USEE Y G (1)

Moreover, equality happens if and only if A is (k + 1)-neighborly, that is, every k + 1
vertices of A form the vertex set of a face of A.

While inequalities (10) (together with Klee’s extension of the Dehn-Sommerville re-
lations - Theorem 5.1 [15]) were strong enough to imply the UBT for several classes of
homology manifolds, they were insufficient to completely prove the Kiihnel conjecture,
which was verified in [28] and [29] only for 2k-dimensional orientable k-homology man-
ifolds with at least 4k + 3 or at most 3k + 3 vertices. (Paper [28] treated the case of
chark = 0, while [29] dealt with a field of an arbitrary characteristic.) However, it was
observed in [28] (see proof of Theorem 7.6 there) that if the inequalities of Theorem 4.3
were true, they would imply Kiithnel’s conjecture for all n. Thus we now have

Theorem 4.4 Kiihnel’s conjecture holds for all orientable 2k-dimensional k-homology
manifolds. In particular, Kihnel’s conjecture holds for all simplicial 2k-manifolds.

Proof: For completeness we include here a sketch of the proof for n > 3k + 4 case. We
set d =2k + 1 and let N, := ("‘djr_l). A weaker version of Macaulay’s theorem asserts

that N
if a < N,, then a~"” < ]Q—H a, (12)
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and equality is attained if and only if a = N,..
If Theorem 4.3 is applied j times and inequality (12) is also used j times, then we
obtain that for a 2k-dimensional k-homology manifold A and 1 < j <d—1,

J
N
th < Ny = 30 2 (1) a0 (13

i=1 !
Moreover, equality is attained if and only if 3;_1(A) = 0 for all # < j and A}, = Nj;;.
This, in turn, is equivalent to hj.; = N,41, which happens if and only if A is (j + 1)-

neighborly.
Now let z = Ny — h). Then (13) yields that

z>ZN’f<)@1 A), (14)

which together with Theorem 4.3 and (12) implies

N, N, d
k+1 < Npyy — Bt Vet (k) B (A),

Ny Ny

and equality is attained if and only if A is (k4 1)-neighborly. Subtracting equation k) =
N, — z from the above inequality, and using the fact that for 2k-dimensional orientable
k-homology manifolds, hj_, —hj, = (z)(ﬁk(A) — Br—1(A)) (see [28, Lemma 5.1]), we infer
that

<Z) (Br(8) = Bea (D)) < (Nisr = Ni) = ( N, 1) i N%Zl (Z) a8

This inequality combined with inequality (14) reduces to

Npt1 = Neyt — Ny _ @ ' Niy1 — Ny,
) (Tt 1) Bty 3 TRy < B

A straightforward computation now shows that for n > 3k + 4, the coefficient of
Br—1(A) on the left-hand-side of (15) is non-negative, while the coefficients of all lower
Betti numbers are > 2. Thus, by Poincaré duality, the left-hand-side of (15) is at least
as large as (—1)*(x(A) — 2). On the other hand, the right-hand-side of (15) equals
(";_]:2)/ (2’“; 1), and Kiihnel’s inequality follows. Moreover, from the above discussion,
equality is attained if and only if A is (k + 1)-neighborly.

Finally, the ‘in-particular’-part follows from the fact that every simplicial manifold is
orientable over a field of characteristic two. U

Problem 4.5 Is there a less computational and more conceptual proof of Kihnel’s con-
jecture?

14



We remark that there are only a few known triangulations of 2k-manifolds which are
also (k + 1)-neighborly. For surfaces there are the 2-neighborly triangulations in [11] and
[32]. Other examples include CP? [19], K 3-surfaces [3], S® x S? [21], and HP? [2], where
HP? is a manifold whose cohomology ring is isomorphic to the cohomology ring of the
quaternionic projective plane.

Buchsbaum complexes with symmetries

Using Theorem 3.4 and techniques developed in [29], the inequalities of Theorem 4.3
can be significantly strengthened for the family of centrally symmetric Buchsbaum com-
plexes, i.e. complexes with a free Z/2Z-action. Combinatorially, these inequalities can be
described as follows.

Theorem 4.6 Let A be a (d — 1)-dimensional centrally symmetric Buchsbaum complex
with n = 2m wvertices. Then for every 1 < j < d — 1, there exists a multicomplex
M = M(j) on 2m — d variables xq,. .., Tom_q all of whose elements are squarefree in
the first m variables and such that

FyaM) =B (&), white 50 < 15(8) = ()32,

Proof: Label the vertices of A so that for every 1 < i < m, x; and x,,,; are antipodal
(i.e., x;, Ty form an orbit under the given Z/2Z-action). Consider u € GL, (k) of the
form

O Y- O Y

Here I,,, denotes the m x m identity matrix, O stands for the m x m zero matrix, and
Y € GL,,(k) satisfies the condition that all of its d x d-minors supported on the last d
columns of Y are non-singular. Since k is infinite, such Y exists.

Note that u defines a graded automorphism of S via u(x;) = Y | u;;z;, and so ula is
a homogeneous ideal of S. Let I = ulan + (xy_gy1,-.-,%n), let Socl =1 : 9 be the socle
of I, and let J = I + (SocI);. Since for every element y € (SocI);, M-y C I, it follows
that J is an ideal of S. As no face of A contains two antipodal points, the structure of

uw~! and [37, Lemma I11.2.4] imply that =, _4.1,...,%, is a Ls.o.p. for S/ulx. Hence, by
Theorem 3.3 and Theorem 3.4,

u= { I I ] . Equivalently, u'= { n Y ] :

dimy (S/J)jp1 =y, and  dimy(S/J); < ) — (j) Bi—1(A). (16)

To construct a required multicomplex, fix the reverse lexicographic order > on the set
of all monomials of S = k[zy,...,x,] that refines the partial order by degree and satisfies
Ty = Ty = ... = x, (eg 22 = myxe = X3 = myx3 = Tox3 = x5 = ---). Consider InJ
— the reverse lexicographic initial ideal of J (see [8, Section 15.2]), and define M to
be the collection of all monomials that are not in In.J. Since In.J is a monomial ideal
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that contains x,,_g11,...,%,, M is a multicomplex on n — d variables. Moreover, M has
“correct” F-numbers. This follows from Eq. (16) and the fact that M is a k-basis for
S/J (see [8, Theorem 15.3]). Finally, the structure of u and that {z;, ;1 } is not a face
of A imply that In J 3 Inu(z;z;1,,) = 27 for all 1 <i < m, and hence that all elements
of M are squarefree in the first m variables. O

A complete characterization of F-vectors of multicomplexes that are squarefree in the
first m variables was worked out by Clements and Lindsrém [5]. Their theorem provides
an explicit sharp upper bound on Fj; of such a multicomplex in terms of its F}; and j.
(Compare to Macaulay’s theorem that characterizes F-vectors of multicomplexes without
any restrictions on degrees.) Thus using Clements-Lindsrom theorem, one can restate
Theorem 4.6 in purely numerical terms.

Remark 4.7 The same proof as in Theorem 4.6 but with matrix w chosen as in [29,
Theorem 3.3] allows to extend Theorem 4.6 to all Buchsbaum simplcial complexes with a
proper Z/pZ-action, where p is a prime number, thus proving Conjecture 6.1 of [29]. So
far we have been unable to settle Conjecture 6.2 of [29] — an analog of Kiihnel’s conjecture
for manifolds with symmetry. The statement in [29] that [29, Conjecture 6.1] would imply
[29, Conjecture 6.2] at least for all centrally symmetric manifolds is erroneous.

5 Lower bounds

The Dehn-Sommerville relations for simplicial polytopes states that h; = hy_;. Klee proved
an analogous formula for semi-Eulerian complexes. A pure complex is semi-Eulerian if
the Euler characteristic of the link of every nonempty face is the same as the Euler
characteristic of a sphere of the same dimension. A prototypical example is an arbitrary
triangulation of a homology manifold without boundary.

Theorem 5.1 (Klee’s formula [15]) Let A be a semi-Eulerian (d — 1)-dimensional com-
plex. Then
(d B
tai = = (-0 () () = (s

7

An immediate consequence of Klee’s formula is that for semi-Eulerian complexes
knowledge of the g-vector is sufficient to recover the f-vector. The g-vector of A is
(9os - - -+ 9las2)), where g; = h; — h;_1. Of particular interest in this section is go = hy —hy =
Ji—dfo+ (d—gl)-

In [12] Kalai conjectured that if A is a triangulation of a closed manifold with d > 4,
then gy > (d'gl)ﬁl(A; Q). This bound is sharp for triangulations in H%. A complex A is in
H< if it can be obtained from the boundary of the d-simplex by a sequence of the following
three operations:

e Subdivide a facet with one new vertex in the interior of the facet.

16



e Form the connected sum of A, Ay € H?¢ by identifying a pair of facets, one from
each complex, and then removing the interior of the identified facet.

e Form a handle by identifying a pair of facets in A € H? and removing the interior
of the identified facet in such a way that the resulting complex is still a simplicial
complex. Equivalently, the distance in the 1-skeleton between every pair of identified
vertices must be at least three.

If the only type of operation used is the first one (subdividing a facet), then the resulting
space is a stacked sphere. Another characterization of H?, due to Walkup in dimension
three [43] and Kalai in higher dimensions [12], is as those triangulations all of whose vertex
links are stacked spheres.

Kalai’s conjecture was verified for ; = 1 and for orientable manifolds when d > 5
and By = 0 in [40]. In the latter case, if g, = (d'gl)ﬁl(A;Q), then A € H? This last
result was then used to determine all possible pairs (fy, f1) for triangulations of spherical
bundles over the circle [6]. We now settle Kalai’s conjecture in its full generality. (Recall
that a connected k-homology (d — 1)-dimensional manifold A is orientable if f[d_l(A; k)
is one-dimensional.)

Theorem 5.2 Let A be a connected triangulation of an orientable k-homology (d — 1)-
dimensional manifold with d > 4. Then

g > (d‘gl)ﬁlm;k» (17)

Furthermore, if go = (d+1)ﬁ1(A) and d > 5, then A € H.

2

Proof:  First we consider the situation when the characteristic of k is zero. By [28,
Lemma 5.1], Ky — by = (D(G(A) — Gi(A)) and K, — B = d(Bi(A) — (o(A)) =
df1(A). For generic Ls.o.p. © and one-form w, multiplication by w induces a surjection
w: (k[A]/(©))a—2 — (K[A]/(O))4—1 [40, Corollary 4.29]. Since the dimension of the socle
of (k[A]/(©))a—2 is at least (dfz)ﬁd_g(A) (see Theorem 3.4),

d
e ( i 2) Bas() > Hy .

Combining this with Poincaré duality

Ry + (3) (B2(A) = B1(A)) — (g)ﬁz(A) > dBi(A) + R
hy — hy > dBi(A) + (g)ﬁl(A)
h2 - hl Z (d—gl)ﬂl (A)u

where the last line follows from Schenzel’s formula (Theorem 3.3).

Suppose g = (dgl)ﬂl(A) and d > 5. The previous computation shows that for generic
w, the kernel of multiplication by w in degree d — 2 equals the socle of k[A]/(©) in de-
gree d — 2. Consider the ideals generated by the variables (z;). By [40, Proposition 4.24],
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(x;) C k[A]/(©) is isomorphic as an S-module to k[lki]/(©") with a degree one shift for a
suitably defined ©'. Hence, if kerw N ((z;))4—2 # 0, then the socle of (k[lki|/(©))s—3
is also nonzero. This is impossible since the link, lkz, is a homology sphere, hence
k[lk]/(©’) is Gorenstein*, and so its socle vanishes in all degrees but the top one (see
(37, page 50]). As multiplication by a generic one-form from (k([lki]/(©’))4_3 surjects onto
(k[lki]/(©"))a—2, ha—3(lki) = hg—o(lki). Equivalently, by the Dehn-Sommerville relations,
hy(lk i) = ho(lki). The lower bound theorem [12, Theorem 1.1] shows that each lk i must
be a stacked sphere.

What if the characteristic of k is not zero? The only part of the above which needs
to be changed is the proof that for generic © and one-form w, multiplication induces a
surjection w : (k[A]/(©))s—2 — (K[A]/(©))4—1. The proof given in [40] depends on [20]
and the generic rigidity of embeddings of two-dimensional spheres in R3. Hence this ap-
proach is only valid in characteristic zero. However, Murai’s recent preprint [25, Corollary
3.5], combined with Whiteley’s proof that two-dimensional spheres are strongly edge de-
composable [44] (see [27] for the definition of strongly edge decomposable), provide an
alternative proof which is valid in nonzero characteristics. l

Problem 5.3 Suppose A is a k-orientable 3-dimensional manifold without boundary and
go = 106, (A). Is A € H*?

The answer to this problem is known to be yes when =1 [43] and § = 2 [22].

Absolute lower bounds

Under certain conditions, Theorem 3.4 can provide absolute lower bounds for A'-vectors
(and hence f-vectors) of Buchbaum complexes of a fixed homological type. Suppose ;1
is the only nontrivial Betti number of A. By Theorem 3.4, b} > (f) Bi—1(A). Furthermore,
assume that (f) Bi1(A) = (T) for some m. Macaulay’s upper bound for Hilbert functions
implies that for j <, b} > (m_j”j ) Thus, if A satisfies all of these restrictions as equalities
and b, = 0 for j > i, then A has the minimum possible #’-vector for a Buchbaum complex
of this homological type. Terai and Yoshida examined precisely this situation in [42].

Theorem 5.4 [42, Theorem 2.3] Let A be a (d—1)-dimensional Buchsbaum complex that
is i-neighborly, but not (i + 1)-neighborly. Set § = ("_dj’_l)/(?). Then the following are
equivalent.

) = (L= () () (B () (15),
o For every vertez j, the link satisfies h,,(1k 7) = 0 if and only if m > i — 1.

As the previous paragraph shows, any space satisfying the above conditions has the
minimum f-vector among all Buchsbaum complexes with the specified 3; ;. Terai and
Yoshida also proved that Alexander duals of cyclic polytopes form an infinite family of
examples of the above phenomenon with 5 = 1.
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For examples with Betti numbers greater than one, let A be a 2k-dimensional manifold
which is also (k + 1)-neighborly. Now consider A with one vertex, say n, and all of its
incident faces removed and call this new complex A’. As A was (k + 1)-neighborly, its
only nonzero reduced Betti numbers are [, and 5. The Mayer-Vietoris sequence for
A = A'"U (nx*1lkn) shows that the only nonzero reduced Betti number for A’ is . Since
A’ is a manifold with boundary it is Buchsbaum. The h-vector of the link of any vertex
of A is given by h; = ("_2'2._2”), for i < k and h; = hoi_; for k < i < 2k. Similarly, for
each vertex j < n the h-vector of stn C lkj, the closed star of n within the link of j, is
specified by the same equation for ¢ < k,h; = hog_;_1 for k <1 < 2k — 1, and hg, = 0.
Using the same reasoning as in [4, Lemma 3],

Hence A’ satisfies the second condition of Theorem 5.4.

6 Buchsbaum simplicial posets

The goal of this section is to rework most of material of Section 3, including Theorem 3.4,
in the generality of Buchsbaum simplicial posets. Simplicial posets (also sometimes re-
ferred to in the literature as Boolean cell complexes or pseudo-simplicial complexes) pro-
vide a certain generalization of simplicial complexes. We start by reviewing their definition
and related notions as well as the corresponding algebraic background.

A simplicial poset is a (finite) poset P that has a unique minimal element, 0, and
such that for every 7 € P, the interval [0, 7] is a Boolean algebra [36]. In particular, P
is graded, and the face poset of any simplicial complex is a simplicial poset. As with
simplicial complexes, one can think of simplicial posets geometrically: it follows from
results of [1] that every simplicial poset P is the face poset of a certain regular CW-
complex, |P|, all of whose closed cells are simplices. We call |P| the realization of P,
and refer to its elements as faces. It also follows from [1] that |P| has a well-defined
barycentric subdivision which is the simplicial complex isomorphic to the order complex
A(P) of the poset P = P — {0}.

As in the case of simplicial complexes, we denote by f; = f;(P) the number of i-
dimensional faces of |P| (equivalently, the number of rank i + 1 elements of P), and by
f(P) = (f-1, fo,---, fa_1) the f-vector of P, and we define the h-vector of P, h(P) =
(ho, - .., hq) according to Eq. (5). Here d — 1 is the dimension of | P|, that is, the maximal
dimension of faces of |P|. Equivalently, d = rk P, the rank of P. From now on we refer
to P and |P| almost interchangeably.

As with simplicial complexes, we need a notion of a link: for an element 7 of P, we
define the link of 7 in P, to be

kT =1kp(r):={c€eP|o>r71}

It is easy to check that lk 7 is also a simplicial poset with its 0 element being 7, and that if
F={mn<m <...<7 =7} is asaturated chain in (0, 7], then lk y 5 (F) = A(lk p(7)).
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Associated to a simplicial poset P is an algebra Ap [36], defined as follows. For each
element 7 of P, consider a variable ;. Let S be the polynomial ring klz, | 7 € P]. We
assume that the set of atoms of P (equivalently, the set of vertices of |P|) is V(P) = [n],
so that, S = k[zy,--- , ] is a subring of S. The face ring of P, Ap, is then S/Ip, where
Ip is the ideal of S generated by the elements of the following form:

e 1.1, for all pairs of elements 7,0 € P that have no common upper bound in P.

® X T, —X:pp X, for pairs of 7, 0 incomparable in P, where the sum is over the set
of all minimal upper bounds of T and o. Note that if 7 and ¢ have an upper bound
p, then 7 A o is well-defined, as 7 and o are elements of [0, p|, a Boolean algebra.

e 0—1.
Defining deg x, := rk7 makes Ap into a Z-graded algebra. There is also a Z"-refinement
of this grading on Ap given by deg7 := > {e; | i € [n],i < 7}. Here eq,...,¢, is the
standard basis for Z".

We cite from [36] a few basic properties of Ap:

e Ap is an algebra with straightening laws (this is [36, Lemma 3.4]).

e Ap is integral over S [36, Lemma 3.9]. Since Ap is also finitely-generated algebra
over S, it follows that Ap is a (graded) Noetherian S-module.

e The Krull dimension of Ap is tkP = dim P + 1 =: d, and (as was the case for
a simplicial complex) the Z-graded Hilbert series of Ap is given by F(Ap,z) =
(1—2)"4 3% hi(P)x’ (sce [36, Prop. 3.8]).

An analog of Hochster’s formula for the local cohomology of Ap (as a module over 5)
was worked out by Duval in [7, Theorem 5.9].

Theorem 6.1 (Duval) For a simplicial poset P with V(P) = [n], the Z"-graded Hilbert
series of the local cohomology modules of Ap as S-modules is

R4 = 3 i) T 125

TEP j€n], j<r J

where B;(IkT) is the ith reduced Betti number of the order compler A(lkT) and \ =
A1y oy An)e

Call a simplicial poset P a Cohen-Macaulay poset if its order complex, A(P), is a
Cohen-Macaulay simplicial complex, as defined in Section 3. Similarly, call P a Buchsbaum
poset if A(P) is a Buchsbaum simplicial complex. Stanley [36, Cor. 3.7] showed that if
P is a Cohen-Macaulay simplicial poset, then its face ring, Ap, is Cohen-Macaulay as a
module over itself or over S. Here we use Theorem 6.1 to prove a similar result about
Buchsbaum posets.
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Proposition 6.2 If P is a Buchsbaum simplicial poset, then the ring Ap is Buchsbaum
as an S-module.

Proof: Since A(P) is a Buchsbaum simplicial complex, say, of dimension d — 1, it follows
from Theorem 3.2, that for i < d,

ﬁi—rk(T)_1(1k 7)=0 unless 7 =0. (18)

Thus, by Theorem 6.1, for i < d, F(H(Ap),\) = B;_1(A(P)) is a number rather than a
series, and hence for i < d, H'(Ap) is concentrated in degree 0. Therefore, MM-H'(Ap) = 0.
Also for 0 < i < j < d, the only integer degrees p and ¢ for which (H(Ap)), # 0 and
(H?(Ap))y # 0 are p = ¢ = 0. In particular, 0 > i —j = (i + p) — (j + ¢), and so
(i+p)— (j+q) # 1. Proposition 3.10 on page 98 of [38] then implies that Ap is a
Buchsbaum module. U

Stanley showed [36, Section 3] that Theorem 3.3 holds in the generality of Cohen-
Macaulay simplicial posets, that is, if P is a Cohen-Macaulay poset of rank d and
{01,...,04} C S is a ls.o.p. for Ap, then dimy(Ap/(©)Ap); = h; for all 0 < j < d.
We next use Proposition 6.2 to verify that Schenzel’s theorem, Theorem 3.3, also contin-
ues to hold in the generality of Buchsbaum simplicial posets. Our proof mostly mimics
that of Schenzel and is included here only for completeness.

Proposition 6.3 Let P be a rank d Buchsbaum simplicial poset, let

j—1

h;(P) = h;(P) + (j) D (=B (AP) for0<j<d,

i=1
and let {01, ...,0a} C S be als.o.p. for Ap. Then dimy(Ap/(©)Ap); =N for 0 < j < d.
Proof: From the following exact sequence of graded S-modules:

0 — (0:a, 01)(—1) — Ap(—=1) =2 Ap — Ap/(61) Ap,
we obtain an expression for the Hilbert series:

(1 —2)F(Ap,z) = F(Ap/(01)Ap,x) —x - F((0:4, 601),2).

Iterating the above d times yields

T
L

(1—2)F(Ap,x) = F(Ap/(6y,...,0)Ap,2) = > (1 — )" F(L;, ), (19)

i

where L; == ((01,...,04-1-:)Ap : 0a—i)/(01,...,04-1-i)Ap.

i
o
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Now, since Ap is a Buchsbaum module (see Proposition 6.2), we have

Ly = H(Ap/(6y,...,001-1)Ap) (by [38, pp. 64-65])

1_6:%_ <d _ ll ! Z) H'(Ap)(=1) (by [38, Lemma I1.4.14°(b)])

@ k(7 )ﬁlfl(A(ﬁ))(—l) (by Theorem 6.1 and Eq. (18)),
1=0

12

12

and so
dil 0 o B
F(Lj,z) = B (A(P)) - 2. (20)
> ()

Plugging (20) into (19), and using that F'(Ap,x) = (1—2)~¢ Zf:(] hi(P)x" (see properties
of Ap listed above in this section), completes the proof. O

We are now in a position to derive the following poset-generalization of Theorem 3.4.

Theorem 6.4 Let P be a rank d Buchsbaum simplicial poset and let 61,...,0; be a
l.s.o.p. for Ap. Then for all 0 < j <d,

dimy (Soc Ap/(©)Ap); > (j)ﬁj_l(A(F))-

Hence, h;(P) > (?)@_1(A(?)), or, equivalently, h;(P) > (j) (=118 (A(P)).

Proof: The proof is the same as in Theorem 3.4, just use Theorem 6.1 instead of Theo-
rem 3.1 and Proposition 6.3 instead of Theorem 3.3. O

7 Examples, concluding remarks, and open problems

7.1 Toward the g-conjecture

Perhaps the most important problem in the theory of f-vectors is the g-conjecture. The
most optimistic version states that if A is a (d — 1)-dimensional k-homology sphere and
© is a Ls.o.p. for k[A], then for a generic one-form w and i < d/2, multiplication

S K[A)/(O): — K[A]/(O) s

is an isomorphism. Kalai has suggested a far-reaching generalization of this to homology
manifolds [28].
Suppose A is a connected simplicial complex which is homeomorphic to a k-orientable

homology manifold. Define
d
=i () )
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As pointed out in [28], hl; , = h] for 1 <i < d— 1. Let

I = soe (KA)/(6));

Since [ is a vector subspace of the socle it is also an ideal of k[A]/(©). Now set k[A] =
(k[A]/©)/I. By Theorem 3.4 the dimension of k[A], is at most A} for 1 <7 <d— 1.

Conjecture 7.1 [28] For generic w € k|A]; and 1 <i <d/2,
o dimy k[A], = h.

o Multiplication w?=% : k[A], — k[A],_, is an isomorphism.
Consider the special case of A a homology sphere. The first part of the above conjec-
ture holds since k[A] is Gorenstein®. The second part is the g-conjecture. This suggests

the following conjecture.

Conjecture 7.2 Let A be a (d — 1)-dimensional Buchsbaum complex over k. Let SB be
given by Theorem 2.2, with M = k[A]. Then dimy SB = dimy SBy = 1 if and only if A
s a connected orientable k-homology manifold without boundary.

A closely related, but potentially weaker conjecture is the following.

Conjecture 7.3 If A is a connected simplicial complex homeomorphic to a (d — 1)-
dimensional k-homology manifold, then k[A] is a Gorenstein ring.

Remark Since this paper was originally written, the authors have verified the first part of
Conjecture 7.1, established one direction of Conjecture 7.2 and proved Conjecture 7.3 [30].

7.2 How tight are the bounds?

Theorem 6.4 together with a complete characterization of the h-numbers of Cohen-
Macaulay simplicial posets, [36, Theorem 3.10], naturally leads to the following question.

Question 7.4 Do the bounds h; > (‘;)ﬁj_l forj =1,2,---,d—1 together with h{y = 1
and hl; = (41 generate the complete set of sufficient conditions for the h-numbers of
Buchsbaum simplicial posets with prescribed Betti numbers?

We believe that the answer is yes, and hence that this set of conditions gives a complete
characterization of the possible pairs (h, ) for Buchsbaum simplicial posets. The following
result provides partial evidence.

Proposition 7.5 Let by,...,bs—1,h},..., k)| be nonnegative integers. Assume d <5 or
by =---=0bg_3 = 0. Then there exists a Buchsbaum simplicial poset P with 3;(|P|) = b,
and W(P) = W for all 1 < j < d— 1 if and only if I, > (d)bj_l foralll <j<d-—1.

J
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If b = 0 for all i # d — 1, then one can even find a shellable poset satisfying the
conditions of the proposition, see [36, Theorem 3.10]. For the other combinations of b;
satisfying the hypotheses, the proposition is an immediate consequence of the next four
lemmas.

Lemma 7.6 There exists a (d— 1)-dimensional Buchsbaum simplicial poset X = X (1,d)
such that $1(X) =1,5;(X) =0 fori # 1 and

h;(X):{ (),  ifi=0o0ri=2

0, otherwise.

Proof: One such X is given by taking a stacked ball whose facets are
(1,2, d4{2,3,...,d+1},....{d,d+1,...,2d — 1},

and identifying the codimension one face spanned by 1,2,...,d — 1 with the codimension
one face spanned by d+1,d+2,...,2d — 1 (where vertex i is identified with vertex d+1).
The realization of X, |X|, is a (d — 2)-disk bundle over S!, orientable or not depending
on the parity of d. Hence X is a Buchsbaum simplicial poset satisfying 3;(X) = 1 and
b; = 0 for i # 1. A straightforward computation shows that f;_1(X) =d (‘3:11) foralli > 1.
Hence hg =1, hy = 0, and h; = (—1)i(?) for i > 2, which together with the above count
of Betti numbers implies that all 2 numbers of X vanish except for h{, and k), and those
two are equal to 1 and (g), respectively. O

Lemma 7.7 There exists a (d — 1)-dimensional Buchsbaum simplicial poset X = X (d —
2,d) such that By_o(X)=1,6(X); =0 fori#d—2 and

h;(X):{ (),  fi=0ori=d—1

0, otherwise.

Proof: One possible construction for X is as follows. The vertices of X are 1,2,...,d.
The (d — 3)-skeleton of X is the (d — 3)-skeleton of the (d — 1)-simplex. For every subset
of vertices of cardinality d — 1 give X two distinct codimension one faces. Label these
faces Ay, As, ..., Ay, B1,Bs, ..., By, where A; and B; are the two faces whose vertices do
not contain 7. Any potential facet of X is described by choosing one of A; or B; for each
1 as the boundary faces of the facet. The facets of X are the d possible ways of choosing
exactly one boundary face of type B and the rest of type A.

Since X has the (d — 3)-skeleton of the simplex and also contains the (d — 2)-skeleton
of the simplex, 3;(X) = 0 for i < d — 2. It is easy to see that the kernel of the boundary
map from the (d — 1)-chains to the (d — 2)-chains is zero, hence 3;_1(X) = 0. A check of
the Euler characteristic of X shows that 3;_2(X) = 1. Now that the Betti numbers of X
are known, direct computation shows that X has the required A’ numbers. To see that
fIi(lk o) = 0 for a face 0 and ¢ < d — |o| — 1, use the same argument, except that the
kernel of the boundary map in dimension (d — 1 — |o|) is of dimension |o| — 1. O
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Lemma 7.8 Let P, and Py be two disjoint (d — 1)-dimensional Buchsbaum simplicial
posets. If Q) is obtained from Py and Py by identifying a facet of Py with that of Py, then
Q is also a Buchsbaum poset. Moreover,

hi(Q) = hi(P)+hi(P) i=1,2,...,d. (22)

Proof: That the Betti numbers add when P, and P are glued along a facet is an easy
application of the Mayer-Vietoris sequence and the fact that the intersection of P; and
P; is contractible. The same Mayer-Vietoris sequence also shows that () is Buchsbaum.
Since f;_1(Q) = fi_1(P1) + fi1(P) — (Cl.l), the defining relation for the A-numbers implies
that h;(Q) = h;(Py) 4+ h;i(P») for ¢ > 1, which together with Eq. (21) yields (22). O

Lemma 7.9 Let P be a (d—1)-dimensional Buchsbaum simplicial poset and let g1, ..., g}
be nonnegative integers satisfying g, > hi(P) for all i = 1,...,d. Then there exists a
(d — 1)-dimensional Buchsbaum simplicial poset () whose Betti numbers, except possibly
for Ba_1, coincide with those of P and such that h,(Q) = g} for all 1 < i <d.

Proof: By [36, Theorem 3.10] there exists a shellable simplicial poset R such that h;(R) =
gi—h(P) forall 1 <i <d. Attaching R to P along a facet (as in the proof of Lemma 7.8)
produces a required poset (). O

In view of the last two lemmas, to answer Question 7.4 in the affirmative, it is enough
to construct for every d and ¢ < d — 1 a (d — 1)-dimensional Buchsbaum simplicial poset
X = X(i,d) such that

0, ifj#1 , 0, ifj#0,i+1

Bi(X) = { 1, ifj=i and /5(X) = { (‘;), otherwise.
Lemmas 7.6 and 7.7 provide such a construction for i = 1 and i = d — 2 (and any d),
X(0,d) is the disjoint union of two (d — 1)-simplices, while X (d — 1,d) can be obtained
by gluing two (d — 1)-simplices along their boundaries. A construction for X(2,5) is
also known. A simplicial poset homeomorphic to CP? with h-vector (1,0,0,10, —5,2) is
described in [9]. Removing any facet (or more precisely, the open cell of a facet) is an
example satisfying the requirements of X (2,5).

The problem of determining all possible h-vectors of Buchsbaum complexes (as op-
posed to posets) was previously considered by Terai [41] and in dimension 2 (d = 3) by
Hanano [10]. The linear inequalities established in [41, Theorem 2.4] also hold for Buchs-
baum posets. In fact, the stronger inequalities, i h; + (d —i+1)h;—1 >0, 1 <i < d, hold
for arbitrary simplicial pure posets whose vertex links have nonnegative h-vectors [39,
Proposition 2.3]. At this time we do not have enough examples to make a firm conjecture
which determines all possible (h, 3) pairs for Buchsbaum complexes. Hence we finish with
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Question 7.10 Are there other restrictions on pairs (h, 3) for (d—1)-dimensional Buchs-
baum complexes other than those coming from Theorem 3.4,

h'; 2 (C,Z)ﬁi—la
i
) d <>
i1 S (hi — (Z)ﬂz—l) ?

Very recently, Murai [26] has shown that in Question 7.10 some additional restrictions
are necessary.

and Theorem 4.3

Acknowledgements

Most of this work was done during the special semester (spring and summer 2007) at
the Institute for Advance Studies in Jerusalem. We are grateful to IAS for hospitality
and especially to Gil Kalai for organizing this semester. Our additional thanks go to Gil
for encouragement during the period when we went from “having a proof”-stage to “not
having a proof’-stage and back quite a few times. We are also grateful to Eran Nevo
who explained to us how to use Whiteley’s paper [44] to prove Theorem 5.2 in nonzero
characteristics.

References

[1] A. Bjorner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5
(1984), 7-16.

[2] U. Brehm and W. Kiihnel, 15-vertex triangulations of an 8-manifold, Math. Ann. 294
(1992), 167-193.

[3] M. Casella and W. Kiihnel, A triangulated K3 surface with the minimum number of
vertices, Topology 40 (2001), 753-772.

[4] M. Chari, Two decompositions in topological combinatorics with applications to matroid
complexes, Trans. Amer. Math. Soc. 349 (1997), 3925-3943.

[5] G. Clements and B. Lindstrom, A generalization of a combinatorial theorem of Macaulay,
J. Combin. Theory 7 (1969), 230-238.

[6] J. Chestnut, J. Sapir and E. Swartz, Enumerative properties of triangulations of sphere
bundles over S', European J. Combin. 29, 662-671 (2008).

[7] A. Duval, Free resolutions of simplicial posets, J. Algebra 188 (1997), 363-399.

[8] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-
Verlag, New York, 1995.

26



[9]

[10]

C. Gagliardi, On the genus of the complex projective plane, Aequationes Math. 37 (1989),
130-140.

K. Hanano, A construction of two-dimensional Buchsbaum simplicial complexes, European
J. Combin. 22 (2001), 171-178.

M. Jungerman and G. Ringel, Minimal triangulations of orientable surfaces, Acta. Math.
145 (1980), 121-154.

G. Kalai, Rigidity and the lower bound theorem I, Invent. Math. 88 (1987), 125-151.

G. Kalai, Algebraic shifting, in Computational Commutative Algebra and Combinatorics,
(ed. T. Hibi), Vol. 33 of Advanced Studies in Pure Mathematics, Mathematical Society of
Japan, Tokyo, 2002, pp. 121-163.

G. O. H. Katona, A theorem of finite sets, Proc. Tihany Conf., 1966, Budapest, 1968.

V. Klee, A combinatorial analogue of Poincaré’s duality theorem, Canadian J. Math. 16
(1964), 517-531.

V. Klee, The number of vertices of a convex polytope, Canadian J. Math 16 (1964), 702
720.

J. Kruskal, The number of simplices in a complex, Mathematical Optimization Techniques,
University of California Press, Berkeley and Los Angeles, 1963, pp. 251-278.

W. Kiihnel, Tight Polyhedral Submanifolds and Tight Triangulations, Springer-Verlag,
Berlin, 1995.

W. Kiihnel and G. Lassmann, The unique 3-neighborly 4-manifold with few vertices,
J. Combin. Theory Ser. A 35 (1983), 173-184.

C. Lee, Generalized stress and motions, in Polytopes: abstract, convex and computational,
Vol. 440 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht,
1994, pp. 249-271.

F. Lutz, Triangulated manifolds with few vertices: Combinatorial manifolds, arXive:
math/0506372.

F. Lutz, T. Sulanke and E. Swartz, f-vectors of 3-manifolds, Electron. J. Combin. 16(2)
(2009), Research Paper 13, 33pp.

F. S. Macaulay, Some properties of enumeration in the theory of modular systems,
Proc. London Math. Soc. 26 (1927), 531-555.

P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17
(1970), 179-184.

S. Murai, Algebraic shifting of strongly edge decomposable spheres, J. Combin. Theory
Ser. A, to appear.

S. Murai, Face vectors of two-dimensional Buchsbaum complexes, Electron. J. Com-
bin. 16(1) (2009), Research Paper 68, 14pp.

27



[27]
[28]

[29]
[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

E. Nevo, Higher minors and Van Kampen’s obstruction, Math. Scand. 101 (2007), 161-176.

I. Novik, Upper bound theorems for homology manifolds, Israel J. Math. 108 (1998),
45-82.

I. Novik, On face numbers of manifolds with symmetry, Adv. Math. 192 (2005), 183-208.

I. Novik and E. Swartz, Gorenstein rings through face rings of manifolds, Compositio
Math., to appear, arXiv:math.CO/0806.1017.

G. Reisner, Cohen-Macaulay quotients of polynomial rings, Adv. Math. 21 (1976), 30-49.

G. Ringel, Wie man die geschlossenen nichtorientierbaren Flichen in Moglichst wenig
Dreiecke zerlegen kann, Math. Ann. 130 (1955), 317-326.

P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius,
Math. Z. 178 (1981), 125-142.

R. Stanley, The upper bound conjecture and Cohen-Macaulay rings, Studies in Applied
Math. 54 (1975), 135-142.

R. Stanley, Cohen-Macaulay complexes, in: M.Aigner (Ed.), Higher Combinatorics, Rei-
del, Dordrecht and Boston, 1977, pp. 51-62.

R. Stanley, f-vectors and h-vectors of simplicial posets, J. Pure Appl. Algebra 71 (1991),
319-331.

R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41,
Birkh&user Boston, Inc., Boston, MA, 1996.

J. Stiickrad and W. Vogel, Buchsbaum Rings and Applications, Springer-Verlag, Berlin,
1986.

E. Swartz, Lower bounds for h-vectors of k-CM, independence, and broken circuit com-
plexes, STAM J. Discrete Math. 18 (2004/05), 647-661.

E. Swartz, Face enumeration: from spheres to manifolds, J. Europ. Math. Soc. 11 (2009),
449-485.

N. Terai, On h-vectors of Buchsbaum Stanley-Reisner rings, Hokkaido Math. J. 25 (1996),
137-148.

N. Terai and K. Yoshida, Buchsbaum Stanley-Reisner rings with minimal multiplicity,
Proc. Amer. Math. Soc. 134 (2006), 55-65.

D. Walkup, The lower bound conjecture for 3- and 4-manifolds, Acta. Math. 125 (1970),
75-107.

W. Whiteley, Vertex splitting in isostatic frameworks, Struc. Top. 16 (1990), 23-30.

28



