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Balanced complexes and complexes without
large missing faces

Michael Goff, Steven Klee and Isabella Novik

Abstract. The face numbers of simplicial complexes without missing faces of dimension
larger than 4 are studied. It is shown that among all such (d—1)-dimensional complexes with
non-vanishing top homology, a certain polytopal sphere has the componentwise minimal f-vector;
and moreover, among all such 2-Cohen-Macaulay (2-CM) complexes, the same sphere has the
componentwise minimal h-vector. It is also verified that the l-skeleton of a flag (d—1)-dimensional
2-CM complex is 2(d—1)-CM while the l-skeleton of a flag PL (d—1)-sphere is 2(d—!)-homotopy
CM. In addition, tight lower bounds on the face numbers of 2-CM balanced complexes in terms
of their dimension and the number of vertices are established.

1. Introduction

In this paper we study balanced simplicial complexes and complexes without
large missing faces. For the latter class of complexes we settle in the affirmative
several open questions raised in the recent papers by Athanasiadis [1] and Nevo [15],
while for the former class we establish tight lower bounds on their face numbers in
terms of dimension and the number of vertices, thus strengthening the celebrated
lower bound theorem for spheres.

A simplicial complex A on the vertex set [n]:={1,2,...,n} is a collection of
subsets of [n] that is closed under inclusion and contains all singletons {3} for i€[n].
The elements of A are called its faces. A set FCln| is called a missing face of
A if it is not a face of A, but all its proper subsets are. Hence the collection of
all missing faces of A carries the same information as A itself. Thus it is perhaps
not very surprising that imposing certain conditions on the allowed sizes of missing
faces may result in severe restrictions on the corresponding simplicial complexes.

Novik’s research is partially supported by Alfred P. Sloan Research Fellowship and NSF grant
DMS-0801152
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One simple example of this phenomenon is that while a simplicial (d—1)-sphere
may have as few as d+1 vertices, a flag (d—1)-sphere (that is, a simplicial com-
plex with all its missing faces of size two or, equivalently, 1-dimensional) needs at
least 2d vertices. In fact, Meshulam [12] proved that among all (d—1)-dimensional
flag simplicial complexes with non-vanishing top homology, the boundary of the
d-dimensional cross-polytope simultaneously minimizes all the face numbers. Sim-
ilarly, it was recently verified in [1] that among all 2-Cohen—Macaulay (2-CM, for
short) flag (d-1)-dimensional complexes, the boundary of the d-dimensional cross-
polytope simultaneously minimizes all of the A-numbers.

In [15], Nevo considered the more general class of (d—1)-dimensional simplicial
complexes with no missing faces of dimension larger than i (equivalently, of size
larger than i+1). He conjectured [15, Conjecture 1.3] that among all such complexes
with non-vanishing top homology, a certain polytopal sphere, S(i,d—1) (that for
i1=1 coincides with the boundary of the cross-polytope), simultaneously minimizes
all of the face numbers. He also asked [15, Problem 3.1] if the same sphere S(, d—
1) has the componentwise minimal h-vector in the class of all homology (d—1)-
spheres without missing faces of dimension larger than ¢. One of our main results,
Theorem 3.1, establishes both of these conjectures.

In addition to verifying that the hA-numbers of flag spheres are at least as large
as those of the cross-polytope, Athanasiadis shows in [1, Theorem 1.1] that the
graph of a flag simplicial pseudomanifold of dimension (d—1) is 2(d—1)-vertex-
connected. This is in contrast to the fact that without the flag assumption one
can only guarantee its d-connectedness (for polytopes this is Balinski’s theorem,
see [19, Theorem 3.14]; the general case is due to Barnette [3]). The above result
prompted Athanasiadis to ask (see Question 3.2 in the arxiv version of his paper
or Remark 3.2 in the journal version) if, for every 0<I<d—1, the I-skeleton of a
flag homology (d—1)-sphere is 2(d—1)-CM and if the [-skeleton of a flag PL (d—1)-
sphere is 2(d—1)-homotopy CM. In Theorem 4.1 we settle both of these questions
in the affirmative.

The face numbers of flag complexes are closely related to those of balanced
complexes. (A simplicial (d—1)-dimensional complex is called balanced [16] if its
1-skeleton, considered as a graph, is vertex d-colorable.) Indeed, it is a result of
Frohmader [10] that for every flag complex A there exists a balanced complex T’
with the same f-vector, and it is a conjecture of Kalai [18, p. 100] that if A is flag
and CM, then one can choose the corresponding balanced I" to also be CM.

The lower bound theorem for spheres [4], [11] asserts that among all homology
(d—1)-spheres on n vertices, a stacked sphere has the componentwise minimal f-
vector. Here we provide a sharpening of these bounds for the class of balanced
homology spheres in Theorem 5.3. In the case of balanced (d—1)-spheres whose



Balanced complexes and complexes without large missing faces 3

number of vertices, n, is divisible by d, our result amounts to the statement that
the spheres obtained by taking the connected sum of % —1 copies of the boundary
of the d-dimensional cross-polytope have the componentwise minimal f-vector.

The rest of the paper is structured as follows. In Section 2 we review basic facts
and definitions related to simplicial complexes and their face numbers. Section 3
is devoted to complexes without large missing faces. Section 4 deals with CM
connectivity of skeletons of flag complexes. Finally, in Section 5 we discuss balanced
complexes. Sections 3-5 are independent of each other and can be read in any order.
‘We hope that our results will be helpful in attacking additional stronger conjectures
proposed in [15].

2. Preliminaries

Here we review basic facts and definitions related to simplicial complexes. An
excellent reference to this material is Stanley’s book [18].

Let A be a simplicial complex on the vertex set [n]. For F€A, set dim F:=
|F|—1 and define the dimension of A, dim A, as the maximal dimension of its faces.
We say that A is pure if all of its facets (maximal faces under inclusion) have the
same dimension. The f-vector of A is f(A)=(f-1, fo,..-s fa—1), where d—1=dim A
and f; is the number of j-dimensional faces of A. Thus f_;=1 (unless A is the
empty complex) and fo=n. We also consider the f-polynomial of A,

d
F(A )= fiaal.
§=0

It is sometimes more convenient to work with the h-vector,
h(A) = (ho, hla ey hd)

(or the h-polynomial, h(A,x)::ijo h;z7) instead of the f-vector (f-polynomial,
resp.). It carries the same information as the f-vector and is defined by the following
relation:
x
WA z)=(1-2)f (A, — ).
@) =(1-2)'f (A% )

In particular, ho=1, hy=n—d, and the f-numbers of A are non-negative linear
combinations of its A-numbers.

Let A; and As be simplicial complexes on disjoint vertex sets V7 and V5. Then
their join is the following simplicial complex on V3 UV,

ANEZAV R {FlUF2 : FleA, Frye AQ}
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Therefore,
f(ArxAg,z) = f(Ar,2) f(A2,z) and h(A1xAz,z)=h(A1,2)h(Az, ).

Also, a set FF'CV1UV; is a missing face of Ay Ay if and only if it is a missing face of
either A1 or Ay. Thus if both complexes have no missing faces of dimension larger
than ¢, then so does their join.

Similarly, if A; and As are pure simplicial (d—1)-dimensional complexes on
disjoint vertex sets, and Fy={vy,...,v4} €Ay and Fo={wq,...,ws} €Ay are facets,
then the complex obtained from A; and A, by identifying F; and F3 via the bijec-
tion p(v;)=w;, and then removing this identified face, is called the connected sum
of A; and Ay along Fy and Fj, and is denoted A;#,A,. While the combinatorics
of the resulting complex depends on Fy, Fs, and p, its f- and h-vectors do not:

hi(Al#AQ)_{hi(Aﬁ-i-hi(Az) if 0<i<d.

If A is a simplicial complex and F' is a face of A, then the link of F' in A is
Ika F=lk F:={GeA : FUGEA, FNG=o}, the star of F in A is stp F=st F:=
{GeA : FUG€eA}, and the antistar of F'in A is asta F'=ast F={GeA : FZG}.
Also, for WC[n], let A_y:={F€A : FC[n]—W} denote the restriction of A to
[n]—W. The links, stars, antistars, and restrictions are simplicial complexes in their
own right. If A is a complex without missing faces of dimension larger than ¢, then
so are links, stars, and restrictions of A; furthermore this property is preserved
under taking antistars of faces of dimension at most i.

We say that a (d—1)-dimensional complex A is Cohen—Macaulay over k (CM,
for short) if H;(Ik F;k)=0 for all F€A and all i<d—|F|—1. Here k is either a field
or Z and I;Q(f,k) denotes the ith reduced simplicial homology with coefficients
in k. If in addition, ﬁd,m,l(lk F;k)=k for every F€A, then A is a k-homology
sphere. We say that A is ¢-CM if for all W C|[n], [W|<g—1, the complex A_y, is CM
and has the same dimension as A. 2-CM complexes are also known as doubly CM
complexes. Every simplicial sphere (that is, a simplicial complex whose geometric
realization is homeomorphic to a sphere) is a homology sphere (over any k), and
every k-homology sphere is doubly CM over k. Moreover, joins and connected sums
of (homology) spheres are (homology) spheres.

Similarly, we say that A is homotopy Cohen—Macaulay (homotopy CM, for
short) if Ik F' is (d—|F|—2)-connected for all F€A, and that A is g-homotopy CM
if A_w is homotopy CM and has the same dimension as A for all W C[n], |W|<q¢—1.
(Recall that a complex, or more precisely, its geometric realization, is i-connected if
all of its homotopy groups from Oth to the ith one vanish.) Unlike the usual Cohen—
Macaulayness, homotopy Cohen—Macaulayness is not a topological property: there
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exist simplicial spheres that are not homotopy CM. It is however worth pointing
out that all PL simplicial spheres are homotopy CM (in fact, 2-homotopy CM).

Two simplicial complexes are said to be PL homeomorphic if there exists a
piecewise linear map between their geometric realizations that is also a homeomor-
phism. A simplicial complex is a PL (d—1)-sphere if it is PL homeomorphic to the
boundary of the d-simplex. The importance of PL spheres is that all their links are
also PL spheres (see e.g. [5, Section 12(2)]).

3. Counting face numbers

The goal of this section is to prove the following result conjectured in [15].
Throughout this section we fix positive integers ¢ and d and write d=qi+r where
q and r are (uniquely defined) integers satisfying 1<r<i. Let o’ denote the j-
dimensional simplex, do” its boundary complex, and (9o7)*? the join of q copies of
007 . Define

S(i,d—1):=(90")* 150" (1)
We remark that S(1,d—1) coincides with the boundary of the d-dimensional cross-
polytope.

Theorem 3.1. Let A be a (d—1)-dimensional simplicial complex without miss-
ing faces of dimension larger than i, and let k be a field or Z.

1.If A has a non-vanishing top homology (with coefficients in k), then f;(A)>
fi(S(i,d—1)) for all j. Moreover, if fo(A)=fo(S(i,d—1)) and either d is divis-
ible by i or fr(A)=f.(S(i,d—1)), then A=S(i,d—1).

2.If A is 2-CM over k, then hj(A)>h;(S(i,d—1)) for all j. Moreover, if hi(A)=
h1(S(i,d—1)) and either d is divisible by i or hyy1(A)=h,41(S(i,d—1)), then
A=S(i,d—1).

Several cases of Theorem 3.1 are known: Nevo [15, Theorem 1.1] verified the
inequalities in Part 1 for all j assuming that ¢ divides d, and for all j<r if ¢ does
not divide d; the i=1 case of Part 2 is due to Athanasiadis [1, Theorem 1.3].

Throughout the proof, the inequality P(x)>Q(z) between two polynomials
means that the polynomial P(x)—Q(x) has non-negative coefficients. The proof of
both parts relies on the following simple property of the h-numbers of S(i,d—1).

Lemma 3.2. For cvery 1<s5<i, one has

h(S(i,d—1), )

(0c®,z)h(S(i,d—1—s),x), and hence also (2)
f(S(Z,d—l),l‘) Usax

<h
< f(90°,2) f(S(i, d—1=s),x).
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Proof. Since the f-numbers are non-negative combinations of the h-numbers,
it is enough to verify the first inequality. Express d as d=s+(¢'i+71’), where ¢, 7’
are integers satisfying 1<r'<i. Then ¢—q'€{0,1} and s+7'=(¢—q')i+r. Since
h(807,2)=>"1_, «!, the inequality in (2) divided by (3;_, 217 reads

) &) &)

If g=¢', then r=r'+s, and the above inequality holds without equality. Other-
wise, g—¢'=1 and i+r=r'4s with i=max{r,r’, s,i}, and the assertion follows by
comparing coefficients. O

Proof of Theorem 3.1, Part 1. We first prove the inequalities on the f-numbers
of A by induction on d. If d<i, then S(i,d—1)=0c?, and the result follows from the
well-known and easy-to-prove fact that among all simplicial complexes of dimension
d—1 with non-vanishing top homology, do¢ has the componentwise minimal f-
vector. So assume that d>i and that the statement holds for all d’ <d.

If Fis a face with 0<dim F'<i and f[d,l,‘m(lkF;k):Q then consider A’:=
ast F' and A”:=st F', so that A=A"UA” and A'NA"=0Fxlk F'. (Here F' denotes
the simplex F' together with all its faces.) Since

Hyo(A'NA" k)2 Hy p(Ik F;k) =0

and since A” is a cone, and hence acyclic, the Mayer-Vietoris sequence [6, p. 229]
yields that Hy_1(A’;k)~Hy_1(A;k)#0. Therefore, by considering A’ instead of
A, we may assume without loss of generality that every face F' of A with dim F'<i
satisfies Hy_1_|p|(Ik F; k) #0.

Let G be a missing face of A and consider G'GG. Define A% to be the
collection of faces of A of the form G’UF, where FNG=g. Note that A% is not
generally a simplicial complex. Since HNG=G" for all H €A% the collections AC’
are pairwise disjoint as G’ ranges over all proper subsets of G. For G’ CG, choose
G'CG" CG satistying |G”|=|G|—1. Since G is a missing face in A, Ik G” does not
contain any vertices from G, and therefore FUG'€AC" for all FelkG”. Hence
F(AY 2)>2lG T f(Ik G, ) >x!C'| (S(i,d—|G]), ) by the inductive hypothesis. As
the collections A" are pairwise disjoint for G'¢ G, by summing over all such G/,
we obtain

FA )2 Y0 983, d—|G)),2) = f(S(i,d=|Gl),2) D 2!

lelte G'¢aG
= f(S(Z7d—|G|),$)f(8é7 .%') > f(S(Ld—l), x),
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where the last step is by Lemma 3.2.

We now prove the statement on equality by induction on d. Assume that
fo(A)=fo(S(i,d—=1)) and, if r<i, that f,(A)=f.(S(i,d—1)). Then f;(A)=("2{})=
f;(S(i,d—1)) for all j<r. Furthermore, A has a missing face of dimension r. In
the case that r<¢ this follows from fr(A)zfr(S(i,d—l))z(fﬁ_(ﬁ)) —1. When r=i,
this follows from the fact that A has a complete (r—1)-dimensional skeleton and
no missing face of A has dimension greater than i. Finally, ﬁd_l_m(lk G;k)#
0 for all GEA with dim G<r: otherwise Hy_1(ast G;k)#£0 and faim ¢ (ast G)<
faima(S(4,d—1)), a contradiction.

Let F' be a missing face of A of dimension r» and G a maximal proper subset of
F. We claim that if F is a missing face in 1k G of dimension i, then F’ is a missing
face in A as well. Let G’ be a minimal subface of G such that 1k G’ does not contain
F’ as a face. Then every proper subface of G'UF” is a face in A, but not G'UF’
itself. Since dim F'=4, we infer that G'=2 and F’ is a missing face in A.

We have that fo(lk G)<fo(A)—r—1, since Ik G contains no vertex of F'; and,
in fact, equality holds here by the inductive hypothesis since 1k G has nonvanishing
top homology. Also dim(lk G)+1=dim(A)+1—r=d—r is divisible by ¢, and so it
follows by the inductive hypothesis that 1k G=5(i,d—1—r). Label the missing faces
of IkG by Fi, ..., F;. Every missing face of lk G has dimension ¢, and hence every
missing face of Ik G is also a missing face of A by the previous paragraph. Thus A

has F, Fi, ..., Fy as disjoint missing faces with dim F'=r and dim F; =...=dim F;=1.
These are precisely the missing faces of S(i,d—1), and so A is contained in S(i,d—
1). Since S(i,d—1) has componentwise minimal face numbers, A=S(i,d—1). O

The proof of Part 2 utilizes the following results in addition to Lemma 3.2.
The first of them is due to Stanley [18, Cor. 11.3.2], the second appears in works of
Adin, Kalai, and Stanley, see e.g. [17], and the third one is [1, Lemma 4.1].

Lemma 3.3. If A is a (d—1)-dimensional CM complez, then h(A,x)>0.
Moreover, if A has a non-vanishing top homology (which happens, for instance, if
A is a homology sphere, or more generally, if A is 2-CM), then h(A, m)zzzizo e
h(do, ).

Lemma 3.4. Let A be a simplicial complex and I' a subcomplex of A. If A
and T are both CM (over the same k) and have the same dimension, then h(A, z)>
h(T, z).

Lemma 3.5. Let A be a pure simplicial complex and v a vertex of A. If asta v
has the same dimension as A, then h(A, z)=xzh(lka v, z)+h(asta v, ).

We are now in a position to prove Part 2 of the theorem. It follows the same
general outline as the proof of [1, Theorem 1.3], but requires a bit more bookkeeping.
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Proof of Theorem 3.1, Part 2. The proof is by induction on d. If d<i, then
S(i,d—1)=00?, and the statement follows from Lemma 3.3. So assume that d>i
and that the statement holds for all d’<d.

Let F={vg,v1, ..., s} be a missing face of A (in particular, s<7). Then F;:=
{vo,v1,...,v;} is a face for every —1<j<s—1, and so is F'—v;:={v, ..., 0j, ..., vs } for
every 0<j<s. Repeatedly applying Lemma 3.5 and using the fact that lk;, g H=
lka (HUG) for all GeA and H €lka G (here and below, lk without a subscript refers
to the link in A), we obtain

h(A, z) = xh(lka vo, x)+h(asta vo, )
= z(xh(lki v, v1, ) +h(astik ., v1, 2))+h(asta vo, )

= xQ(xh(lklk 7, V2, %)+ h(asty p, v, x))+xh(asty g, v1, x)+h(asta vo, x)

s—1
= 2°h(lka Fs_1, x)—i—z x7 h(asty Fj_1 Vg, T). (3)
3=0
Since A is 2-CM, all its links are also 2-CM [2], and so all the complexes
appearing in (3) are CM. We now show that the h-polynomial of each of these
complexes is (componentwise) at least as large as h(S(i,d—s—1), z), and hence

B(Az) > S w (St d—s—1),2) = | Y a7 | h(S(i,d—s—1),2)
=0 =0

= h(0c®, z)h(S(i,d—s—1) > h(S(i,d—1),z) (by Lemma 3.2),

as required.

And indeed, Ika Fs_1 is (d—s—1)-dimensional, 2-CM, and has no missing faces
of size larger than i. Hence h(lka Fs_1,2)>h(S(i,d—s—1),2) by the inductive
hypothesis. For all other complexes appearing in (3), observe that since F is a
missing face, the complex vs*vs_1%*...%vj41%lka(F—v;) is well-defined, does not
contain v;, and is contained in lka F_1. In other words,

astix 7y, Vj 2 Vs ks 1% %0541 ¥ 1ka (F—vy).
As both of these complexes are CM of dimension d—j—1, Lemma 3.4 yields that
h(asti r,_, vj,z) > h(ve*...xvj 1 ¥1k(F —v;), x)
= h(k(F—v;),z) > h(S(i,d—s—1),z),

where the last step is by the inductive hypothesis. This completes the proof. The
treatment of equality follows from the first part and the observation that S(i,d—1)
has a complete (r—1)-dimensional skeleton. O



Balanced complexes and complexes without large missing faces 9

4. Cohen—Macaulay connectivity of flag complexes

This section is devoted to the proof of the following theorem. Recall that the
l-skeleton of a simplicial complex A, Skel;(A), consists of all faces of A of dimension
at most [.

Theorem 4.1. Let A be a flag simplicial complex of dimension d—1.

1.If A is 2-CM over k, then Skel;(A) is 2(d—1)-CM over k for all 0<I<d—1.
2. Moreover, if A is a simplicial PL sphere, then Skel;(A) is 2(d—1)-homotopy CM
for all 0<I<d—1.

Throughout the proof, ||Al| stands for the geometric realization of A; for W C
[n], W denotes the simplex on the vertex set W together with all its faces, and py
denotes the barycenter of |[W]|. If I' is a subcomplex of A, and W is a subset of
[n] (but not necessarily a subset of V(I") — the vertex set of T'), we write I'_y to
denote the restriction of T to V(I') —W. We make use of the following observation:
for FEA and WC|n|-F,

K (sket, (2))_yy F'= (kskel,(a) F) _ypy = (Skeli_p(Tka F)) - (4)

Proof of Part 1. In the following k is fixed and is suppressed from our notation.
The proof is by induction on d. Since A is flag and 2-CM, we already know that
it has at least 2d vertices, and hence that Skelp(A) is 2d-CM. This implies the
assertion for d<2 as well as for [=0 and any d.

Assume now that the statement holds for all d’<d. In particular, it holds for all
links of non-empty faces of A since they are also 2-CM and have dimension strictly
smaller than d—1. Thus for a nonempty face F'€ A, the complex Skel;_|g|(lk F) is
2((d=|F|)—(I—|F|))=2(d—1)-Cohen—Macaulay. Putting this together with (4) and
using that for j<! the jth simplicial homology of Skel;(A) coincides with that of
A, to complete the proof it only remains to show that (i) for every W C[n] of size
2(d—1)—1, A_w is at least I-dimensional, and (ii) for all j<I<d—1 and any subset
W={v1,...,v5}C[n] of size 1<k<2(d—1)—1, the homology flj(A,W) vanishes.

To verify (i) consider F€A_y of dimension at most [—1. We need to show
that F' is not a maximal (under inclusion) face in A_y,. Since the link of F in A is
a flag 2-CM complex of dimension >d—I[—1, it has at least 2(d—1)>|W]| vertices.
Thus, at least one of these vertices, say, v is not in W, yielding that FU{v}€A_w
is a larger face.

To prove (ii) we induct on k. There are two possible cases to consider.

Case 1: every two vertices of W are connected by an edge in A (this, for instance,
happens if k=1). Since A is flag, this condition implies that WeA. Then ||A_w ||
is a strong deformation retract of ||A|—||[W]| (see e.g. [5, Lemma 11.15]) which
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in turn is a strong deformation retract of ||A||—pw. Since A is 2-CM, the latter
complex is (d—2)-acyclic (this is essentially due to Walker, see [18, Prop. I11.3.7]),
and the statement follows.

Case 2: not every two vertices of W form an edge. By reordering the vertices,
if necessary, assume that {vg_1,v;}¢A. Consider complexes Ap1:=A_(w_u),
sta,_, Uk, and the intersection A_y Nsta, , vk =1lka,_, vg. The first two complexes
have vanishing jth homology: indeed, the star is contractible and for Ag_1 this holds
by our inductive hypothesis on k. Also, since vix_1 and v are not connected by an
edge, vi_1 is not in the link of vy. Hence

ka,y vk =(ka Vi) _rp) or o)

But dim(lka vg)=d—2 and k—2<2(d—1)—3=2((d—1)—1)—1, so our inductive hy-
pothesis on d applies to lka vx and shows that flj_l(lkAkfl v,)=0. Finally, since
Ap_1=A_wUsta,_, vg, the appropriate portion of the Mayer—Vietoris sequence [6,
p. 229] yields that H i(A_w)=0, and the assertion follows. O

We now turn to Part 2 of the theorem. A PL sphere is 2-CM over Z, so Part
1 implies vanishing of relevant homology groups computed with coefficients in Z.
In particular, all the spaces involved are (path) connected, and this allows us to
suppress the base point when discussing homotopy groups. We also write m;(A)
instead of 7;(||A]).

The Hurewicz theorem [6, p. 479] asserts that if A is j-connected, j>1, then
7rj+1(A)’£I§j+1(A;Z). In particular, if A is simply connected and H;(A;Z)=0 for
all 0<i<j, then ﬁj+1(A; Z)=mj+1(A). Also, PL spheres are simply connected and
their links are PL spheres in their own right. Thus Part 2 will follow from Part
1 if we can show that for a PL (d—1)-sphere A and an arbitrary W C|[n] of size
1<k<2(d—2)—1=2d—5, 71 (A_w)=0. This is done exactly as in the proof of Part
1: except that in Case 2 one needs to use the Seifert—van Kampen theorem [6,
p. 161] instead of the Mayer—Vietoris sequence. It asserts (using notation of Case 2
in the proof of Part 1) that

T (Ak—1) Z T (Aow ) *r, (ka,_, ve) T1(StA,_; VR)-

Since by the inductive hypothesis all groups, except possibly 71(A_yw ), in this
equation are trivial, it follows that 71 (A_y/ ) is trivial as well. As for Case 1, just
notice that a topological sphere with a point removed is a topological ball, and
hence contractible. O

We close this section with several remarks.

1. In Part 2 of the theorem the ‘PL sphere’ condition cannot be relaxed to the
‘triangulated sphere’ one. This can be seen by considering the double suspension
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of the Poincaré sphere. According to Edwards, see [7], the resulting space is a
topological sphere. Now start with any triangulation of the Poincaré sphere, and
let T be its barycentric subdivision. Then A=(dc!)*2xT" is a flag complex that
triangulates Edwards’ sphere. But A is not homotopy CM: indeed, some of the
edges of A have I' as their link, and I" is not simply connected.

2. Let n>2d be any integer, and let Cj denote the graph-theoretical cycle on
k vertices. Then the complex S(1,d—1,n):=(90")*@=2)xC, 9414 is a (d—1)-
dimensional polytopal sphere on n vertices. It is flag, and for all 1<I<d—1, its
l-skeleton is 2(d—1)-CM, but not (2(d—1)+1)-CM. Thus Part 1 of Theorem 4.1
is as strong as one can hope for. This example together with the theorem also
adds plausibility to Conjecture 1.4 from [15] asserting that among all flag homology
(d—1)-spheres on n vertices, S(1,d—1,n) has the smallest face numbers.

3. An immediate consequence of Part 1 of the theorem is that if A is a (d—1)-
dimensional flag complex that is k-CM for some k>2, then Skel;(A) is (2(d—1—1)+
k)-CM for 0<I<d—1. Indeed to show that Skel;(A)_y is CM and of dimension !
for any |[W|<2(d—1)+k—3, consider a subset W’ of W of size min{k—2, |W|} and
its complement W"”=W —W'. Then |W"|<2(d—1)—1. Since A_w=(A_w')_wr,
and since A_yy is 2-CM, Theorem 4.1 applied to A_y and W' completes the
proof.

It is interesting to compare this result with a theorem of Flgystad [8] asserting
that if A is an arbitrary (d—1)-dimensional k-CM simplicial complex, then its I-
skeleton is ((d—1—1)+k)-CM.

5. The lower bound theorem for balanced complexes

In this section we establish tight lower bounds on the face numbers of balanced
2-CM complexes in terms of their dimension and the number of vertices. Recall that
a (d—1)-dimensional complex A on the vertex set V' is (completely) balanced if its
1-dimensional skeleton is d-colorable: that is, there exists a coloring s:V —[d] such
that for all FeA and distinct v,weF, »(v)#x»(w). We assume that a balanced
complex A comes equipped with such a coloring ». The order complex of a rank d
graded poset is one example of a balanced simplicial complex.

If A is a balanced complex and T'Cld], then the T-rank selected subcomplex of
A'is Ar:={F€eA:x(F)CT}. We make use of the following basic facts from [16].

Lemma 5.1. Let A be a (d—1)-dimensional balanced CM complex. Then for
any TC[d], Ar is also CM, and hi(A)=3 7 _; hi(Ar) for all 0<i<d.
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Since deleting a vertex commutes with taking a rank selected subcomplex: (Ap)_,=
(A_,)7 for any v with s(v) €T, one consequence of the above lemma is that a rank
selected subcomplex of a 2-CM complex is 2-CM as well.

The Lower Bound Theorem for simplicial spheres [4], [11] asserts that among all
(d—1)-dimensional homology spheres with n vertices, a stacked sphere, S7 (n,d—1),
has the componentwise minimal f-vector. A stacked sphere, ST (n,d—1), is de-
fined as the connected sum of n—d copies of the boundary of the d-simplex. Since
hi(00%)=hy(0c?)=1if d>2, it follows that for d>3, h1 (ST (n,d—1))=ho(ST (n,d—
1)). Therefore, via a well-known reduction due to McMullen, Perles, and Walkup
(see [4, Thm. 1] or [11, Sect. 5]), the proof of the LBT for d>3 reduces to showing
that the h-vector of a homology sphere of dimension at least 2 satisfies ho>h;.
Recently, Nevo [14] extended this result to all 2-CM simplicial complexes:

Lemma 5.2. If A is a simplicial 2-CM complex of dimension at least 2, then
ha(A)>hi(A).

It follows easily from the results of [16] that the boundary of the d-dimensional
cross-polytope has the componentwise minimal h-vector among all balanced (d—1)-
dimensional spheres. This motivates us to define a stacked cross-polytopal sphere,
8T*(n,d—1), for n a multiple of d, as the connected sum of 7 —1 copies of the
boundary complex of the d-dimensional cross polytope. At each step the vertices of
the same colors are identified to guarantee that the resulting complex is balanced
as well.

What are the h-numbers of ST (n,d—1)? Since the h-numbers of the d-
dimensional cross-polytope are given by h;= (?), it follows that for 0<j<d,

hi(ST* (n,d—1)) = (%—1) : (j) that is, (j+1)h;41 = (d—j)h; for 0<j <d—1.

In particular, (d—1)h;=2hs if d>3. Similarly, a direct computation shows that

¢j_1(n, d— 1) = j'fj_l(STX (’I’L7 d—l))

@D —d)+d(4D)), 1<i<d-1
| 24=2)(n—d)+2d, j=d.

One advantage of the last expression is that it is defined for all n rather than just
multiples of d. This allows us to state and prove the main theorem of this section
— the Lower Bound Theorem for balanced spheres and, more generally, balanced
2-CM complexes.
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Theorem 5.3. Let A be a balanced 2-CM simplicial complex of dimension
d—1. If d>3, then 2hy(A)>(d—1)h1(A). In particular, if d>2 and fo(A)=n, then
j'fjfl(A)Z@/Jj,l(n, d—].) fOT’ all 2§]§d

Proof. Repeatedly applying Lemma 5.1, we see that

S he(Ar) = 3 Y ha(As)= 3 (d-2)ha(As) = (d—2)ha(A), and

|T|=3 |T|=3 |S|CT, |S|=2

S|=2
> mian =Y 5 m@9= 3 () m@a=("; )n@.
|T1=3 |T|=3 |%lc:Tl |S|=1

Since A is balanced and 2-CM, its rank selected subcomplexes share the same
properties. In particular, when |T|=3, Ar is a 2-dimensional 2-CM complex, and
so by Lemma 5.2, ho(Ar)>h1(Ar). Thus we infer that (d—2)ha(A)> (dgl)hl(A),
and the inequality 2hq(A)>(d—1)h1(A) (for d>3) follows.

The proof of the “in particular” part is a routine computation similar in spirit
to the McMullen-Perles-Walkup reduction. We sketch it here for completeness. We
use induction on d. For d=2 we need only show that 2f;(A)>2n. This indeed
holds, since A is a 2-CM graph, hence it is 2-connected, and so every vertex of A
has degree at least 2.

Suppose now that d>3. Then .\ hi(lkv)=2ha(A)+(d—1)h1(A)>2(d—
1)h1(A) by the first part. Inductively, for 3<j<d—1, we have

Jfia(B) = fia(lkv)

vEA
> — |1 _
=Y o [(2 1)(j_2)h1(lkv)+(d 1)<j_2>}
vEA
; d—1 d—1
> (97 _
> @)1} )+ (9} )
; d—1 d—1
= (27 — — s _
(2 1)<j_1>h1(A)+d<j_1> i_1(n,d—1).
The proof for j=d is similar and is omitted. O

It is worth remarking that at present we do not know whether the assertion
of Theorem 5.3 is tight when n is not divisible by d. We also do not know if the
stacked cross-polytopal spheres are the only balanced 2-CM complexes satisfying
2ho=(d—1)h; when d divides n.
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In the case when T is a 2j-dimensional homology sphere, the Dehn-Sommerville
relations assert that h;(I')=h,11(T). If we knew that every balanced 2-CM complex
I’ of dimension 2j satisfies h;(I')<h,;+1(I'), a proof similar to that of Theorem 5.3
would imply that for a balanced 2-CM complex A of dimension d—1>2j,

(J+Dhj1(A) > (d—7)hi(A).

Finally, we observe that the Lower Bound Theorem [3], [11] holds not only
for simplicial spheres, but also for triangulations of connected manifolds, and even
normal pseudomanifolds of dimension at least two. (The latter result is due to
Fogelsanger [9].) Does Theorem 5.3 hold for balanced triangulations of such spaces?
Using results of [14] and standard tools from rigidity theory, one can show that any
connected pure 3-dimensional simplicial complex all of whose vertex links are 2-
CM, satisfies ha>h;. The proof analogous to that of Theorem 5.3 then implies
that if A is a balanced triangulation of a manifold of dimension at least, then
3ha(A)>(d—1)hi(A). This inequality, however, is weaker than that of Theorem 5.3.
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