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Abstract

In 1995, Jockusch constructed an infinite family of centrally symmetric 3-dimensional sim-
plicial spheres that are cs-2-neighborly. Here we generalize his construction and show that for
all d ≥ 3 and n ≥ d+ 1, there exists a centrally symmetric d-dimensional simplicial sphere with
2n vertices that is cs-dd/2e-neighborly. This result combined with work of Adin and Stanley
completely resolves the upper bound problem for centrally symmetric simplicial spheres.

1 Introduction

In this paper we construct highly neighborly centrally symmetric d-dimensional spheres with an
arbitrarily large even number of vertices. A simplicial complex is centrally symmetric (cs, for short)
if it possesses a free simplicial involution. We refer to a pair of vertices that form an orbit under this
involution as antipodes or antipodal vertices. One large class of examples is given by the boundary
complexes of cs simplicial polytopes: a polytope P is cs if P = −P ; the involution, in this case, is
induced by the map v 7→ −v on the vertices.

A (non-cs) simplicial complex is called `-neighborly if every ` of its vertices form a face. For
instance, the boundary complex of the (d+ 1)-dimensional simplex is (d+ 1)-neighborly, while the
boundary complex of the (d+ 1)-dimensional cyclic polytope with n ≥ d+ 3 vertices, C(d+ 1, n),
is dd/2e-neighborly. The interest in neighborly polytopes arises from the celebrated upper bound
theorem [12, 22] asserting that among all d-dimensional simplicial spheres with n vertices, the
boundary complex of C(d+1, n) simultaneously maximizes all the face numbers. The cyclic polytope
in this statement can be replaced with any dd/2e-neighborly d-dimensional simplicial sphere — the
objects that abound in nature, see [18].

This notion of `-neighborliness can be easily modified for the class of cs complexes: a cs simplicial
complex ∆ is cs-`-neighborly if every set of ` of its vertices, no two of which are antipodes, is a face of
∆. Furthermore, the same notion applies to any (not necessarily cs) full-vertex subcomplex Γ of ∆.
For instance, the boundary complex of the (d+1)-dimensional cross-polytope is cs-(d+1)-neighborly,
while the boundary complex of the same cross-polytope with one facet removed is cs-d-neighborly.
Adin [1] and Stanley (unpublished) proved that in a complete analogy with Stanley’s upper bound
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theorem, among all cs simplicial spheres of dimension d and with 2n vertices, a cs-dd/2e-neighborly
sphere simultaneously maximizes all the face numbers, assuming such a sphere exists. (See [16, 17]
for an extension of this result to cs simplicial manifolds.)

Thus, two natural questions to consider are: do there exist cs simplicial polytopes of dimension
d + 1 ≥ 4 with arbitrarily many vertices whose boundary complexes are cs-dd/2e-neighborly? Do
there exist cs simplicial spheres of dimension d ≥ 3 with arbitrarily many vertices that are cs-dd/2e-
neighborly?

The answer to the first question was given by McMullen and Shephard [13] more than fifty years
ago: extending the 4-dimensional case worked out by Grünbaum [4, p. 116], they proved that while
there do exist cs (d+1)-dimensional polytopes with 2(d+2) vertices that are cs-dd/2e-neighborly, a
cs (d+1)-dimensional polytope with 2(d+3) vertices cannot be more than cs-b(d+2)/3c-neighborly.
Moreover, according to [10], a cs (d+ 1)-dimensional polytope with more than 2d+1 vertices cannot
be even cs-2-neighborly.

The second question remained a total mystery until in 1995 Jockusch [6] showed that, in a sharp
contrast with the situation for cs 4-dimensional polytopes, for every value of n ≥ 4, there exists
a cs 3-dimensional sphere with 2n vertices that is cs-2-neighborly. In addition, for d ≤ 6, Lutz
[11] found (by a computer search) several cs d-dimensional spheres with 2(d+ 3) vertices that are
cs-dd/2e-neighborly.

Here, we build on work of Jockusch to provide a complete answer to the second question: for
all values of d ≥ 3 and n ≥ d + 1, there exists a cs d-dimensional combinatorial sphere with 2n
vertices, ∆d

n, that is cs-dd/2e-neighborly. Thus, our result combined with work of Adin and Stanley
completely resolves the upper bound problem for cs simplicial spheres. (At the same time, there is
not even a plausible upper bound conjecture for cs polytopes.)

Our construction is by induction on both d and n. The key idea in constructing ∆d
n+1 from ∆d

n

is to define for each i ≤ dd/2e − 1, an auxiliary d-dimensional ball with 2n vertices, Bd,i
n ⊂ ∆d

n,
that is both i-stacked and cs-i-neighborly, see Sections 2 and 3 for definitions. For d = 3, our
construction reduces to Jockusch’s construction. It is worth mentioning that using the same balls
in fact allows us to construct for any ` ≤ dd/2e, a family of cs d-dimensional combinatorial spheres
that are cs-`-neighborly but not cs-(`+ 1)-neighborly.

The structure of the paper is as follows. In Section 2 we discuss several basic facts and definitions
pertaining to simplicial complexes and PL topology. Sections 3 is a hard duty section that contains
our inductive construction and the proof that this construction works. In Section 4, we study some
other properties of the spheres ∆d

n. We close in Section 5 with several remarks and open questions.

2 Preliminaries

In this section we review some background related to simplicial complexes and PL topology. For
all undefined terminology we refer the readers to [2].

A simplicial complex ∆ with vertex set V = V (∆) is a collection of subsets of V that is closed
under inclusion and contains all singletons: {v} ∈ ∆ for all v ∈ V . The elements of ∆ are called
faces. The dimension of a face τ ∈ ∆ is dim τ := |τ | − 1. The dimension of ∆, dim ∆, is the
maximum dimension of its faces. A face of a simplicial complex ∆ is a facet if it is maximal
w.r.t. inclusion. We say that ∆ is pure if all facets of ∆ have the same dimension.

Let V be a set of size d + 1. Two fundamental examples of pure simplicial complexes are the
d-dimensional simplex on V , V := {τ : τ ⊆ V }, and its boundary complex, ∂V := {τ : τ ( V }.
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To simplify the notation, for a face that is a vertex, an edge, or a triangle, we write v, uv, and
uvw instead of {v}, {u, v}, and {u, v, w}, respectively. We denote by (v1, v2, . . . , vn) a path with
edges v1v2, v2v3, . . . , vn−1vn if vn 6= v1, or a cycle if vn = v1. In particular, a path of length one
(v1, v2) is a 1-dimensional simplex, so it can also be written as v1v2.

Let ∆ be a simplicial complex. The k-skeleton of ∆, Skelk(∆), is the subcomplex of ∆ consisting
of all faces of dimension ≤ k. If τ is a face of ∆, then the link of τ in ∆ is the following subcomplex
of ∆:

lk(τ,∆) := {σ ∈ ∆ : σ ∩ τ = ∅ and σ ∪ τ ∈ ∆}.

Finally, if ∆ is pure and Γ is a full-dimensional pure subcomplex of ∆, then ∆\Γ is the subcomplex
of ∆ generated by those facets of ∆ that are not in Γ.

If ∆ and Γ are simplicial complexes on disjoint vertex sets, then the join of ∆ and Γ is the
simplicial complex ∆ ∗ Γ = {σ ∪ τ : σ ∈ ∆ and τ ∈ Γ}. Two important special cases are the cone
over ∆ with apex v defined as the join ∆ ∗ v and the suspension of ∆, Σ∆, defined as the join of
∆ with a 0-dimensional sphere. In the rest of the paper, we write ∆ ∗ v in place of ∆ ∗ v.

Let V be a set of size d + 1 and let V be the d-dimensional simplex on V . A combinatorial
d-ball is a simplicial complex PL homeomorphic to V . Similarly, a combinatorial (d− 1)-sphere is
a simplicial complex PL homeomorphic to ∂V .

One advantage of working with combinatorial balls and spheres is that they satisfy several
natural properties that fail in the class of simplicial balls and spheres. For instance, if ∆ is a
combinatorial d-sphere and Γ ⊂ ∆ is a combinatorial d-ball, then so is ∆\Γ, see [5]. Furthermore,
the link of any face in a combinatorial sphere is a combinatorial sphere. On the other hand, the
link of a face τ in a combinatorial d-ball B is either a combinatorial ball or a combinatorial sphere;
in the former case we say that τ is a boundary face of B, and in the latter case that τ is an interior
face of B. The boundary complex of B, ∂B, is the subcomplex of B that consists of all boundary
faces of B; in particular, ∂B is a combinatorial (d− 1)-sphere.

The following lemma summarizes a few basic but very useful properties of combinatorial balls.
We only prove the last part; the proofs of the first two parts along with additional information on
PL topology can be found in [5], see also [9].

Lemma 2.1.

1. Let B and B′ be combinatorial balls. Then B ∗ B′ is a combinatorial ball; its interior faces
are sets of the form F ∪F ′, where F is an interior face of B and F ′ is an interior face of B′.
Furthermore, the cone over ∂B, ∂B ∗ v, is a combinatorial ball; its boundary complex is ∂B.

2. Let B and B′ be combinatorial d-balls such that B∩B′ ⊆ ∂B∩∂B′ is a combinatorial (d−1)-
ball. Then B ∪ B′ is a combinatorial d-ball. The set of interior faces of B ∪ B′ consists of
the interior faces of B, the interior faces of B′, and the interior faces of B ∩B′.

3. Assume that combinatorial balls B and B′ are full-dimensional subcomplexes of a combinato-
rial sphere Γ. If B and B′ share a common interior face, then they share a facet.

Proof: For part 3, let τ be a common interior face of B and B′. Assume that dim Γ = d and
dim τ = k. Then the link of τ in B is a combinatorial (d− k − 1)-sphere, and so is the link of τ in
Γ. Furthermore, the link of τ in B is contained in the link of τ in Γ. Thus, these two links must be
equal. In particular, every facet F of Γ containing τ must be a facet of B. By the same argument,
such an F must also be a facet of B′. The result follows. �
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A simplicial complex ∆ is centrally symmetric or cs if its vertex set is endowed with a free
involution α : V (∆) → V (∆) that induces a free involution on the set of all nonempty faces of
∆. In more detail, for all nonempty faces τ ∈ ∆, the following holds: α(τ) ∈ ∆, α(τ) 6= τ , and
α(α(τ)) = τ . To simplify notation, we write α(τ) = −τ and refer to τ and −τ as antipodal faces of
∆. Similarly, if Γ is a subcomplex of ∆ we write −Γ in place of α(Γ).

One example of a cs combinatorial d-sphere is the boundary complex of the (d+ 1)-dimensional
cross-polytope, ∂C∗d+1. The polytope C∗d+1 is the convex hull of {±e1,±e2, . . . ,±ed+1}, where

e1, e2, . . . , ed+1 are the endpoints of the standard basis in Rd+1. As an abstract simplicial com-
plex, ∂C∗d+1 is the (d + 1)-fold suspension of {∅}. Equivalently, it is the collection of all subsets
of Vd+1 := {±v1, . . . ,±vd+1} that contain at most one vertex from each pair {±vi}. In particular,
every cs simplicial complex with vertex set Vn is a subcomplex of ∂C∗n.

We close this section with a discussion of neighborliness and stackedness. Let ∆ ⊆ ∂C∗n be a
simplicial complex, possibly non-cs, and let 1 ≤ i ≤ n. We say that ∆ is cs-i-neighborly (w.r.t. Vn),
if Skeli−1(∆) = Skeli−1(∂C∗n). For i = 1, this simply means that V (∆) = Vn. For convenience, we
also refer to simplices (i.e., faces of ∂C∗n) as cs-0-neighborly complexes.

A combinatorial d-ball B is called i-stacked (for some 0 ≤ i ≤ d), if all interior faces of B are
of dimension ≥ d − i, that is, Skeld−i−1(B) = Skeld−i−1(∂B). In particular, 0-stacked balls are
simplices, and 1-stacked balls are also known as stacked balls. The notion of stackedness takes its
origins in the generalized lower bound theorem [14, 15, 23].

The following lemmas will be handy.

Lemma 2.2. Let B1 and B2 be combinatorial balls of dimension d1 and d2, respectively. If B1 is
i1-stacked and B2 is i2-stacked, then

1. The complex B1 ∗B2 is an (i1 + i2)-stacked combinatorial (d1 + d2 + 1)-ball.

2. Furthermore, if d1 = d2 = d, i1 ≤ i2, and B1∩B2 ⊆ ∂B1∩∂B2 is a combinatorial (d−1)-ball
that is i3-stacked for some i3 < i2, then B1 ∪B2 is an i2-stacked combinatorial d-ball.

Proof: For part 1, observe that by definition of stackedness, all interior faces of Bj have dimension
≥ dj − ij for j = 1, 2. Hence by Lemma 2.1, the interior faces of B1 ∗B2, which is a combinatorial
(d1 + d2 + 1)-ball, have dimension ≥ (d1 + d2)− (i1 + i2) + 1. Thus, B1 ∗B2 is (i1 + i2)-stacked.

Part 2 similarly follows from Lemma 2.1 and the definition of stackedness. Indeed, the interior
faces of both B1 and B2 have dimension ≥ d − i2. All other interior faces of B1 ∪ B2 are interior
faces of B1 ∩B2, and so have dimension ≥ (d− 1)− i3 ≥ d− i2. Hence B1 ∪B2 is i2-stacked. �

Lemma 2.3. Let k ≥ 1 be an integer. Let ∆ ⊆ ∂C∗n be a combinatorial (2k−1)-sphere that is cs-k-
neighborly w.r.t. Vn, and let B ⊆ ∆ be a combinatorial (2k−1)-ball that is both cs-(k−1)-neighborly
w.r.t. Vn and (k − 1)-stacked. Then ∆\B is a combinatorial (2k − 1)-ball that is cs-k-neighborly
and k-stacked.

Proof: Let F ∈ ∂C∗n be any set of size ≤ k. Since ∆ is cs-k-neighborly, F is a face of ∆. Thus, if
F /∈ B, then F ∈ ∆\B. On the other hand, if F ∈ B, then since dimF ≤ k− 1 < (2k− 1)− (k− 1)
and since B is (k − 1)-stacked, F must be a boundary face of B and thus also a face of ∆\B. We
infer that ∆\B is cs-k-neighborly.

Next let F be a face of ∆\B of dimension < (2k − 1)− k = k − 1, i.e., |F | ≤ k − 1. Since B is
cs-(k− 1)-neighborly, it follows that F ∈ B. Thus F must lie on the boundary of B and hence also
on the boundary of ∆\B. We conclude that ∆\B is k-stacked. �
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3 The construction

Our goal is to construct ∆d
n — a cs combinatorial d-sphere with 2n ≥ 2d + 2 vertices that is

cs-dd/2e-neighborly. Our method is to build a certain ball on those 2n vertices that is both cs-
(dd/2e − 1)-neighborly and (dd/2e − 1)-stacked. The following lemma explains the significance of
these balls and outlines the inductive procedure on n we will use once such balls are constructed.
For all values of d + 1 ≤ n, the vertex set of ∆d

n will be Vn = V (∂C∗n). In particular, our initial
complex ∆d

d+1 is ∂C∗d+1.

Lemma 3.1. Let d ≥ 1 and 1 ≤ i ≤ dd/2e be integers. Assume that ∆d,i
n is a cs combinato-

rial d-sphere with V (∆d,i
n ) = Vn that is cs-i-neighborly. Assume further that Bd,i−1

n ⊆ ∆d,i
n is a

combinatorial d-ball that satisfies the following properties:

• the ball Bd,i−1
n is both cs-(i− 1)-neighborly w.r.t. Vn and (i− 1)-stacked, and

• the balls Bd,i−1
n and −Bd,i−1

n share no common facets.

Then the complex ∆d,i
n+1 obtained from ∆d,i

n by replacing Bd,i−1
n with ∂Bd,i−1

n ∗vn+1 and −Bd,i−1
n with

∂(−Bd,i−1
n ) ∗ (−vn+1) is a cs combinatorial d-sphere with V (∆d,i

n+1) = Vn+1 that is cs-i-neighborly.

Proof: Observe that Bd,i−1
n and ∂Bd,i−1

n ∗vn+1 are two combinatorial balls with the same boundary.
The fact that Bd,i−1

n and −Bd,i−1
n share no common facets combined with Lemma 2.1 then implies

that ∆d,i
n+1 is a combinatorial sphere. Moreover, the definition of ∆d,i

n+1 along with the fact that

∆d,i
n is a cs complex guarantees that the complex ∆d,i

n+1 is also cs.

To show that ∆d,i
n+1 is cs-i-neighborly, consider a set F ∈ ∂C∗n+1 with |F | ≤ i ≤ dd/2e. If vn+1

is in F , then F\vn+1 is a face of ∂C∗n of size at most i− 1. Since Bd,i−1
n is cs-(i− 1)-neighborly and

(i− 1)-stacked, it follows that

F\vn+1 ∈ Skeli−2(B
d,i−1
n ) ⊆ Skeld−i(B

d,i−1
n ) ⊆ ∂Bd,i−1

n .

Hence F ∈ ∂Bd,i−1
n ∗ vn+1 ⊆ ∆d,i

n+1. If −vn+1 ∈ F , then by the above argument, −F ∈ ∆d,i
n+1, and

so by symmetry, F ∈ ∆d,i
n+1. Finally, if ±vn+1 /∈ F , then since ∆d,i

n is cs-i-neighborly, F ∈ ∆d,i
n .

As any face of ±Bd,i−1
n of dimension ≤ i − 1 is on the boundary of ±Bd,i−1

n , we conclude that
F ∈ ∆d,i

n \ ±Bd,i−1
n ⊆ ∆d,i

n+1. �

The idea is to build B
d,dd/2e−1
n from balls that are less cs-neighborly using intertwined induction.

Definition 3.2. Let d ≥ 1, i ≤ dd/2e, and n ≥ d+ 1 be integers. Define ∆d
n and Bd,i

n inductively
as follows:

• For the initial cases, define ∆1
n := (v1, v2, . . . , vn,−v1,−v2, . . . ,−vn, v1), ∆d

d+1 := ∂C∗d+1,

Bd,j
n := ∅ if j < 0, and B1,0

n := (−v1)vn. (In particular, B1,j
n ⊆ ∆1,1

n for all j ≤ 0.)

• Assume that ∆d−1
m and Bd−1,i

m ⊆ ∆d−1
m are already defined for all i ≤ b(d− 1)/2c and m ≥ d.

If d = 2k, then define B2k−1,k
m := ∆2k−1

m \B2k−1,k−1
m (for m ≥ 2k). Then, for all n ≥ d+ 1 and

i ≤ bd/2c, define

Bd,i
n :=

(
Bd−1,i

n−1 ∗ vn
)
∪
(

(−Bd−1,i−1
n−1 ) ∗ (−vn)

)
.
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• If ∆d
n is already defined (and assuming that ∆d

n ⊇ B
d,dd/2e−1
n and also that B

d,dd/2e−1
n is

a combinatorial ball that shares no common facets with −Bd,dd/2e−1
n ), define ∆d

n+1 as the

complex obtained from ∆d
n by replacing B

d,dd/2e−1
n with ∂B

d,dd/2e−1
n ∗ vn+1 and −Bd,dd/2e−1

n

with ∂(−Bd,dd/2e−1
n ) ∗ (−vn+1).

To get the feel for this construction, we start by computing several explicit examples of com-
plexes produced by Definition 3.2. Note that the join of any simplicial complex with the void
complex ∅ is the void complex. Hence by induction, for all d ≥ 1, Bd,0

n is the simplex on the vertex
set {−v1, vn−d+1, vn−d+2, . . . , vn}. In particular, the link of vi+1 in ∆2

i+1 is ∂B2,0
i , the boundary

of the triangle {−v1, vi−1, vi}; similarly, the link of −vi+1 is the boundary of {v1,−vi−1,−vi}. It
follows that ∆2

n is obtained from ∂C∗3 by symmetric stacking — an operation defined in [7].
To get a handle on B3,1

n , it is worth noting that for i ≤ dd/2e − 1, Definition 3.2 implies that

Bd,i
n =

(
Bd−2,i

n−2 ∗ (vn−1, vn) ∪ (−Bd−2,i−1
n−2 ) ∗ (−vn−1, vn)

)
∪
(

(−Bd−2,i−1
n−2 ) ∗ (−vn−1,−vn) ∪Bd−2,i−2

n−2 ∗ (vn−1,−vn)
)

=
(
Bd−2,i

n−2 ∗ (vn−1, vn)
)
∪
(

(−Bd−2,i−1
n−2 ) ∗ (vn,−vn−1,−vn)

)
∪
(
Bd−2,i−2

n−2 ∗ (vn−1,−vn)
)
.

If we let d = 3 and i = 1, then

B3,1
n =

(
(vn−2, vn−3, . . . , v1,−vn−2,−vn−3, . . . ,−v1)∗(vn−1, vn)

)
∪
(

(v1,−vn−2)∗(vn,−vn−1,−vn)
)
.

In particular, B3,1
n is a combinatorial 3-ball that has 2n−3 facets; it is cs-1-neighborly w.r.t. Vn and

1-stacked. This complex plays a key role in Jockusch’s construction [6] of cs-2-neighborly 3-spheres:
in fact, Jockusch’s 3-spheres are exactly the complexes ∆3

n, for n ≥ 4.
Several other easy consequences of Definition 3.2 are: if i ≤ bd/2c and if Bd,i

n is well-defined,

then every facet of Bd,i
n contains either vn or −vn, and no face of Bd,i

n contains two antipodal
vertices. This latter property and the fact that ∆d

d+1 = ∂C∗d+1 is cs-(d+ 1)-neighborly implies that

∆d
d+1 does contain all balls Bd,i

d+1 for i ≤ dd/2e, so we can at least start executing the algorithm in
Definition 3.2 for all d (once we have taken care of smaller dimensions).

Our remaining task is to show that this algorithm never gets stuck and that its output, ∆d
n,

is a cs combinatorial d-sphere with 2n vertices that is cs-dd/2e-neighborly. To start, we verify
in Lemma 3.3 that if Definition 3.2 allowed us to reach a point where the complex ∆d

n and its

subcomplex B
d,dd/2e−1
n were constructed, then all complexes produced by the definition up to that

point satisfy all the assumptions of Lemma 3.1. This allows us to advance one more step and

construct ∆d
n+1. We then need to show that ∆d

n+1 produced in this way contains B
d,dd/2e−1
n+1 .

Lemma 3.3. If the algorithm reached the (d, n)-th step and produced a pair ∆d
n ⊇ B

d,dd/2e−1
n , then

∆d
n is a cs combinatorial d-sphere with vertex set Vn that is cs-dd/2e-neighborly while the complexes

Bd,i
n (for 0 ≤ i ≤ dd/2e) are combinatorial d-balls that are cs-i-neighborly w.r.t. Vn and i-stacked.

Furthermore, they satisfy the following “nesting property”: −Bd,i−1
n ⊆ Bd,i

n (for all i ≤ dd/2e).

Finally, for all i ≤ bd/2c, Bd,i
n and −Bd,i

n share no common facets.

Proof: We verify the properties of ∆d
n and Bd,i

n by induction on the dimension and the number
of vertices. Since ∆d

d+1 = ∂C∗d+1, the complex ∆d
d+1 is indeed a cs combinatorial d-sphere with
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V (∆d
d+1) = Vd+1 that is cs-dd/2e-neighborly. Furthermore, for any m ≥ 2, B1,0

m and B1,1
m satisfy all

the conditions: B1,0
m is an edge, and hence it is a cs-0-neighborly and 0-stacked 1-ball, while B1,1

m is a
path on Vm, and hence a cs-1-neighborly (w.r.t. Vm) and 1-stacked 1-ball. Finally, −B1,0

m = v1(−vm)
and

B1,1
m = ∆1

m\B1,0
m = (−v1,−v2, . . . ,−vm, v1, v2, . . . , vm) ⊇ −B1,0

m .

For the inductive step, since the algorithm reached the (d, n)-th step, we can assume that the

complexes Bd−1,j
n−1 (for j ≤ d(d−1)/2e) satisfy all the conditions of the lemma and that if n > d+2,

then ∆d
n−1 is a cs combinatorial d-sphere (with vertex set Vn−1) that is cs-dd/2e-neighborly. We

now show that then the same holds for Bd,i
n (for all 0 ≤ i ≤ dd/2e) and ∆d

n.

We start with the nesting property. By definition, for all i ≤ bd/2c = d(d− 1)/2e,

−Bd,i−1
n =

(
(−Bd−1,i−1

n−1 ) ∗ (−vn)
)
∪
(
Bd−1,i−2

n−1 ∗ vn
)
, and

Bd,i
n =

(
(−Bd−1,i−1

n−1 ) ∗ (−vn)
)
∪
(
Bd−1,i

n−1 ∗ vn
)
.

By the inductive hypothesis, Bd−1,i−2
n−1 is a subcomplex of Bd−1,i

n−1 . Hence −Bd,i−1
n ⊆ Bd,i

n for i ≤
bd/2c. We will treat the case of d = 2k − 1, i = k a bit later.

Next, it follows from the nesting property and the definition of Bd−1,j
n that Bd−1,i

n−1 and Bd−1,i−1
n−1

share no common facets for all 1 ≤ i ≤ bd/2c ≤ d(d − 1)/2e, and hence neither do Bd,i
n and

−Bd,i
n . This result also implies the nesting property for d = 2k − 1 and i = k: since B2k−1,k−1

n and
−B2k−1,k−1

n have no common facets, −B2k−1,k−1
n ⊆ ∆2k−1

n \B2k−1,k−1
n = B2k−1,k

n .

We now show that Bd,i
n is an i-stacked combinatorial d-ball. For the case of i ≤ bd/2c, recall

that Bd,i
n is the union of D1 = Bd−1,i

n−1 ∗ vn and D2 = (−Bd−1,i−1
n−1 ) ∗ (−vn). By the inductive

hypothesis and Lemma 2.1, D1 and D2 are combinatorial d-balls. The nesting propery implies that
D1 ∩D2 = −Bd−1,i−1

n−1 and by the inductive hypothesis it is also a combinatorial (d− 1)-ball. Since

it is contained in ∂D1 ∩ ∂D2, Lemma 2.1 guarantees that Bd,i
n = D1 ∪D2 is a combinatorial d-ball.

Furthermore, by the inductive hypothesis and Lemma 2.2, D1 is i-stacked, D2 is (i − 1)-stacked

and the intersection is (i− 1)-stacked. Thus the union Bd,i
n is i-stacked.

Next we turn to treating cs-neighborliness: we show that for all i ≤ bd/2c, Bd,i
n is cs-i-neighborly

w.r.t. Vn while ∆d
n is a cs combinatorial d-sphere that is cs-dd/2e-neighborly w.r.t Vn. The statement

about Bd,i
n follows easily from the definition of Bd,i

n and the inductive hypothesis asserting that
Bd−1,j

n−1 is cs-j-neighborly w.r.t. Vn−1 for j = i − 1, i. Now, if n = d + 1, then ∆d
n = ∂C∗d+1, so it is

a cs combinatorial d-sphere on Vn that is cs-dd/2e-neighborly, and if n > d+ 1, then the inductive

hypothesis on ∆d
n−1 along with Lemma 3.1 and the established properties of B

d,dd/2e−1
n−1 imply that

∆d
n is a cs combinatorial d-sphere on Vn that is cs-dd/2e-neighborly.

Finally, we discuss the case of d = 2k − 1, i = k. Since B2k−1,k
n = ∆2k−1

n \B2k−1,k−1
n , we obtain

from the previous paragraph and Lemma 2.3 that B2k−1,k
n is a combinatorial (2k − 1)-ball that is

cs-k-neighborly and k-stacked. This completes the proof. �

It now remains to show that B
d,dd/2e−1
n+1 is a subcomplex of ∆d

n+1. (Recall that our assumptions

include that B
d−1,d(d−1)/2e−1
m is a subcomplex of ∆d−1

m for all m ≥ d and that B
d,dd/2e−1
n is a sub-

complex of ∆d
n.) To facilitate the proof of this result, we rely on the following lemma; its proof is

an immediate consequence of the definition of Bd,i
n , Lemma 2.1, and the nesting property.
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Lemma 3.4. Under the assumptions of Lemma 3.3, for all d ≥ 2 and 0 ≤ i ≤ bd/2c,

∂Bd,i
n =

(
∂Bd−1,i

n−1 ∗ vn
)
∪
(
∂(−Bd−1,i−1

n−1 ) ∗ (−vn)
)
∪
(
Bd−1,i

n−1 \(−B
d−1,i−1
n−1 )

)
.

A combinatorial sphere ∆ is called k-stacked if it is the boundary complex of a combinatorial
k-stacked ball.

Corollary 3.5. Under the assumptions of Lemma 3.3, for all k ≥ 1 and n ≥ 2k + 1, ∂B2k,k
n =

∆2k−1
n . In particular, ∆2k−1

n is k-stacked.

Proof: By definition, the complex ∆2k−1
n is obtained from ∆2k−1

n−1 = B2k−1,k−1
n−1 ∪ B2k−1,k

n−1 by

replacing ±B2k−1,k−1
n−1 with ±(∂B2k−1,k−1

n−1 ∗ vn). On the other hand, Lemma 3.4 and the fact that

∂B2k−1,k
n = ∂B2k−1,k−1

n yield that

∂B2k,k
n =

(
∂B2k−1,k−1

n−1 ∗ vn
)
∪
(
∂(−B2k−1,k−1

n−1 ) ∗ (−vn)
)
∪
(
B2k−1,k

n−1 \(−B2k−1,k−1
n−1 )

)
.

Hence ∂B2k,k
n = ∆2k−1

n . Since by Lemma 3.3, the ball B2k,k
n is k-stacked , the sphere ∆2k−1

n is also
k-stacked. �

We are now in a position to show that the ball B
d,dd/2e−1
n is indeed a subcomplex of ∆d

n. This
will require one additional lemma.

Lemma 3.6. Under the assumptions of Lemma 3.3, for all d ≥ 2, n ≥ d+1, and 0 ≤ i ≤ j ≤ bd/2c,
the following inclusion holds: Bd−1,i

n ⊆ ∂Bd,j
n .

Proof: The proof is by induction on d. We start by checking the statement in the following base
cases.

1. If j = 0 (and hence i = 0), then for any d ≥ 2,

∂Bd,0
n = ∂{−v1, vn−d+1, . . . , vn} ⊇ {−v1, vn−d+2, . . . , vn} = Bd−1,0

n .

2. If i = 0, then by Lemmas 3.4 and 3.5, for any j > 0 and d ≥ 2j,

∂Bd,j
n ⊇ ∂Bd−1,j

n−1 ∗vn ⊇ · · · ⊇ ∂B
2j,j
n−d+2j∗{vn−d+2j+1, . . . , vn} = ∆2j−1

n−d+2j∗{vn−d+2j+1, . . . , vn}.

Since Bd−1,0
n = B2j−1,0

n−d+2j ∗ {vn−d+2j+1, . . . , vn} and ∆2j−1
n−d+2j ⊇ B2j−1,0

n−d+2j , we conclude that

Bd−1,0
n ⊆ ∂Bd,j

n .

3. If j ≥ 1 and d = 2j, then Lemma 3.5 implies that for any i ≤ j, ∂B2j,j
n = ∆2j−1

n ⊇ B2j−1,i
n .

For the inductive step we can thus assume that 1 ≤ j < d/2 (equivalently, that 1 ≤ j ≤
b(d− 1)/2c), and that the statement holds for d− 1 and all 0 ≤ i ≤ j ≤ b(d− 1)/2c. Then

Bd−1,i
n =

(
Bd−2,i

n−1 ∗ vn
)
∪
(

(−Bd−2,i−1
n−1 ) ∗ (−vn)

)
(∗)
⊆

(
∂Bd−1,j

n−1 ∗ vn
)
∪
(

(−∂Bd−1,j−1
n−1 ) ∗ (−vn)

)
(∗∗)
⊆ ∂Bd,j

n .

Here (∗) follows from the inductive hypothesis and (∗∗) follows from Lemma 3.4. This completes
the proof. �

An immediate corollary of Lemma 3.6 is that B
d,dd/2e−1
n+1 ⊆ ∆d

n+1:
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Corollary 3.7. For all d ≥ 2 and n ≥ d+ 1,

B
d,dd/2e−1
n+1 ⊆

(
∂Bd,dd/2e−1

n ∗ vn+1

)
∪
(
∂(−Bd,dd/2e−1

n ) ∗ (−vn+1)
)
⊆ ∆d

n+1.

Proof: The first inclusion is by definition of B
d,dd/2e−1
n and Lemma 3.6, and the second inclusion

is by definition of ∆d
n+1. �

Corollary 3.7 together with Lemma 3.3 completes the proof that the construction described in
Definition 3.2 never gets stuck and that for every d ≥ 2 and n ≥ d+ 1 it outputs a cs combinatorial
d-sphere with vertex set Vn that is cs-dd/2e-neighborly. We summarize this in the theorem below:

Theorem 3.8. For all d ≥ 2 and n ≥ d + 1, the complex ∆d
n is a cs combinatorial d-sphere with

vertex set Vn that is cs-dd/2e-neighborly.

Remark 3.9. Let 1 ≤ i ≤ dd/2e. Since by nesting property,

Bd,i−1
n ⊆ Bd,dd/2e−1

n ∪
(
−Bd,dd/2e−1

n

)
,

it follows from Corollary 3.7 that Bd,i−1
n ⊆ ∆d

n. This allows us to construct cs-i-neighborly spheres
that are not cs-(i + 1)-neighborly for all 1 ≤ i ≤ dd/2e. Indeed, Lemmas 3.1 and 3.3 along

with Theorem 3.8 imply that the complex ∆d,i
n+1 obtained from ∆d

n by replacing the subcomplexes

±Bd,i−1
n with ±

(
∂Bd,i−1

n ∗ vn+1

)
is a cs combinatorial d-sphere that is cs-i-neighborly. To see that

∆d,i
n+1 is not cs-(i+1)-neighborly, note that the inductive proof of Lemma 3.3 in fact shows that while

Bd,i−1
n is cs-(i−1)-neighborly, it is not cs-i-neighborly. In particular, ∂Bd,i−1

n is not cs-i-neighborly,
and hence ∆d

n+1 is not cs-(i+ 1)-neighborly.

4 Properties

It is our hope that the spheres ∆d
n constructed in this paper will find many other applications. With

this in mind, in this section we discuss several additional properties that these spheres possess. One
important property is that certain face links in ∆d

n are also highly cs-neighborly.

Proposition 4.1. For all k ≥ 2 and n ≥ 2k − 1,

lk(vnvn+1,∆
2k−1
n+1 ) = ∆2k−3

n−1 = lk(vnvn+1vn+2,∆
2k
n+2).

Proof: The assertion holds if n = 2k − 1 since in this case all complexes appearing in the
statement are the boundary complexes of cross-polytopes. Thus assume n ≥ 2k. By definition of
∆2k−1

n+1 , Lemma 3.4, and Lemma 3.5,

lk(vnvn+1,∆
2k−1
n+1 ) = lk(vn, ∂B

2k−1,k−1
n ) = ∂B2k−2,k−1

n−1 = ∆2k−3
n−1 .

Similarly,

lk(vnvn+1vn+2,∆
2k
n+2) = lk(vnvn+1, ∂B

2k,k−1
n+1 ) = lk(vn, ∂B

2k−1,k−1
n ) = ∂B2k−2,k−1

n = ∆2k−3
n−1 .

This completes the proof. �
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In view of Proposition 4.1, it is natural to ask whether the link of vn+1 in ∆2k
n+1 is ∆2k−1

n ,
and, more generally, whether ∆2k

n+1 is a suspension. This is especially relevant to our discussion
since suspensions of cs-k-neighborly spheres are also cs-k-neighborly; in particular, both complexes
Σ∆2k−1

n and ∆2k
n+1 are cs combinatorial 2k-spheres that are cs-k-neighborly w.r.t Vn+1. Are they

isomorphic? The following proposition shows that the answer is no.

Proposition 4.2. If n ≥ 2k + 1, then the complex ∆2k
n+1 is not a suspension. In particular, ∆2k

n+1

is not isomorphic to Σ∆2k−1
n .

Proof: We will rely on the following three observations.

1. If ∆ = ΣΓ and F ∈ Γ, then lk(F,∆) = Σ lk(F,Γ).

2. For k ≥ 2 and n ≥ 2k + 1, ∆2k−3
n−2 is not a suspension.

To see this, recall that ∆2k−3
n−2 is cs-(k − 1)-neighborly. Now, a cs (2k − 4)-sphere that is not

the boundary of the cross-polytope can be at most cs-(k − 2)-neighborly. Hence, if ∆2k−3
n−2

were a suspension, it would also be at most cs-(k − 2)-neighborly.

3. For ` ≥ 1 and m ≥ 2`+ 1, the complex ∂B2`,`−1
m is not a cs complex.

If ∂B2`,`−1
m were a cs complex, then the link lk(vm, ∂B

2`,`−1
m ) = ∂B2`−1,`−1

m−1 would coincide with

− lk(−vm, ∂B2`,`−1
m ) = −∂(−B2`−1,`−2

m−1 ) = ∂B2`−1,`−2
m−1 . Since the balls B2`−1,`−1

m−1 and B2`−1,`−2
m−1

share no common facets, their union would then be a (2`− 1)-sphere strictly contained in the
(2`− 1)-sphere ∆2`−1

m , which is impossible.

We are now ready to prove the proposition. If k = 1, then ∆2
n+1 is obtained from ∂C∗3 by

symmetric stacking, and so ∆2
n+1 is not a suspension for n ≥ 3. Thus let k ≥ 2, and assume by

contradiction that ∆2k
n+1 is a suspension with suspension vertices ±vi for some i ≤ n+ 1.

If i < n − 1, then by Observation 1, the link of vn−1vnvn+1 in ∆2k
n+1 must be a suspension.

However, by Proposition 4.1, lk(vn−1vnvn+1,∆
2k
n+1) = ∆2k−3

n−2 , which according to Observation 2 is
not a suspension.

If i = n+ 1, then lk(vn+1,∆
2k
n+1) must equal lk(−vn+1,∆

2k
n+1). In particular, lk(vn+1,∆

2k
n+1) =

∂B2k,k−1
n must be a cs complex, which contradicts Observation 3.
If i = n, then by Observation 1, lk(vn+1,∆

2k
n+1) = ∂B2k,k−1

n must be a suspension with sus-

pension vertices ±vn. However, since −B2k−1,k−2
n−1 is strictly contained in B2k−1,k−1

n−1 , the complexes

lk(vn, ∂B
2k,k−1
n ) = ∂B2k−1,k−1

n−1 and lk(−vn, ∂B2k,k−1
n ) = ∂(−B2k−1,k−2

n−1 ) are not equal.
Finally, if i = n− 1, then by Observation 1, we must have

lk(vn−1, lk(vnvn+1,∆
2k
n+1)) = lk(−vn−1, lk(vnvn+1,∆

2k
n+1)).

The proof of Proposition 4.1 implies that the former complex is ∆2k−3
n−2 while the latter complex is

∂(−B2k−2,k−2
n−2 ). These complexes cannot be equal since one is cs and the other one is non-cs. �

Remark 4.3. The ball B2k,k
n+1 is “special” in the following sense: while Bd,i

n+1 ⊆ ∆d
n+1 for all d ≥ 1,

i ≤ dd/2e − 1, and n ≥ d (see Remark 3.9), the ball B2k,k
n+1 is not a subcomplex of ∆2k

n+1 for

n > 2k. Indeed, a straightforward computation using that ∆2k−1
n = B2k−1,k

n ∪B2k−1,k−1
n along with

the definition of B2k,k
n+1 implies that B2k,k

n+1 ∪ (−B2k,k
n+1) = Σ∆2k−1

n . Our claim that B2k,k
n+1 6⊆ ∆2k

n+1

(for n ≥ 2k + 1) then follows from Proposition 4.2. However, in the case of n = 2k, the same

computation shows that B2k,k
2k+1 ∪ (−B2k,k

2k+1) = Σ∆2k−1
2k = Σ(∂C∗2k) = ∂C∗2k+1 = ∆2k

2k+1.
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To close this section, we show that while ∆2k
n+1 is not the suspension of ∆2k−1

n , the complexes
∆2k

n and ∆2k−1
n are closely related:

Proposition 4.4. Let k ≥ 2 and n ≥ 2k + 1. Then ∆2k
n ⊇ ∆2k−1

n .

Proof: To prove the statement, it suffices to construct a combinatorial 2k-ball Dn that satisfies
the following properties:

• Dn ⊇ −B2k,k−1
n .

• Dn and −Dn share no common facets and their union is ∆2k
n ; in particular, ±Dn ⊆ ∆2k

n .

• ∂Dn = ∂(−Dn) = ∆2k−1
n , and so ∆2k−1

n ⊆ ∆2k
n .

We construct Dn by induction on n. For the base case, define D2k+1 := B2k,k
2k+1. This ball has

all the desired properties: this follows from Lemma 3.3, Corollary 3.5, and Remark 4.3.
For the inductive step, assume that there exists a combinatorial 2k-ball Dn that satisfies all

of the above properties. In particular, −Dn contains B2k,k−1
n as a subcomplex. Recall also that

∂B2k,k−1
n ⊇ B2k−1,k−1

n (see Lemma 3.6). Thus, the following complex is well-defined:

Dn+1 :=
(

(−Dn)\B2k,k−1
n

)
∪
(

(−B2k−1,k−1
n ) ∗ (−vn+1)

)
∪
((

(∂B2k,k−1
n )\B2k−1,k−1

n

)
∗ vn+1

)
. (4.1)

This definition along with the inductive assumption that Dn and −Dn share no common facets
implies that Dn+1 and −Dn+1 share no common facets either. Further, since ∂B2k,k−1

n contains
B2k−1,k−2

n (see Lemma 3.6) and since B2k−1,k−2
n and B2k−1,k−1

n share no common facets (this follows
from the nesting property), equation (4.1) guarantees that

Dn+1 ⊇
(

(−B2k−1,k−1
n ) ∗ (−vn+1)

)
∪
(
B2k−1,k−2

n ∗ vn+1

)
= −B2k,k−1

n+1 .

Recall that ∆2k
n+1 is obtained from ∆2k

n by replacing ±B2k,k−1
n with ±(∂B2k,k−1

n ∗ vn+1). This
together with the definition of Dn+1 and the inductive hypothesis asserting that Dn∪(−Dn) = ∆2k

n

implies that Dn+1 ∪ (−Dn+1) = ∆2k
n+1.

It only remains to show that Dn+1 is a combinatorial 2k-ball with ∂Dn+1 = ∂(−Dn+1) = ∆2k−1
n+1 .

We use eq. (4.1) and the inductive hypothesis that ∂(−Dn) = ∆2k−1
n . First, the boundary of

∂B2k,k−1
n ∗ vn+1 coincides with the boundary of B2k,k−1

n . Thus, replacing the subcomplex B2k,k−1
n

of the combinatorial ball −Dn with ∂B2k,k−1
n ∗ vn+1 results in a combinatorial ball D′n+1 that has

the same boundary as −Dn. The ball D′n+1 has vn+1 as an interior vertex whose link in D′n+1 is

∂B2k,k−1
n . Now, B2k−1,k−1

n is contained in both ∂B2k,k−1
n and ∂D′n+1 = ∂(−Dn) = ∆2k−1

n . Since

vn+1 is an interior vertex of D′n+1, removing B2k−1,k−1
n ∗ vn+1 from D′n+1 results in a combinatorial

ball D′′n+1 whose boundary is obtained from that of −Dn by replacing B2k−1,k−1
n with ∂B2k−1,k−1

n ∗
vn+1. Finally, the balls (−B2k−1,k−1

n ) ∗ (−vn+1) and D′′n+1 intersect along −B2k−1,k−1
n , which is

a subcomplex of their boundaries. This yields that Dn+1 = D′′n+1 ∪
(

(−B2k−1,k−1
n ) ∗ (−vn+1)

)
is

a combinatorial ball. Further, the boundary of Dn+1 is obtained from the boundary of D′′n+1 by

replacing −B2k−1,k−1
n with ∂(−B2k−1,k−1

n ) ∗ (−vn+1). We conclude that ∂Dn+1 = ∆2k−1
n+1 . �

Observe that the 2k-ball Dn constructed in the proof of Proposition 4.4 is k-stacked. (Indeed,
since the boundary of Dn is a cs-k-neighborly complex w.r.t. Vn, no face of Dn of dimension ≤ k−1
is an interior face of Dn, and so all interior faces of Dn have dimension ≥ k = 2k − k.) Thus
one curious consequence of Proposition 4.4 and Corollary 3.5 is that for n > 2k + 1, ∆2k−1

n is the
boundary complex of at least four distinct k-stacked 2k-balls, namely, Dn, −Dn, B2k,k

n , and −B2k,k
n .
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5 Closing remarks and questions

We close with a few open questions.
The spheres ∆d

n we constructed here are cs combinatorial spheres that are cs-dd/2e-neighborly.
Hence, according to [13], for d ≥ 3 and n ≥ d + 3, they are not the boundary complexes of cs
polytopes. In fact, it follows from results of Pfeifle [19, Chapter 10] that they are not even cs fans
(at least for d big enough). However, these spheres might still possess some additional “liked by
all” properties:

Problem 5.1. Let d ≥ 3 and n ≥ d + 3. Are the spheres ∆d
n vertex decomposable or at least

shellable? Are they realizable as (non-cs) fans? Are they even realizable as boundary complexes of
(non-cs) polytopes?

It is well-known that there are many (non-cs) neighborly polytopes and neighborly spheres. For
example, the number of combinatorial types of dd/2e-neighborly (d+ 1)-polytopes with n vertices

is at least n
d−1
2

n(1+o(1)) for d > 1 and n→∞, see [18, Section 6]. Are there many cs d-spheres that
are cs-dd/2e-neighborly?

Problem 5.2. Find many new constructions of cs combinatorial d-spheres that are cs-dd/2e-
neighborly.

Finally, it is worth mentioning that in a contrast with cs combinatorial spheres, there exist cs
combinatorial 2k-manifolds with n > 2(2k+1) vertices that are cs-(k+1)-neighborly. (The interest
in such complexes arises in part from Sparla’s conjecture [20, 21] that posits an upper bound on
the Euler characteristic of cs combinatorial 2k-manifolds with 2n vertices; see [17] for some results
on this conjecture.) One construction of such an infinite family is given in [8]: for each k ≥ 1, it
produces a cs triangulation of the product of two k-dimensional spheres with 4k + 4 vertices that
is cs-(k + 1)-neighborly. For additional constructions in low dimensions, see [3, 11, 20].

Problem 5.3. Find new constructions of (infinite families of) cs combinatorial 2k-manifolds that
are cs-(k + 1)-neighborly.
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