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Abstract

A (d − 1)-dimensional simplicial complex is called balanced if its underlying graph admits
a proper d-coloring. We show that many well-known face enumeration results have natural
balanced analogs (or at least conjectural analogs). Specifically, we prove the balanced analog of
the celebrated Lower Bound Theorem for normal pseudomanifolds and characterize the case of
equality; we introduce and characterize the balanced analog of the Walkup class; we propose the
balanced analog of the Generalized Lower Bound Conjecture and establish some related results.
We close with constructions of balanced manifolds with few vertices.

1 Introduction

This paper is devoted to the study of face numbers of balanced simplicial complexes. A (d − 1)-
dimensional simplicial complex ∆ is called balanced if the graph of ∆ is d-colorable. In other words,
each vertex of ∆ can be assigned one of d colors in such a way that no edge has both endpoints
of the same color. This class of complexes was introduced by Stanley [36] where he called them
completely balanced complexes.

Balanced complexes form a fascinating class of objects that arise often in combinatorics, algebra,
and topology. For instance, the barycentric subdivision of any regular CW complex is balanced;
therefore, every triangulable space has a balanced triangulation. A great deal of research has
been done on the flag face numbers of balanced spheres that arise as the barycentric subdivision of
regular CW-complexes in the context of the cd-index, see [38, 22, 16] and many references mentioned
therein. In contrast, we know very little about the face numbers of an arbitrary balanced simplicial
sphere or manifold: for instance, even the answer to the question of “What is the smallest number
of vertices that a balanced triangulation of a closed (d−1)-manifold that is not a sphere can have?”
seems to be unknown. One of our results provides such an answer for the categories of PL manifolds
and homology manifolds.

Stanley [36] initiated the study of (flag) face numbers of balanced Cohen–Macaulay complexes.
His paper together with the work of Björner–Frankl–Stanley [12] provided a complete characteriza-
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tion of all possible flag f -numbers of such complexes. On the level of face numbers, this characteri-
zation says that an integer vector is the h-vector of a (d−1)-dimensional balanced Cohen–Macaulay
complex if and only if it is the f -vector of a d-colorable simplicial complex. Hence the h-vectors
of balanced Cohen–Macaulay complexes satisfy Kruskal–Katona type inequalities of [18]. On the
other hand, in the class of all simplicial polytopes, the celebrated g-theorem [37, 11] provides much
stronger restrictions, and the g-conjecture posits that the same restrictions hold for all triangulated
spheres. Moreover, a part of the g-theorem — the Lower Bound Theorem — holds even in the
generality of normal pseudomanifolds [7, 21, 17, 44].

Are there balanced analogs of the aforementioned results? This question served as the main
motivation and starting point for this paper. Another motivation came from a flurry of recent
activity on finding vertex-minimal triangulations of various manifolds (see, for instance, [27, 28, 5,
14] as well the Manifold Page [26]) and our desire to find balanced analogs of at least some of these
constructions.

To our surprise, we found that several classic face enumeration results have natural balanced
analogs or at least conjectural balanced analogs. Our results can be summarized as follows. We defer
all the definitions until later sections. Many basic definitions and results pertaining to simplicial
complexes and balanced simplicial complexes are collected in Section 2.

• In Section 3, we show that the balanced analog of the Lower Bound Theorem (established in
[19] for balanced spheres and in [13] for balanced manifolds) continues to hold for all balanced
triangulations of normal pseudomanifolds, see Theorem 3.4.

• In Section 4, we treat extremal cases of the balanced Lower Bound Theorem: in analogy with
the non-balanced situation [21], we show that a balanced normal pseudomanifold of dimension
d − 1 ≥ 3 satisfies the balanced Lower Bound Theorem with equality if and only if it is a
“stacked cross-polytopal sphere,” see Theorem 4.1.

• In Section 4, we also introduce the balanced analog of Walkup’s class and show that in
complete analogy with the non-balanced case [45, 21], for d ≥ 5, a balanced (d−1)-dimensional
complex is in the balanced Walkup class if and only if all its vertex links are stacked cross-
polytopal spheres, see Corollary 4.12.

• In Section 5, we posit the balanced analog of McMullen-Walkup’s Generalized Lower Bound
Conjecture [30] (together with the treatment of equality cases), see Conjecture 5.6. We
should stress that while the Generalized Lower Bound Conjecture for the class of simplicial
polytopes is now a theorem (the inequalities of the GLBC form a part of the g-theorem, and
the treatment of equality cases was recently completed in [32]), the balanced GLBC is at
present a conjecture, even for the class of balanced polytopes. We verify the “easy” part of
the equality case of this conjecture, see Theorem 5.10, and prove that, in analogy with the
results from [6, 33], manifolds with the balanced r-stacked property have a unique r–stacked
cross-polytopal decomposition, see Theorem 5.17.

• In Section 6 we discuss balanced triangulations of manifolds. In particular, we construct a
vertex minimal balanced triangulation of the (orientable or non-orientable, depending on the
parity of d) Sd−2-bundle over S1, see Theorem 6.3. Our construction can be considered a
balanced analog of Kühnel’s construction [25]. By introducing only two more vertices, we are
able to construct balanced triangulations of both of these bundles, see Theorem 6.7.
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Although several of our proofs follow along the lines of their non-balanced analogs, we believe
that these results are rather unexpected and provide new insights in the theory of the face numbers
for balanced complexes. We also hope that this paper will motivate an even more thorough study
of balanced complexes (note that at present we do not have even a conjectural balanced analog
of the Upper Bound Theorem) as well as will lead to new construction techniques for balanced
manifolds.

2 Preliminaries

2.1 Topological and combinatorial invariants of simplicial complexes

A simplicial complex ∆ on a finite vertex set V = V (∆) is a collection of subsets of V called faces
with the property that (i) {v} ∈ ∆ for all v ∈ V , and (ii) if F ∈ ∆ and G ⊆ F , then G ∈ ∆. The
dimension of a face F ∈ ∆ is dim(F ) = |F |−1, and the dimension of ∆ is dim(∆) = max{dim(F ) :
F ∈ ∆}. For brevity, we refer to an i-dimensional face as an i-face. A facet in ∆ is a maximal face
under inclusion, and we say that ∆ is pure if all of its facets have the same dimension.

The link of a face F ∈ ∆ is the subcomplex

lk∆(F ) = {G ∈ ∆ : F ∩G = ∅ and F ∪G ∈ ∆}.

Intuitively, the link encodes the local structure of the simplicial complex ∆ around the face F . If
W ⊆ V (∆) is any subset of vertices, we define the restriction of ∆ to W to be the subcomplex

∆[W ] = {F ∈ ∆ : F ⊆W}.

The i-skeleton of ∆, Skeli(∆), is the subcomplex of all faces of ∆ of dimension at most i. The
1-skeleton is also called the graph of ∆.

Although the above definition of a simplicial complex is an abstract combinatorial construction,
to any (abstract) simplicial complex ∆ there is an associated topological space ‖∆‖ called the
geometric realization of ∆ (or the underlying topological space), which contains a (k−1)-dimensional
geometric simplex for each (k − 1)-face of ∆. We frequently will not emphasize the distinction
between ∆ and ‖∆‖ and will refer to topological properties of ‖∆‖ simply as topological properties
of ∆.

We will be interested in studying certain relaxations of the family of triangulations of spheres
and manifolds. A (d−1)-dimensional simplicial complex ∆ is a simplicial (d−1)-sphere (respectively
simplicial ball or simplicial manifold) if its geometric realization ‖∆‖ is homeomorphic to a sphere
(resp. ball or manifold) of dimension d− 1.

It follows from the excision axiom that if ∆ is a simplicial complex and p ∈ ‖∆‖ is a point that
lies in the relative interior of a face F of ∆, then Hi(‖∆‖, ‖∆‖− p; k) ∼= H̃i−|F |(lk∆(F ); k) (see [31,

Lemma 3.3]). Here, H̃∗(∆; k) denotes the reduced simplicial homology groups of ∆ with coefficients
in k and H∗(‖∆‖, ‖∆‖ − p; k) denotes the relative homology groups. (We will also use βi(∆; k) to
denote the reduced Betti numbers of ∆ with coefficients in k: βi(∆; k) := dimk H̃i(∆; k).) On the
other hand, if ∆ triangulates a manifold without boundary and p is a point of ‖∆‖, then the pair
(‖∆‖, ‖∆‖ − p) has the relative homology of a (d− 1)-sphere.

Thus as a relaxation of the family of simplicial spheres/manifolds, we say that ∆ is a homology
(d − 1)-sphere over a field k (or a k-homology sphere) if H̃∗(lk∆(F ); k) ∼= H̃∗(Sd−|F |−1; k) for
every face F ∈ ∆ (including the empty face), and that ∆ is a (closed) homology (d − 1)-manifold
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over k if H̃∗(lk∆(F ); k) ∼= H̃∗(Sd−|F |−1; k) for every nonempty face F ∈ ∆. All simplicial spheres
(resp. manifolds) are homology spheres (resp. manifolds) over any field. The class of homology
2-spheres coincides with that of simplicial 2-spheres, and consequently, the class of homology 3-
manifolds coincides with that of simplicial 3-manifolds. However, for every d ≥ 4, there exist
homology (d − 1)-spheres that are not simplicial (d − 1)-spheres, and for every d ≥ 5, there exist
homology (d− 1)-manifolds that are not simplicial (d− 1)-manifolds.

A (d − 1)-dimensional simplicial complex ∆ is called a normal pseudomanifold (or a normal
(d − 1)-pseudomanifold) if (i) ∆ is connected and pure, (ii) every (d − 2)-face (or ridge) of ∆ is
contained in exactly two facets, and (iii) the link of each face of dimension ≤ d − 3 is connected.
In particular, every connected (closed) homology manifold is a normal pseudomanifold. For d = 3,
the class of normal (d−1)-pseudomanifolds coincides with the class of connected homology (d−1)-
manifolds, but for d > 3, the former class is much larger than the latter. It is well-known and
easy to check that if ∆ is a normal (d − 1)-pseudomanifold and F is a face of ∆ of dimension at
most d− 2, then the link of F is also a normal pseudomanifold. Another useful property of normal
pseudomanifolds is that their facet-ridge graphs (also known as dual graphs) are connected. In
other words, if ∆ is a normal (d− 1)-pseudomanifold and F , G are two arbitrary facets of ∆, then
there exists a sequence of facets F = F0, F1, . . . , Fp−1, Fp = G of ∆ with the property that every
pair of consecutive elements of this sequence share a (d−2)-face (see, for instance, [4, Lemma 2.1]).

Other topological notions that will be important for this paper are the constructions of join,
connected sum, and handle addition. Let Γ and ∆ be simplicial complexes on disjoint vertex sets.
The join of Γ and ∆, denoted Γ ∗∆, is the simplicial complex on vertex set V (Γ) ∪ V (∆) whose
faces are {σ ∪ τ : σ ∈ Γ and τ ∈ ∆}.

Let Γ and ∆ be pure simplicial complexes of the same dimension on disjoint vertex sets. Let
F and G be facets of Γ and ∆ respectively, and let ϕ : F → G be a bijection between the vertices
of F and the vertices of G. The connected sum of Γ and ∆, denoted Γ#ϕ∆ or simply Γ#∆, is the
simplicial complex obtained by identifying the vertices of F and G (and all faces on those vertices)
according to the bijection ϕ and removing the facet corresponding to F (which has been identified
with G). This coincides with the familiar topological construction where we have removed the
relative interiors of the facets F and G, which are open balls in Γ and ∆ respectively, and glued
them together along their boundaries.

Finally, let ∆ be a pure simplicial complex of dimension d − 1, and let F and F ′ be facets of
∆ with disjoint vertex sets. If there is a bijection ϕ : F → F ′ such that v and ϕ(v) do not have a
common neighbor in ∆ for every v ∈ F , the simplicial complex ∆ϕ obtained from ∆ by identifying
the vertices of F and F ′ (and all faces on those vertices) and removing the facet corresponding to
F (which has been identified with F ′) is called a handle addition to ∆. The requirement that v
and ϕ(v) do not have a common neighbor in ∆ ensures that ∆ϕ is a simplicial complex.

The most natural combinatorial invariants of a simplicial complex are its f -numbers. If ∆ is a
(d−1)-dimensional simplicial complex, define fi(∆) to count the number of i-faces in ∆ for any−1 ≤
i ≤ d− 1. As long as ∆ is nonempty, we have f−1(∆) = 1, which corresponds to the empty face in
∆. The f -numbers of ∆ are often arranged in a single vector f(∆) := (f−1(∆), f0(∆), . . . , fd−1(∆))
called the f -vector of ∆.

Typically it is more convenient to study a certain transformation of the f -numbers of a simplicial
complex called its h-numbers. If ∆ is a (d−1)-dimensional simplicial complex, we define the h-vector
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of ∆ to be the vector h(∆) := (h0(∆), h1(∆), . . . , hd(∆)), whose entries are given by

hj(∆) :=

j∑
i=0

(−1)j−i
(
d− i
d− j

)
fi−1(∆).

The above formula can be inverted to express each f -number as a nonnegative linear combination of
the h-numbers, and hence knowing the f -numbers of a simplicial complex is equivalent to knowing
its h-numbers. Moreover, inequalities on the h-numbers of a simplicial complex translate directly
into inequalities on the f -numbers (while the converse is not true).

For this reason, it is often preferable to study h-numbers in favor of f -numbers. Furthermore,
the h-numbers arise naturally in the algebraic study of the Stanley-Reisner ring of a simplicial
complex. As we will not use this tool in the paper, we refer to Stanley’s book [39] for further
information. Also, many identities involving f -numbers can be stated more cleanly in terms of h-
numbers. For example, if ∆ is a homology (d−1)-sphere, then the Dehn-Sommerville relations [23]
state that hj(∆) = hd−j(∆) for all 0 ≤ j ≤ d. This means that the entire h-vector of a simplicial
homology sphere is determined by the values of h0, h1, . . . , hb d

2
c.

As a further step, it is useful to consider the successive differences between these numbers,
called the g-numbers: g0(∆) := 1 and gj(∆) := hj(∆)− hj−1(∆) for 1 ≤ j ≤ d, and to arrange the
first half of these numbers in the g-vector of ∆, g(∆) := (g0(∆), g1(∆), . . . , gb d

2
c(∆)).

The famous g-theorem of Stanley [37] and Billera-Lee [11] completely characterizes the integer
vectors that can arise as the g-vector of the boundary complex of a simplicial d-polytope.

Theorem 2.1. (The g-theorem [11, 37]) An integer vector g = (g0, g1, . . . , gb d
2
c) is the g-vector of

a simplicial d-polytope if and only if g0 = 1 and g is an M -vector.

In particular, the g-numbers of a simplicial d-polytope are nonnegative, and hence the h-vector is
unimodal.

2.2 Balanced simplicial complexes

In this paper we will be interested in studying the family of balanced simplicial complexes (intro-
duced in [36]), which are equipped with a vertex coloring that imposes additional combinatorial
structure.

Definition 2.2. Let ∆ be a (d− 1)-dimensional simplicial complex. We say that ∆ is balanced if
the vertices of ∆ can be partitioned as V (∆) = V1 q V2 q · · · q Vd in such a way that |F ∩ Vi| ≤ 1
for all faces F ∈ ∆. (Here, q denotes the disjoint union.)

We can view this vertex partition as a coloring of the vertices in which the vertices in the set
Vi have received color i. We use the notation [d] := {1, 2, . . . , d} to denote the set of colors. The
condition that each face F satisfies |F ∩ Vi| ≤ 1 says that no face contains two vertices of the same
color or equivalently that no two vertices of the same color are connected by an edge. Thus the
vertex partition induces a proper d-coloring of the underlying graph of ∆. Since the graph of a
(d−1)-simplex is a complete graph on d vertices, at least d colors are required to properly color the
vertices of a (d−1)-dimensional simplicial complex. Balanced complexes are those for which such a
minimal coloring is possible. In the literature, the family of complexes defined above is sometimes
called the family of completely balanced simplicial complexes.
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The canonical example of a balanced simplicial complex is the order complex (also known as
the barycentric subdivision) of any regular CW complex. If K is a regular CW complex, the order
complex ∆(K) of K is the simplicial complex whose vertices are the nonempty faces of K and
whose faces correspond to chains of nonempty faces τ0 ( τ1 ( · · · ( τk in K. Letting Vi(∆(K))
consist of (i − 1)-faces of K then makes ∆(K) into a balanced complex as no chain contains two
faces of the same dimension. (In fact, the order complex of any graded partially ordered set is a
balanced simplicial complex.)

When discussing balanced complexes, we assume that they are equipped with a fixed vertex
coloring κ : V (G) → [d]. This coloring allows us to refine the f - and h-numbers of a balanced
simplicial complex. Let ∆ be a balanced simplicial complex of dimension d − 1. For any subset
of colors S ⊆ [d], define fS(∆) to be the number of faces in ∆ for which κ(F ) = S; that is, the
number of faces in ∆ whose vertices are colored exactly by the colors in S. The numbers fS(∆)
are called the flag f -numbers of ∆ and the collection (fS(∆))S⊆[d] is called the flag f -vector of ∆.
Similarly, the flag h-numbers of ∆ are defined as

hT (∆) =
∑
S⊆T

(−1)|T |−|S|fS(∆) for T ⊆ [d]. (2.1)

The flag f -numbers refine the ordinary f -numbers while the flag h-numbers refine the ordinary
h-numbers by the formulas

fi−1(∆) =
∑
S⊆[d]
|S|=i

fS(∆) and hj(∆) =
∑
T⊆[d]
|T |=j

hT (∆).

Just as the h-numbers arise naturally in the context of the Stanley-Reisner ring of a simplicial com-
plex, the flag h-numbers arise analogously for balanced simplicial complexes because the Stanley-
Reisner ring can be given a refined grading according to the underlying coloring of the vertices.

Example 2.3. Let C∗d denote the boundary complex of a d-dimensional cross-polytope. As a
simplicial complex, C∗d has vertex set {u1, u2, . . . , ud, v1, v2, . . . , vd} and all possible faces F with
the property that |F ∩ {ui, vi}| ≤ 1 for each 1 ≤ i ≤ d. In other words, C∗d is the d-fold join of S0.
Hence, C∗d is balanced with κ(ui) = κ(vi) = i for all i ∈ [d], and for any S ⊆ [d], an arbitrary face
in C∗d whose vertices are colored by S can be described by the choice of whether it contains ui or
vi for each i ∈ S. Thus fS(C∗d) = 2|S|. Then for any T ⊆ [d], it follows from the binomial theorem
that

hT (C∗d) =
∑
S⊆T

(−1)|T |−|S|fS(C∗d) =

|T |∑
i=0

(
|T |
i

)
(−1)|T |−i2i = 1.

If ∆ is a balanced complex and S is a subset of colors, define VS :=
⋃
i∈S Vi and ∆S := ∆[VS ]

to be the restriction of ∆ to its vertices whose colors lie in the set S. Also, if Γ and ∆ are balanced
complexes of the same dimension, we can still define the connected sum of Γ and ∆ just as we did
in the non-balanced case by adding the requirement that all vertex identifications occur between
vertices of the same color; the resulting complex Γ#∆ is then balanced as well. We refer to this
operation as the balanced connected sum. We define a balanced handle addition in a similar fashion.
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2.3 Rigidity theory

We summarize a few definitions and results from rigidity theory that will be needed for the proofs
in later sections. Our presentation is mainly based on that of [21].

Let G = (V,E) be a graph. A d-embedding of G is a map φ : V → Rd. The distance between
two d-embeddings φ and ψ of G is dist(φ, ψ) := maxv∈V dist(φ(v), ψ(v)), where dist(−,−) denotes
the Euclidean distance in Rd. Let φ and ψ be d-embeddings of G. We say that they are isometric
if dist(φ(u), φ(v)) = dist(ψ(u), ψ(v)) for all u, v ∈ V . On the other hand, we say that they are
G-isometric if dist(φ(u), φ(v)) = dist(ψ(u), ψ(v)) for every edge {u, v} of G.

A d-embedding φ is called rigid if there exists an ε > 0 such that every d-embedding ψ of G
that is G-isometric to φ and satisfies dist(φ, ψ) < ε is isometric to φ. Less formally, a d-embedding
φ of G is rigid if every sufficiently small perturbation of φ that preserves the lengths of the edges
is induced by an isometry of Rd. A graph G is generically d-rigid if the set of rigid d-embeddings
of G is an open dense set in the set of all d-embeddings.

The following result is known as the gluing lemma, see [2, Theorem 2] (for d = 2) and [46,
Lemma 11.1.9] (for the general case).

Lemma 2.4. Let G1 and G2 be generically d-rigid graphs. If G1 ∩G2 contains at least d vertices,
then G1 ∪G2 is generically d-rigid.

Let φ be a d-embedding of G = (V,E). We say that an edge {u, v}, not in E(G), depends
on G w.r.t. φ, if for every embedding ψ which is G-isometric to φ and also sufficiently close to φ,
dist(ψ(u), ψ(v)) = dist(φ(u), φ(v)). A graph G is d-acyclic if for a generic d-embedding of G no
edge τ of G depends on G− τ := (V,E − {τ}). We also define a stress of G w.r.t. φ as a function
w : E → R that assigns weights to the edges of G in such a way that for every vertex v ∈ V ,∑

u :{v,u}∈E

w({v, u})(φ(v)− φ(u)) = 0.

We say that G is generically d-stress free if G has no non-zero stresses w.r.t. a generic d-embedding.

The relevance of generic rigidity to the study of face numbers, first noticed and utilized by Kalai
in [21], stems from the following result, see [1, Corollary 3] and [21, Section 3].

Theorem 2.5. Let G be a generically d-rigid graph with n vertices and e edges. Then e ≥ dn −(
d+1

2

)
. Furthermore, equality e = dn−

(
d+1

2

)
is attained if and only if G is generically d-stress free,

which, in turn, happens if and only if G is d-acyclic.

Corollary 2.6. Let ∆ be a (d−1)-dimensional simplicial complex. If the graph of ∆ is generically
d-rigid, then h2(∆) ≥ h1(∆). Moreover, equality h2(∆) = h1(∆) holds if and only if the graph of
∆ is generically d-stress free.

Proof: The proof is immediate as h2(∆)− h1(∆) = f1(∆)− df0(∆) +
(
d+1

2

)
. �

For the rest of the paper we will say that ∆ is generically d-rigid or d-acyclic or d-stress free if
the graph of ∆ has the corresponding property.
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3 Lower bound theorems for balanced pseudomanifolds

3.1 History

Walkup [45] (in dimensions 3 and 4) and Barnette [8] (in all dimensions) showed that the boundary
of a stacked (d−1)-sphere on n vertices has the componentwise minimal f -vector among all simplicial
(d − 1)-manifolds with n vertices. An alternative proof of this result, as well as the treatment of
equality cases, was given by Kalai [21]. This result was later generalized by Fogelsanger [17] and
Tay [44] to all normal pseudomanifolds.

A stacked (d− 1)-sphere on n vertices, denoted ST (n, d− 1), is defined inductively as follows.
The minimal number of vertices that a simplicial (d−1)-sphere can have is d+ 1, which is achieved
by the boundary complex of a d-simplex. Therefore, ST (d+ 1, d− 1) is defined to be the boundary
of a d-simplex. Inductively, for n > d + 1, ST (n, d − 1) is defined as the connected sum of
ST (n− 1, d− 1) with the boundary of a d-simplex. Thus, ST (n, d− 1) is obtained by taking the
(n− d)-fold connected sum of the boundary of a d-simplex with itself. By choosing an appropriate
embedding, it is possible to realize ST (n, d− 1) as the boundary of a simplicial d-polytope.

The Lower Bound Theorem states that if ∆ is a normal pseudomanifold of dimension d− 1 ≥ 2
with n vertices, then fi(∆) ≥ fi(ST (n, d)) for all 0 ≤ i ≤ d − 1. Somewhat surprisingly, via the
McMullen–Perles–Walkup reduction (see [8, 30]), the Lower Bound Theorem can be equivalently
stated as the following elegant inequality on the level of h-numbers.

Theorem 3.1. (Lower Bound Theorem [8, 17, 21, 44, 45]) Let ∆ be a normal pseudomanifold of
dimension d− 1 ≥ 2. Then h2(∆) ≥ h1(∆). Furthermore, if d ≥ 4, then equality holds if and only
if ∆ is a stacked sphere.

As an extension of this result, Goff, Klee, and Novik [19] defined the family of stacked cross-
polytopal spheres to give a lower bound theorem for balanced spheres. Just as the boundary of
a d-simplex has the minimal h-numbers (and hence the minimal f -numbers) among all simplicial
(d−1)-spheres, it follows easily from the results in [36] that the boundary of a d-dimensional cross-
polytope has the minimal (flag) h-numbers among all balanced simplicial (d− 1)-spheres. For any
pair of integers n and d with n divisible by d, a stacked cross-polytopal (d− 1)-sphere on n vertices,
denoted ST ×(n, d− 1), is defined as the balanced connected sum of n

d − 1 copies of C∗d with itself.
Goff, Klee, and Novik [19] (for simplicial spheres and more generally for doubly Cohen-Macaulay

complexes) and Browder and Klee [13] (for simplicial manifolds and more generally for Buchsbaum∗

simplicial complexes) showed that when n is divisible by d, ST ×(n, d− 1) has the componentwise
minimal f -vector among all balanced spheres/manifolds of dimension d− 1 with n vertices. Once
again, this can be stated as a simple inequality on the level of h-numbers.

Theorem 3.2. (Balanced Lower Bound Theorem [19, 13]) Let ∆ be a balanced connected simplicial
manifold of dimension d− 1 ≥ 2. Then 2h2(∆) ≥ (d− 1)h1(∆).

The h-number inequality in the balanced Lower Bound Theorem motivates the following defi-
nition of the balanced g-numbers of a balanced simplicial complex.

Definition 3.3. Let ∆ be a balanced simplicial complex of dimension d − 1. For any 1 ≤ j ≤ d,
define the balanced g-number

gj(∆) := j · hj(∆)− (d− j + 1) · hj−1(∆).
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Just as the classic Lower Bound Theorem states that g2(∆) ≥ 0 for a normal pseudomanifold,
the balanced Lower Bound Theorem states that g2(∆) ≥ 0 for a balanced connected simplicial
manifold. Note also that if j = 2 and d = 3, then g2(∆) = 2g2(∆), and so in this case, the
inequality g2 ≥ 0 of Theorem 3.2 is equivalent to the inequality g2 ≥ 0 of Theorem 3.1.

3.2 The balanced LBT

Our first goal in this section is to use rigidity theory to show that the balanced Lower Bound
Theorem continues to hold for balanced normal pseudomanifolds.

Theorem 3.4. Let ∆ be a balanced, normal (d− 1)-pseudomanifold with d ≥ 3. Then g2(∆) ≥ 0.

The structure of the proof of Theorem 3.4 is similar to that of [19, Theorem 5.3] and [13,
Theorem 4.1]. The main new ingredient is the following result that might be of interest in its own
right.

Lemma 3.5. Let ∆ be a balanced, normal (d − 1)-pseudomanifold with d ≥ 3, and let S be a
3-element subset of [d]. Then ∆S is generically 3-rigid.

Proof: The proof is by induction on d. For d = 3, ∆S = ∆, and the lemma follows from the main
result of [17] asserting that any normal 2-pseudomanifold is generically 3-rigid. Thus assume that
d > 3. Since ∆ is pure,

∆S =
⋃

F∈∆[d]−S

|F |=d−3

lk∆(F ).

In addition, since ∆ is a normal pseudomanifold, each link in the above union is a normal 2-
pseudomanifold, and hence is generically 3-rigid by the Fogelsanger’s result. Thus by the gluing
lemma (Lemma 2.4), to complete the proof it only remains to show that we can order the facets of
∆[d]−S as F0, F1, . . . , Fs in such a way that

lk∆(Fi)
⋂⋃

j<i

lk∆(Fj)

 contains a facet of ∆S ∀1 ≤ i ≤ s. (3.1)

To do so, pick any facet H of ∆. Since ∆ is a normal pseudomanifold, every facet G of ∆
has a finite distance to H, denoted dist(H,G), in the facet-ridge graph of ∆. (For instance, the
distance of H to itself is 0; the distance of H to every facet that shares a (d − 2)-face with H is
1, etc.). Order the facets of ∆ as H = H0, H1, . . . ,Hr so that dist(H,Hk) ≤ dist(H,H`) for all
1 ≤ k ≤ ` ≤ r. Since ∆ is pure, each facet of ∆[d]−S is the intersection of some facet of ∆ with
V[d]−S . Hence the above ordering induces an ordering on the facets of ∆[d]−S : simply consider
the list H0 ∩ V[d]−S , H1 ∩ V[d]−S , . . . ,Hr ∩ V[d]−S , and for each element F in this list, delete all the
occurrences of F except the very first one.

We claim that this ordering satisfies condition (3.1). Indeed, let Fi, i ≥ 1, be a facet of ∆[d]−S ,
let p be the least index such that Fi = Hp ∩ V[d]−S , and let t = dist(H,Hp). Since the facet-ridge
graph of ∆ is connected, there exists 0 ≤ p′ < p such that dist(H,Hp′) = t−1 and dist(Hp, Hp′) = 1
(or, equivalently, |Hp∩Hp′ | = d−1). Since p is minimal, Hp′ ∩V[d]−S 6= Fi, and so Hp′ ∩V[d]−S = Fj
for some j < i. As Hp and Hp′ differ in only one element, we conclude that Hp ∩ VS = Hp′ ∩ VS .
This intersection is therefore a facet of ∆S contained in lk∆(Fi) ∩ (∪j<i lk∆(Fj)). �
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We are now ready to complete the proof of Theorem 3.4.

Proof of Theorem 3.4: It was observed in the proof of [19, Theorem 5.3] that (d − 2)h2(∆) =∑
|S|=3 h2(∆S) while

(
d−1

2

)
h1(∆) =

∑
|S|=3 h1(∆S). Hence

g2(∆) =
2

d− 2

∑
|S|=3

(h2(∆S)− h1(∆S)) =
2

d− 2

∑
|S|=3

g2(∆S). (3.2)

By Lemma 3.5, ∆S (for |S| = 3) is generically 3-rigid. Thus, by Corollary 2.6, the last sum in (3.2)
is the sum of non-negative numbers, and so it is nonnegative. The result follows. �

3.3 Inequalities involving the first Betti number

For connected orientable homology manifolds (i.e., manifolds with non-vanishing top homology),
the Lower Bound Theorem can be strengthened as follows.

Theorem 3.6. [35, Theorem 5.2] Let ∆ be a connected simplicial complex of dimension d− 1 ≥ 3.
If ∆ is a k-homology manifold that is orientable over k, then g2(∆) ≥

(
d+1

2

)
β1(∆; k).

Remark 3.7. During the time that this paper was under review, Murai [34] proved Theorem 3.6
for all normal pseudomanifolds. For this reason, it is natural to pose the following Conjecture 3.8
and Conjecture 4.14 for balanced normal pseudomanifolds as well.

Is there a balanced analog of Theorem 3.6? We conjecture that the following holds.

Conjecture 3.8. Let ∆ be a balanced connected simplicial complex of dimension d− 1 ≥ 3. If ∆
is a k-homology manifold that is orientable over k, then g2(∆) ≥ 4

(
d
2

)
β1(∆; k).

The constant 4
(
d
2

)
is explained by the following result that provides a partial evidence to Con-

jecture 3.8. (Note that this result holds in the generality of normal pseudomanifolds.)

Theorem 3.9. Let ∆ be a balanced normal pseudomanifold of dimension d − 1 ≥ 2. If ‖∆‖ has
a connected t-sheeted covering space, then g2(∆) ≥ 4 t−1

t

(
d
2

)
. In particular, if β1(∆;Q) 6= 0, then

g2(∆) ≥ 4
(
d
2

)
.

Proof: The proof follows the same ideas as the proof of [43, Theorem 4,3]. Let X := ‖∆‖ and
let Xt be a connected t-sheeted covering space of X. Then the triangulation ∆ of X lifts to a
triangulation ∆t of Xt. The balancedness of ∆ implies that ∆t is balanced as well (just color each
vertex v of ∆t in the color of the image of v in ∆). Similarly, our assumption that ∆ is a normal
(d − 1)-pseudomanifold implies that ∆t is also a normal (d − 1)-pseudomanifold. (For instance,
to see the connectivity of links of ∆t, observe that if F t is a face of ∆t whose image is F ∈ ∆
and pt is a point in the interior of F t whose image is p, then H̃0(lk∆t(F t)) ∼= H|F |(X

t, Xt − pt) ∼=
H|F |(X,X − p) ∼= H̃0(lk∆(F )).)

To finish the proof, apply Theorem 3.4 to ∆t to obtain that

g2(∆t) = 2h2(∆t)− (d− 1)h1(∆t) ≥ 0. (3.3)

On the other hand, according to [43, Proposition 4.2],

hi(∆
t) = thi(∆) + (−1)i−1(t− 1)

(
d

i

)
for i = 1, 2. (3.4)
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Substituting eq. (3.4) in eq. (3.3) gives

g2(∆t) = 2h2(∆t)− (d− 1)h1(∆t)

= 2

(
th2(∆)− (t− 1)

(
d

2

))
− (d− 1)

(
th1(∆) + (t− 1)

(
d

1

))
= t (2h2(∆)− (d− 1)h1(∆))− 4(t− 1)

(
d

2

)
= tg2(∆)− 4(t− 1)

(
d

2

)
.

The claim that g2(∆) ≥ 4 t−1
t

(
d
2

)
follows from the fact that g2(∆t) ≥ 0.This inequality together

with the well-known fact that if β1(∆;Q) 6= 0, then ‖∆‖ has a connected t-sheeted covering space
for arbitrarily large t implies the “in particular” part. �

4 Extremal cases and the balanced Walkup class

The main goal of this section is to establish a balanced analog of the second part of the Lower
Bound Theorem concerning the cases of equality.

Theorem 4.1. Let ∆ be a balanced normal (d − 1)-pseudomanifold with d ≥ 4. Then g2(∆) = 0
holds if and only if ∆ is a stacked cross-polytopal sphere.

If ∆ is a stacked cross-polytopal sphere, the result follows from the fact that hi(A#B) =
hi(A) + hi(B) for all 0 < i < d and the simple calculation hi(C∗d) =

(
d
i

)
for 0 ≤ i ≤ d. The proof

that g2(∆) = 0 implies that ∆ is a stacked cross-polytopal sphere is similar in spirit to one of the
proofs of [21, Theorem 7.1] (see Sections 8 and 9 of [21]) and will take a large part of this section.
It will require the following lemmas and definitions.

A missing face of a simplicial complex ∆ is any subset F of the vertex set of ∆ with the property
that F is not a face of ∆ but every proper subset of F is. The dimension of a missing face F is
|F | − 1. A missing i-face is a missing face of dimension i. A simplicial complex ∆ is a flag complex
if all of its missing faces have dimension 1.

Lemma 4.2. Let ∆ be a balanced normal (d − 1)-pseudomanifold with d ≥ 3. Then g2(∆) = 0 if
and only if g2(∆S) = 0 for every 3-element subset S of [d], which in turn happens if and only if
∆S is generically 3-stress free for every 3-element subset S of [d].

Proof: This is an immediate consequence of eq. (3.2), Lemma 3.5, and Corollary 2.6. �

Lemma 4.3. Let ∆ be a balanced normal (d − 1)-pseudomanifold with d ≥ 4. If g2(∆) = 0, then
g2(lk∆(v)) = 0 for every vertex v of ∆.

Proof: Pick a vertex v of ∆ and let c be the color of v. Then for every 3-element subset T of
[d] − {c}, (lk∆(v))T is a subcomplex of ∆T . Since g2(∆) = 0, by Lemma 4.2, ∆T is generically
3-stress free. As a subgraph of a generically 3-stress free graph is also generically 3-stress free, we
conclude that (lk∆(v))T is generically 3-stress free for every subset T ⊆ [d]− {c} of size 3. Lemma
4.2 applied to lk∆(v) then completes the proof. (Note that since d ≥ 4, d−1 = dim(lk∆(v))+1 ≥ 3.)
�
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Lemma 4.4. Let ∆ be a balanced normal (d − 1)-pseudomanifold with d ≥ 3. If g2(∆) = 0, then
every missing face of ∆ has dimension 1 or d− 1.

Proof: For d = 3 there is nothing to prove, so assume that d ≥ 4 and that F = {u0, u1, . . . , uk} is
a missing k-face of ∆ for some 1 < k < d−1. Since k+1 < d, there is a vertex z of ∆ whose color is
different from the colors of vertices of F . Let T be the color set of {u0, u1, z}, let U = {u0, u1} ∈ ∆T ,
and let W = F − U . As F is a missing face of ∆, it follows that U is a missing 1-face of lk∆(W ),
and hence also of (lk∆(W ))T . However, by Lemma 3.5, the graph of (lk∆(W ))T is generically
3-rigid. Hence the edge U depends on the graph of (lk∆(W ))T (w.r.t. a generic embedding), and
so (lk∆(W ))T ∪{U} is not generically 3-stress free. Since (lk∆(W ))T ∪{U} is a subcomplex of ∆T ,
we obtain that ∆T is not generically 3-stress free. This contradicts Lemma 3.5. �

Lemma 4.5. Let ∆ be a balanced connected simplicial (d−1)-manifold with d ≥ 3. Assume further
that either d ∈ {3, 4} or all vertex links of ∆ are stacked cross-polytopal spheres. If g2(∆) = 0 and
∆ has a missing (d − 1)-face, then there exist balanced connected simplicial (d − 1)-manifolds ∆1

and ∆2 such that ∆ is the balanced connected sum of ∆1 and ∆2; moreover g2(∆1) = g2(∆2) = 0.

Proof: Let F be a missing (d − 1)-face of ∆. Let Γ be the simplicial complex obtained from ∆
by cutting along the boundary of F and filling in the two missing (d − 1)-faces that result from
F . Then Γ is a simplicial manifold that is either connected or is a disjoint union of two complexes
∆1 and ∆2. In the former case, ∆ is obtained from Γ by adding a handle, and in the latter case,
∆ = ∆1#∆2. (These results are well-known: the operation of cutting and patching is introduced
by Walkup in [45], where he also proves the above statements for d = 4, see [45, Lemma 3.2], and
a certain variant of these statements for d > 4, [45, Lemma 4.2]. A much more general statement
for all d ≥ 3 is proved in [4, Lemma 3.3]. )

Furthermore, since F is a missing (d − 1)-face of ∆, the vertices of F form a d-clique in the
graph of ∆, and hence no two of them have the same color. Thus, ∆∪ {F} is a balanced complex.
Consequently, Γ is balanced, and ∆ is obtained from Γ either by a balanced handle addition or as
a balanced connected sum. In the former case, since f1(Γ) = f1(∆) +

(
d
2

)
and f0(Γ) = f0(∆) + d,

we obtain that g2(Γ) = g2(∆)− 4
(
d
2

)
= −4

(
d
2

)
< 0, which is impossible by Theorem 3.4. Therefore,

∆ is the balanced connected sum of ∆1 and ∆2. Then 0 = g2(∆) = g2(∆1) + g2(∆2), and hence
g2(∆1) = g2(∆2) = 0 holds by Theorem 3.4. �

Lemma 4.6. Let ∆ be a balanced normal (d− 1)-pseudomanifold with d ≥ 3. If all vertex links of
∆ are boundary complexes of a cross-polytope, then so is ∆.

Proof: Let n be the number of vertices of ∆. Since all vertex links of ∆ are isomorphic to C∗d−1,
every vertex of ∆ has exactly 2(d−1) neighbors. Hence, f1(∆) = (d−1)n. Therefore, h1(∆) = n−d,
h2(∆) = f1(∆)− (d− 1)h1(∆)−

(
d
2

)
=
(
d
2

)
, and g2(∆) = 2h2(∆)− (d− 1)h1(∆) = (d− 1)(2d− n).

However, by Theorem 3.4, g2(∆) ≥ 0, and so n ≤ 2d. On the other hand, it is well-known and
easy to prove (e.g., by induction on d; cf. Proposition 6.1 below) that every balanced (d − 1)-
pseudomanifold has at least 2d vertices and the only one that has exactly 2d vertices is C∗d . �

We are now in a position to complete the proof of Theorem 4.1. The proof will be by induction
on d. In the base case that d = 4, Lemma 4.4 tells us that either ∆ is flag or ∆ has a missing
3-face. We require two additional lemmas in the former case.
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Lemma 4.7. Let ∆ be a simplicial 3-manifold that is both flag and balanced and satisfies g2(∆) = 0.
Assume v1 and v2 are two vertices of the same color such that lk∆(v1)∩ lk∆(v2) contains a 2-face,
F . Then either lk∆(v1) and lk∆(v2) intersect precisely along the simplex on F or lk∆(v1) = lk∆(v2),
in which case ∆ is the suspension with v1 and v2 as suspension vertices.

Proof: Assume without loss of generality that v1 and v2 have color 4. Let n1 (respectively n2)
denote the number of vertices in lk∆(v1) (resp. the link of v2), and let k denote the number of
vertices in lk∆(v1) ∩ lk∆(v2). Each lk∆(vi) is a (homology) 2-sphere, and hence has 3ni − 6 edges.

By Lemma 4.2, since g2(∆) = 0, the graph of ∆[3] is generically 3-stress free. Further, since
lk∆(v1) and lk∆(v2) share a 2-face, the union Γ := lk∆(v1) ∪ lk∆(v2) is also generically 3-rigid by
the gluing lemma (Lemma 2.4). Since Γ is a subcomplex of ∆[3], it must also be generically 3-stress
free. Therefore Γ has 3(n1 +n2−k)−6 edges. Since the link of each vi has 3ni−6 edges, it follows
that lk∆(v1) ∩ lk∆(v2) has 3k − 6 edges. If k = 3, then lk∆(v1) ∩ lk∆(v2) is the simplex on F .
Otherwise, k ≥ 4 and the graph of lk∆(v1) ∩ lk∆(v2) is planar (because lk∆(v1) and lk∆(v2) have
planar graphs) with k vertices and 3k− 6 edges. Hence the graph of lk∆(v1)∩ lk∆(v2) is the graph
of a simplicial 2-sphere.

Since ∆ is flag, lk∆(vi) is the restriction of ∆ to the neighbors of vi for i = 1, 2. Therefore,
lk∆(v1) ∩ lk∆(v2) is the restriction of ∆ to the vertices in lk∆(v1) ∩ lk∆(v2). Hence lk∆(v1) and
lk∆(v2) contain lk∆(v1) ∩ lk∆(v2) as an induced triangulated 2-sphere. Since lk∆(v1) and lk∆(v2)
are 2-spheres on their own, it must be the case that lk∆(v1) = lk∆(v2). The statement follows. �

Lemma 4.8. Let ∆ be a simplicial 3-manifold that is both flag and balanced. Assume further that
g2(∆) = 0. Then ∆ is isomorphic to C∗4 .

Proof: It suffices to prove that ∆ has two vertices of each color. Assume to the contrary that ∆
has at least three vertices of some color (w.l.o.g., say color 4). We construct a graph, H, on the set
of vertices of color 4 in ∆ with an edge connecting two vertices whose links intersection contains a
2-face. Hence this intersection is a 2-face by Lemma 4.7.

First we claim that H does not contain any cycles. Suppose to the contrary that C =
v0, v1, . . . , v`, v0 is a cycle of minimal length in H. As in the proof of Lemma 4.7, let ni denote the
number of vertices in lk∆(vi). Fix 0 < j ≤ `, and let Γj := lk∆(v0) ∪ · · · ∪ lk∆(vj−1).

Let m denote the number of vertices in Γj and let k denote the number of vertices in lk∆(vj)∩Γj .
As in the proof of Lemma 4.7, the graph of Γj is generically 3-rigid and generically 3-stress free.
Similarly, the graph of lk∆(vj) is generically 3-rigid and generically 3-stress free. Therefore Γj has
3m− 6 edges, lk∆(vj) has 3nj − 6 edges, and hence lk∆(vj)∩ Γj has 3k− 6 edges. Since lk∆(vj) is
a 2-sphere, as in the proof of Lemma 4.7, it follows that either lk∆(vj) intersects Γj along a single
2-simplex or lk∆(vj) is contained in Γj .

We claim that it is impossible to have lk∆(vj) ⊆ Γj . Indeed, if j < `, then by our assumption
that vj+1 is adjacent to vj in H, there exists a 2-face, F , such that lk∆(vj) intersects lk∆(vj+1)
along the simplex on F . If lk∆(vj) ⊆ Γj , then there exists i < j such that F ∈ lk∆(vi). This
however is impossible as it would imply that a ridge F of ∆ is contained in at least three facets of
∆, namely, F ∪{vi}, F ∪{vj}, and F ∪{vj+1}. On the other hand, if j = `, and lk∆(v`) ⊆ Γ`, then
since f2(lk∆(v`)) > 2 and since lk∆(v`) shares a single 2-face with lk∆(v0) and a single 2-face with
lk∆(v`−1), it must be that ` > 2 and that lk∆(v`) shares a face with lk∆(vi) for some 0 < i < `− 1.
Hence v` is adjacent to vi in H. This implies that the cycle C could have been shortened, which
contradicts the minimality of C.
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As a consequence, lk∆(vj) intersects Γj along a single 2-simplex for all 0 < j ≤ `. However,
lk∆(v`) intersects lk∆(v0) and lk∆(v`−1) along different 2-faces, and so lk∆(v`) intersects Γ` in more
than a single 2-face, which creates a contradiction.

Therefore, H does not contain any cycles. The number of vertices in H is equal to |V4|; the
number of vertices in ∆ of color 4. Therefore, the number of edges in H is at most |V4|− 1. On the
other hand, the number of edges in H is equal to 1

2

∑
v∈V4 f2(lk∆(v)) as the neighbors of a vertex

v in H are in one-to-one correspondence with the 2-faces in lk∆(v). The link of each vertex in ∆
is a 2-sphere, and hence has at least 4 two-dimensional faces. Therefore, we have

2|V4| ≤
1

2

∑
v∈V4

f2(lk∆(v)) ≤ |V4| − 1,

which is absurd. Thus, ∆ can only have two vertices of each color and hence must be C∗4 . �

We need one more reduction to deal with the base case of d = 4. Recall that χ̃(∆) :=∑d−1
i=0 (−1)iβi(∆; k) denotes the reduced Euler characteristic of ∆, and that the family of simplicial

3-manifolds coincides with that of homology 3-manifolds.

Lemma 4.9. Let ∆ be a balanced normal pseudomanifold of dimension 3. If g2(∆) = 0, then ∆ is
a simplicial manifold.

Proof: If ∆ is not a simplicial manifold, then there is a vertex v of ∆ such that lk∆(v) is a 2-
dimensional normal pseudomanifold that is not a sphere. Then lk∆(v) is a 2-dimensional simplicial
manifold with χ̃(lk∆(v)) < 1. Hence by the Dehn-Sommerville relations,

g2(lk∆(v)) = 2 (h2(lk∆(v))− h1(lk∆(v))) = −6(χ̃(lk∆(v)− 1) > 0.

This condtradicts Lemma 4.3. �

Proof of Theorem 4.1: Let ∆ be a balanced normal (d − 1)-pseudomanifold with d ≥ 4 and
g2(∆) = 0. We prove that ∆ is a stacked cross-polytopal sphere by induction on d.

We start with the case of d = 4. Then, by Lemma 4.9, ∆ is a simplicial 3-manifold. Our
proof in this case is by induction on the number of vertices. If ∆ has a missing 3-face, then by
Lemma 4.5, ∆ is the balanced connected sum of balanced simplicial 3-manifolds ∆1 and ∆2 with
g2(∆1) = g2(∆2) = 0. By the induction hypothesis, ∆1 and ∆2 are stacked cross-polytopal spheres,
and hence so is ∆. By Lemma 4.4, we thus can assume that ∆ is a flag complex. Lemma 4.8 then
yields that ∆ = C∗4 .

Assume now that d > 4. Then by Lemma 4.3, for every vertex v of ∆, g2(lk∆(v)) = 0. Hence,
by the induction hypothesis on d, all vertex links of ∆ are stacked cross-polytopal spheres. We
proceed by induction on the number of vertices of ∆. If all vertex links of ∆ are the boundaries
of a cross-polytope, then by Lemma 4.6, ∆ itself is C∗d , and we are done. Otherwise, there is a
vertex v whose link is the connected sum of at least two copies of C∗d−1. Then the link of v has a
missing (d− 2)-face, F ′. Let F = F ′ ∪ {v}. Since, by Lemma 4.4, ∆ has no missing (d− 2)-faces,
we infer that F ′ is a face of ∆, and hence that F is a missing (d − 1)-face of ∆. Lemma 4.5 then
guarantees that ∆ is the balanced connected sum of simplicial (d − 1)-manifolds ∆1 and ∆2 with
g2(∆1) = g2(∆2) = 0. By the induction hypothesis on the number of vertices, ∆1 and ∆2 are
stacked cross-polytopal spheres, and hence so is ∆. �
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Theorem 4.1 raises a question of “Which balanced manifolds have only stacked cross-polytopal
spheres as their vertex links?” The answer turns out to be completely analogous to the non-balanced
case and requires the following definition. We refer to [45] and [21] for the definition of the (non-
balanced) Walkup class.

Definition 4.10. The balanced Walkup class, BHd, consists of balanced (d− 1)-dimensional com-
plexes that are obtained from the boundary complexes of d-dimensional cross-polytopes by succes-
sively applying the operations of balanced connected sums and balanced handle additions.

Note that if ∆ ∈ BHd then |V1(∆)| = |V2(∆)| = · · · = |Vd(∆)|, and so f0(∆) is a multiple of
d. Also, since vertex links of ∆1#∆2 (resp. Γφ) are connected sums of vertex links of ∆1 and ∆2

(resp. Γ), it follows that for an arbitrary element ∆ of BHd, all vertex links of ∆ are stacked cross-
polytopal spheres. If d ≥ 5, then the converse also holds. More precisely, we have the following
balanced analog of [21, Theorem 8.3, Corollary 8.4]:

Theorem 4.11. Let ∆ be a balanced normal (d− 1)-pseudomanifold with d ≥ 4. If all vertex links
of ∆ are cross-polytopal spheres and if ∆ has no missing (d− 2)-faces, then ∆ ∈ BHd.

Corollary 4.12. Let ∆ be a balanced normal (d−1)-pseudomanifold with d ≥ 5. If all vertex links
of ∆ are cross-polytopal spheres then ∆ ∈ BHd.

Since the proofs are also very similar to those in [21], we only sketch the main ideas. To derive
Corollary 4.12 from Theorem 4.11, observe that stacked cross-polytopal spheres of dimension d− 2
only have missing faces of dimension 1 and d−2. Consequently, if ∆ satisfies conditions of Corollary
4.12, then it has no missing (d−2)-faces (as existence of such a missing face F would force a missing
(d− 3)-face in lk∆(v) for v ∈ F ), and hence ∆ ∈ BHd by Theorem 4.11. �

The proof of Theorem 4.11 relies on the following easy fact. We leave its verification to our
readers and remark that its non-balanced counterpart can be found in [4, Lemma 4.8]

Lemma 4.13. Let ∆1 and ∆2 be balanced normal (d − 1)-pseudomanifolds with d ≥ 3, and let
∆ = ∆1#∆2 be obtained from ∆1 and ∆2 by the balanced connected sum. If ∆ is a stacked
cross-polytopal sphere, then so are ∆1 and ∆2.

Proof of Theorem 4.11: If all vertex links of ∆ are the boundaries of the cross-polytope, then so
is ∆ (see Lemma 4.6), and we are done. Otherwise, there exists a vertex v of ∆ such that lk∆(v)
is the connected sum of at least two copies of C∗d−1, and hence lk∆(v) has a missing (d − 2)-face,
F ′. Let F = F ′ ∪ {v}. Since ∆ has no missing (d − 2)-faces, F ′ is a face of ∆, and we conclude
that F is a missing (d − 1)-face of ∆. As in the proof of Lemma 4.5, cut along F and patch with
two (d− 1)-simplices. It follows from our assumptions on ∆ and from Lemma 4.13 that all vertex
links of the resulting simplicial manifold are cross-polytopal spheres. The result then follows by
the double induction on f0 and g2. �

Since (as an easy computation shows) adding a balanced handle to a balanced (d−1)-dimensional
complex causes g2 to increase by 4

(
d
2

)
, the elements of BHd (for d− 1 ≥ 3) satisfy the inequality of

Conjecture 3.8 as equality. This observation along with [35, Theorem 5.2], [3, Theorem 1.14], and
[15, Corollary 3.15] suggest the following strengthening of Conjecture 3.8.

Conjecture 4.14. Let ∆ be a balanced connected k-homology manifold that is orientable over k
of dimension d− 1 ≥ 3. Then g2(∆) ≥ 4

(
d
2

)
β1(∆; k) and equality holds if and only if ∆ ∈ BHd.
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5 A balanced generalized lower bound conjecture

5.1 History

McMullen and Walkup [30] proposed the following Generalized Lower Bound Conjecture (GLBC,
for short) as an extension of the classic Lower Bound Theorem.

Conjecture 5.1. Let P be a simplicial d-polytope. Then

1. gj(P ) ≥ 0 for all 1 ≤ j ≤ bd2c, and

2. for any 1 ≤ r ≤ bd2c, the following are equivalent:

(a) gr(P ) = 0;

(b) P is (r−1)-stacked; i.e., there exists a triangulation of P , all of whose faces of dimension
at most d− r are faces of P .

This conjecture is now a theorem: Part 1 of the GLBC follows from the g-theorem; McMullen
and Walkup [30] showed that gr(P ) = 0 whenever P is an (r − 1)-stacked simplicial polytope;
finally, Murai and Nevo [32] completed the proof of the GLBC by showing that if gr(P ) = 0, then
P must be (r − 1)-stacked.

In this section, we propose an extension of these results to the family of balanced simplicial
polytopes. First, we require a definition that extends the notion of an (r − 1)-stacked polytope to
the family of balanced polytopes.

5.2 (r − 1)-stackedness for balanced spheres and manifolds

We start by defining a certain subclass of regular CW complexes.

Definition 5.2. A d-dimensional regular CW complex X is called a cross-polytopal complex if the
(d− 1)-dimensional skeleton of X is a simplicial complex, the boundary of every d-dimensional cell
of X coincides with C∗d , and no two d-dimensional cells have the same vertex set (equivalently, no
two d-cells share their entire boundary).

If X is a d-dimensional simplicial complex or a cross-polytopal complex, then we say that X is
a k-homology manifold with boundary if (i) for each p ∈ ‖X‖, the pair (‖X‖, ‖X‖ − p; k) has the
relative homology of a d-ball or a d-sphere, and (ii) the boundary complex of X ,

∂X := {F ∈ X : H∗(‖X‖, ‖X‖ − p; k) ∼= 0 for p in the relative interior of F} ∪ {∅},

is a closed homology (d − 1)-manifold. Similarly, we say that X is a homology d-ball if (i) X is a
homology manifold with boundary, (ii) H∗(‖X‖; k) ∼= 0, and (iii) the boundary complex of X is a
homology (d−1)-sphere. Note that the boundary complex of X is contained in the (d−1)-skeleton
of X , and hence is a simplicial complex. If X is a homology manifold with boundary, then every
face of X that does not belong to ∂X is called an interior face.

Definition 5.3. Let ∆ be a balanced (d−1)-dimensional homology sphere (resp. connected homol-
ogy manifold without boundary), and let 1 ≤ r ≤ d. We say that ∆ has the balanced (r−1)-stacked
property if there exists a cross-polytopal complex X such that (i) X is a homology d-ball (resp. ho-
mology d-manifold with boundary), (ii) the boundary complex of X is ∆, and (iii) all faces of X
of dimension at most d − r are faces of ∆. Such a CW complex X is called an (r − 1)-stacked
cross-polytopal decomposition of ∆.
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Remark 5.4. An alternate definition of the balanced (r − 1)-stacked property states that there
exists a d-dimensional simplicial complex Γ such that (i) Γ is a homology d-ball (or d-manifold with
boundary); (ii) Γ is balanced; (iii) the boundary complex of Γ is ∆; (iv) all faces of Γ of dimension
at most d− r that do not use a vertex of color d+ 1 are faces of ∆; and (v) if u is a vertex of color
d+ 1, then u belongs to the interior of Γ and lkΓ(u) is isomorphic to C∗d .

Indeed, if X is an (r− 1)-stacked cross-polytopal decomposition of ∆, we can perform a stellar
subdivision of each of its cross-polytopal faces, which will introduce new vertices that receive color
d+ 1. This perspective will be useful in some of our subsequent proofs.

Remark 5.5. The only balanced homology (d − 1)-manifold that has the balanced 0-stacked
property is C∗d . A balanced homology sphere has the balanced 1-stacked property if and only if it
is a stacked cross-polytopal sphere, and a balanced homology (d − 1)-manifold has the balanced
1-stacked property if and only if it belongs to BHd. (This last statement follows easily from
methods/results in [15] and is a balanced analog of [15, Corollary 3.12].) The suspension of a
stacked cross-polytopal sphere is an example of a balanced sphere that has the balanced 2-stacked
property. More generally, if ∆ has the balanced (r− 1)-stacked property, then the suspension of ∆
has the balanced r-stacked property.

Somewhat informally, we say that a polytope P is balanced if P is a simplicial polytope whose
boundary complex is a balanced complex. We also say that P has the balanced (r − 1)-stacked
property if the boundary complex of P does. This leads to the following balanced Generalized
Lower Bound Conjecture (balanced GLBC, for short) that extends the balanced LBT.

Conjecture 5.6. Let P be a balanced d-polytope. Then

1. gj(P ) ≥ 0 for all 1 ≤ j ≤ bd2c, and

2. for an 1 ≤ r ≤ bd2c, the following are equivalent:

(a) gr(P ) = 0;

(b) P has the balanced (r − 1)-stacked property.

As with the g-conjecture, it is tempting to propose the above conjecture in the generality of arbitrary
balanced simplicial (or even homology) spheres.

Just as the first part of the classic GLBT can be written as

1 = h0(P ) ≤ h1(P ) ≤ · · · ≤ hb d
2
c(P ), (5.1)

the first part of the balanced GLBC is equivalent to the requirement that

1 =
h0(P )(

d
0

) ≤ h1(P )(
d
1

) ≤ h2(P )(
d
2

) ≤ · · · ≤
hb d

2
c(P )( d
b d
2
c
) . (5.2)

This follows by observing that the inequality gj(P ) ≥ 0 is equivalent to the inequality
(
d
j−1

)
hj(P ) ≥(

d
j

)
hj−1(P ), which served as the motivation for our definition of the balanced g-numbers. It is also

worth pointing out that the similarity between equations (5.1) and (5.2) goes deeper: if we denote
by σd the boundary complex of the d-simplex, then (5.1) and (5.2) can be rewritten as

h0(P )

h0(σd)
≤ h1(P )

h1(σd)
≤ · · · ≤

hb d
2
c(P )

hb d
2
c(σd)

and
h0(P )

h0(C∗d)
≤ h1(P )

h1(C∗d)
≤ · · · ≤

hb d
2
c(P )

hb d
2
c(C∗d)

, respectively.
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Remark 5.7. In the time that this paper was under review, Juhnke-Kubitzke and Murai [24]
established the nonnegativity of the g-numbers of a balanced d-polytope, hence settling the first
part of the balanced GLBC.

Remark 5.8. Björner and Swartz [41, Problem 4.2] conjectured that any 2i-dimensional doubly
Cohen–Macaulay complex satisfies the inequality hi ≤ hi+1. As rank selected subcomplexes of a
balanced homology (d − 1)-sphere ∆ are doubly Cohen–Macaulay, the conjecture by Björner and
Swartz, if true, would imply that hi(∆T ) ≤ hi+1(∆T ) for all (2i+1)-element subsets T of [d]. Since
a routine double-counting argument (analogous to that of [19, Theorem 5.3]) shows that

∑
T⊆[d]
|T |=2i+1

hi(∆T ) =

(
d− i
i+ 1

)
hi(∆) and

∑
T⊆[d]
|T |=2i+1

hi+1(∆T ) =

(
d− i− 1

i

)
hi(∆),

and since
(
d−i−1
i

)
/
(
d−i
i+1

)
= (i + 1)/(d − i), their conjecture would imply Part 1 of Conjecture 5.6

even for the class of all balanced homology spheres.

Remark 5.9. If ∆ is a balanced normal (d− 1)-pseudomanifold with d ≥ 4, then by Theorem 3.4,
each vertex v of ∆ satisfies g2(lk∆)(v) ≥ 0, and hence

2
∑

v∈V (∆)

h2(lk∆(v))− (d− 2)
∑

v∈V (∆)

h1(lk∆(v)) ≥ 0.

By [41, Proposition 2.3],
∑

v∈V (∆) hi(lk∆(v)) = (i + 1)hi+1(∆) + (d − i)hi(∆) for all 0 ≤ i ≤
d − 1. Plugging the latter equation (with i = 1 and i = 2) into the former, we conclude that
6h3(∆) − (d − 1)(d − 2)h1(∆) ≥ 0. Thus, for every balanced normal (d − 1)-pseudomanifold with

d ≥ 4, at least the inequality h1(∆)

(d1)
≤ h3(∆)

(d3)
holds. Moreover, h1(∆)

(d1)
= h3(∆)

(d3)
if and only if all vertex

links satisfy g2(lk∆(v)) = 0.

The first step towards proving the classic GLBT was McMullen-Walkup’s proof that (b) =⇒ (a)
in Part 2 of the statement of the theorem. We will show that the analogous result holds for the
balanced GLBC.

Theorem 5.10. Let ∆ be a balanced homology (d − 1)-sphere with the balanced (r − 1)-stacked
property. Then gj(∆) = 0 for all r ≤ j ≤ bd2c.

The proof of Theorem 5.10 requires several lemmas and some notation.

Notation 5.11. Let ∆ be a balanced homology (d− 1)-sphere with the balanced (r − 1)-stacked
property, and let X be an (r − 1)-stacked cross-polytopal decomposition of ∆. Let C1, C2, . . . , Cm
be the collection of the (closed) d-cells of X . As in Remark 5.4, we consider a stellar subdivision
of each Ci: for 1 ≤ i ≤ m, let bi be a new vertex and let bi ∗ ∂Ci be the cone over the boundary
of Ci with apex bi. Replacing each Ci in X with bi ∗ ∂Ci creates a simplicial complex Γ with the
property that ‖Γ‖ = ‖X‖ and ∂Γ = ∂X = ∆. Moreover, no face of Γ contains two of the vertices
among {b1, b2, . . . , bm}, and so Γ can be realized as a balanced homology d-ball by assigning a new
color d+ 1 to the new vertices b1, b2, . . . , bm.
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We begin by proving a general lemma about balanced homology d-balls with the property that
every face that contains a vertex of color d+ 1 is an interior face. If Γ is a homology ball, we write
fi(Γ

◦) to denote the number of interior i-faces in Γ so that fi(Γ) = fi(Γ
◦)+fi(∂Γ). Similarly, when

Γ is balanced we write fS(Γ◦) to denote the number of interior faces in Γ whose vertices are colored
by the colors in S and define hT (Γ◦) =

∑
S⊆T (−1)(|T |−|S|)fS(Γ◦).

Lemma 5.12. Let Γ be a balanced homology d-ball with the property that each face F ∈ Γ that
contains a vertex of color d+ 1 is an interior face. Let T ⊆ [d+ 1].

1. If d+ 1 /∈ T , then hT (Γ) = hT (Γ◦) + hT (∂Γ).

2. If d+ 1 ∈ T , then h[d+1]−T (Γ) = hT (Γ◦).

Proof: For Part 1, note that since Γ is the disjoint union of Γ◦ and ∂Γ, fS(Γ) = fS(Γ◦) + fS(∂Γ)
for any S ⊆ [d]. The assertion then follows from the defining relation for the flag h-numbers, see
eq. (2.1).

For Part 2, consider a new vertex b0, of color d + 1, and let Λ := Γ ∪ (b0 ∗ ∂Γ). Since ∂Γ does
not contain vertices of color d+ 1, it follows that Λ is a balanced homology d-sphere. Also since Λ
is the disjoint union of Γ◦ and b0 ∗ ∂Γ, fS(Λ) = fS(Γ◦) + fS(b0 ∗ ∂Γ) for all S ⊆ [d+ 1]. Thus

hT (Λ) =
∑
S⊆T

(−1)|T |−|S|fS(Γ◦) +
∑
S⊆T

(−1)|T |−|S|fS(b0 ∗ ∂Γ). (5.3)

We now consider two cases according to whether or not d+ 1 belongs to T . If d+ 1 /∈ T , then
for all S ⊆ T , fS(b0 ∗ ∂Γ) = fS(∂Γ), and the above equation simplifies to

hT (Λ) = hT (Γ◦) + hT (∂Γ) = hT (Γ) if d+ 1 /∈ T, (5.4)

where the last step is by Part 1 of the lemma. On the other hand, if d+ 1 ∈ T , then∑
S⊆T

(−1)|T |−|S| fS(b0 ∗ ∂Γ)

=
∑

S⊆T−{d+1}

[
(−1)|T |−|S|fS(b0 ∗ ∂Γ) + (−1)|T |−|S|−1fS∪{d+1}(b0 ∗ ∂Γ)

]
=

∑
S⊆T−{d+1}

(−1)|T |−|S| [fS(∂Γ)− fS(∂Γ)] = 0,

and so equation (5.3) reduces to

hT (Λ) = hT (Γ◦) if d+ 1 ∈ T. (5.5)

The statement of the lemma now follows from the generalized Dehn-Sommerville relations for
balanced homology spheres [10] asserting that hT (Λ) = h[d+1]−T (Λ). Indeed, if d+ 1 ∈ T ⊆ [d+ 1],
then

hT (Γ◦) = hT (Λ) = h[d+1]−T (Λ) = h[d+1]−T (Γ),

where the first step is by eq. (5.5), the second is by the generalized Dehn-Sommerville relations,
and the last one is by eq. (5.4). �

Similar computations show that Part 2 of Lemma 5.12 also holds for d + 1 /∈ T ⊆ [d + 1], and
that if d+ 1 ∈ T ⊆ [d+ 1], then hT (Γ) = hT (Γ◦)−hT (∂Γ). We do not include a proof since we will
not use these cases.
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Lemma 5.13. Let ∆ be a balanced homology (d − 1)-sphere with the balanced (r − 1)-stacked
property, and let X and Γ be as in Notation 5.11. Let T ⊆ [d+ 1] be a subset of colors.

1. If d+ 1 /∈ T and |T | ≤ d+ 1− r, then hT (Γ◦) = 0.

2. If d + 1 ∈ T and |T | ≤ d + 2 − r, then hT (Γ◦) = m, where m = fd(X ) is the number of
cross-polytopes in an (r − 1)-stacked cross-polytopal decomposition of ∆.

Proof: Recall that

hT (Γ◦) =
∑
S⊆T

(−1)|T |−|S|fS(Γ◦).

Let F be a face of Γ with |F | ≤ d − r + 1, so dimF ≤ d − r. If F does not contain a vertex of
color d+ 1, then F is a face of X , and hence F ∈ Skeld−r(X ). However, since ∆ has the balanced
(r− 1)-stacked property, Skeld−r(X ) = Skeld−r(∆). Thus F is a face of ∆, and so it is a boundary
face of Γ. In other words, if |S| ≤ d− r + 1 and d+ 1 /∈ S, then fS(Γ◦) = 0. This proves Part 1.

Now assume that T satisfies the assumptions of Part 2 of the lemma. If S ⊆ T and d+ 1 /∈ S,
then |S| ≤ |T | − 1 ≤ d+ 1− r. Therefore the above argument shows that fS(Γ◦) = 0. Thus

hT (Γ◦) =
∑
S⊆T
d+1∈S

(−1)|T |−|S|fS(Γ◦). (5.6)

Next, notice that if S ⊆ [d+ 1] and d+ 1 ∈ S, then fS(Γ◦) = m · 2|S|−1. Indeed, if G is a face
whose vertices are colored by S, then G contains some vertex bi. Consider G′ = G − {bi}. For
each cross-polytope Ci, there are 2|S|−1 such faces G′, and hence fS(Γ◦) = m · 2|S|−1. Thus Part 2
follows from the binomial theorem and eq. (5.6) exactly as in Example 2.3. �

Theorem 5.10 is a consequence of the following result, which shows that certain h-numbers of
a homology (d− 1)-sphere with the balanced (r − 1)-stacked property depend only on the number
of cross-polytopes in its cross-polytopal decomposition.

Theorem 5.14. Let ∆ be a balanced homology (d − 1)-sphere with the balanced (r − 1)-stacked
property, let X and Γ be as in Notation 5.11, and let m = fd(X ). If T ⊆ [d] and r − 1 ≤ |T | ≤
d− r + 1, then hT (∆) = hT (∂Γ) = m.

Proof: For T satisfying the assumptions of the theorem and S := [d+ 1]− T , we have

• hT (Γ◦) = 0. (This follows from Lemma 5.13, since d+ 1 /∈ T and |T | ≤ d+ 1− r.)
• hT (Γ◦) = hT (Γ)− hT (∂Γ). (This is a consequence of Part 1 of Lemma 5.12.)

• hT (Γ) = hS(Γ◦). (See Part 2 of Lemma 5.12; recall that T ⊆ [d], and hence d+ 1 ∈ S.)

• hS(Γ◦) = m. (See Part 2 of Lemma 5.13; note that d + 1 ∈ S and |S| = d + 1 − |T | ≤
d+ 1− (r − 1) = d+ 2− r.)

Putting these four results together gives

0 = hT (Γ◦) = hT (Γ)− hT (∂Γ) = hS(Γ◦)− hT (∂Γ) = m− hT (∂Γ).

The result follows. �
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Proof of Theorem 5.10: For ∆ as in the statement of the theorem and any r − 1 ≤ j ≤ d− r + 1,
Theorem 5.14 tells us that,

hj(∆) =
∑
T⊆[d]
|T |=j

hT (∂Γ) =
∑
T⊆[d]
|T |=j

m =

(
d

j

)
·m. (5.7)

Thus, for r ≤ j ≤ bd2c, gj(∆) = j ·hj(∆)−(d−j+1) ·hj−1(∆) = j ·
(
d
j

)
·m−(d−j+1) ·

(
d
j−1

)
·m = 0.

�

Remark 5.15. Equation (5.7) is completely analogous to the non-balanced situation: if ∆ is
an (r − 1)-stacked homology (d − 1)-sphere and B is a homology d-ball such that ∂B = ∆ and
Skeld−r(B) = Skeld−r(∆), then it is not hard to show that hj(∆) = fd(B) for all r−1 ≤ j ≤ d−r+1.

5.3 Uniqueness of (r − 1)-stacked cross-polytopal decomposition

The second step towards proving the classical GLBT was McMullen’s observation [29] that if an
(r−1)-stacked triangulation of a simplicial polytope exists, then it is unique. An explicit description
of such a triangulation was then worked out in [32, Theorem 2.3] (for (r− 1)-stacked spheres) and
[6, Theorem 2.20] and [33, Theorem 4.2] (for (r − 1)-stacked manifolds). In the rest of this section
we establish balanced analogs of these results.

Definition 5.16. If ∆ is a balanced (d− 1)-dimensional complex and 1 ≤ j < d, then define ∆(j)
to be the following d-dimensional cross-polytopal complex:

• The (d − 1)-skeleton of ∆(j), denoted ∆(j), consists of all simplices F ⊂ V such that
Skelj(F ) ⊆ ∆.

• For each 2d-subset W = {u1, v1, . . . , ud, vd} of V with the property that {ui, vi} ⊆ Vi(∆) for
all i = 1, . . . , d and ∆(j)[W ] ∼= C∗d , there is a d-cell (cross-polytope) attached to ∆(j)[W ].

Note that ∆ ⊆ ∆(j), and so ∆(j) is at least (d − 1)-dimensional. On the other hand, since ∆
is balanced, the graph of ∆ contains no (d + 1)-cliques. The assumption that j ≥ 1 then implies
that ∆(j) is exactly (d− 1)-dimensional. Note also that ∆(j) ⊇ ∆(j + 1) for all 1 ≤ j < d− 1, and
that ∆(j) is the maximal cross-polytopal complex with the property that Skelj(∆(j)) = Skelj(∆).

The significance of ∆(j) is explained by the following theorem that is a balanced analog of the
aforementioned results by Murai–Nevo and Bagchi–Datta; its proof is similar in spirit to that of
[32, Theorem 2.3] and [6, Theorem 2.20], but requires some additional twists and bookkeeping.

Theorem 5.17. Let ∆ be a balanced (d − 1)-dimensional connected homology manifold with the
balanced (r − 1)-stacked property, and let X be an (r − 1)-stacked cross-polytopal decomposition
of ∆.

1. If ∆ is a homology sphere and 2 ≤ r ≤ (d+ 1)/2, then X = ∆(r − 1) = ∆(d− r).

2. If ∆ is a homology manifold and 2 ≤ r ≤ d/2, then X = ∆(r) = ∆(d− r).

The proof of Part 1 of Theorem 5.17 relies on the following lemma.
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Lemma 5.18. Let ∆ be a balanced (d−1)-dimensional k-homology sphere with the balanced (r−1)-
stacked property (with r ≥ 2), and let X be an (r − 1)-stacked cross-polytopal decomposition of ∆.
Then

1. X has no missing simplicial faces of dimension ≥ r.

2. X has no missing cross-polytopal faces, that is, if W = {u1, v1, . . . , ud, vd} ⊆ V (∆) is such
that (Skeld−1X )[W ] ∼= C∗d , then X [W ] is one of the closed d-cells of X .

Proof: Throughout this proof we use the d-cells Ci (i = 1, . . . ,m), the vertices bi of color d + 1,
and the d-dimensional simplicial complex Γ as defined in Notation 5.11. Also, as in the proof of
Lemma 5.12, we introduce one more vertex, b0, of color d+ 1 and define Λ = Γ∪ (b0 ∗∆). Then Λ
is a balanced k-homology d-sphere, and V (Λ) = V (∆)q Vd+1, where Vd+1 = {b0, b1, . . . , bm}.

Let F ⊆ V (∆) = V (X ) be a set of size ` + 1, where ` ≥ r ≥ 2, such that all proper subsets
of F are faces of X ; in particular |F | ≤ d (by balancedness of ∆). For Part 1, we must show that
F ∈ X , or, equivalently, that β`−1(X [F ]; k) = 0. Since Skeld−1(X ) is an induced subcomplex of
both Γ and Λ, X [F ] = Γ[F ] = Λ[F ]. Thus, by Alexander duality,

β`−1(X [F ]; k) = β`−1(Λ[F ]; k) = βd−`(Λ[V (Λ)− F ]; k),

and so to complete the proof of Part 1, it suffices to show that βd−`(Λ[V (Λ)− F ]; k) = 0.
Set Λi := Λ[{b0, b1, . . . , bi} ∪ V (∆) − F ] for 0 ≤ i ≤ m. We will prove by induction on i that

βd−`(Λi; k) = 0. As Λm = Λ[V (Λ)− F ], this will imply Part 1 of the lemma.
Since d − ` ≤ d − r and since X is an (r − 1)-stacked cross-polytopal decomposition of ∆, we

have
Skeld−`(Λ0) = Skeld−`(b0 ∗∆[V (∆)− F ]).

Also, by definition of Λ, Λ0 ⊇ b0 ∗∆[V (∆) − F ]. Hence, by definition of simplicial homology and
since b0 ∗∆[V (∆)− F ] is a cone, we obtain that

βd−`(Λ0; k) ≤ βd−`(b0 ∗∆[V (∆)− F ]; k) = 0.

This establishes the i = 0 case of the induction.
For the induction step notice that

Λi+1 = Λi
⋃

(bi+1 ∗ (∂Ci+1)[V (Ci+1)− F ]) and Λi+1 ∩ Λi = (∂Ci+1)[V (Ci+1)− F ].

In other words, to obtain Λi+1 from Λi, we attach to Λi a cone that intersects Λi along a (d− 1)-
sphere or a (d− 1)-ball: the former happens if F is disjoint from Ci+1, as in this case, Λi+1 ∩Λi =
∂Ci+1

∼= C∗d , while the latter happens if F intersects Ci+1, as in this case Λi+1 ∩ Λi is the antistar
of a non-empty face in C∗d . In either case, since ` ≥ r ≥ 2 and since all but the top homology of the
(d − 1)-sphere (resp. ball) vanish, a simple application of the Mayer-Vietoris sequence shows that
βd−`(Λi+1; k) = βd−`(Λi; k) = 0. Part 1 of the lemma follows.

For Part 2, assume that X [W ] is not a d-cell of X . Then Λ[W ] = (Skeld−1X )[W ] ∼= C∗d .
Therefore, by Alexander duality,

1 = βd−1(Λ[W ]; k) = β0(Λ[V (Λ)−W ]; k),

and so the graph of Λ[V (Λ)−W ] must be disconnected. On the other hand, all vertices of V (∆)−W
are connected to b0 (by definition of Λ). In addition, since X [W ] (by our assumption) is not one
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of the cells Ci of X , each Ci (i = 1, . . . ,m) has at least one vertex in V (∆) −W , and hence bi is
connected to that vertex. This shows that the graph of Λ[V (Λ) −W ] is connected (in fact, has
diameter 2), which is a contradiction. Part 2 follows. �

We are now in a position to prove Theorem 5.17. For Part 2 of the theorem, we need to ex-
tend the notion of vertex links from simplicial complexes to cross-polytopal complexes. If C is a
d-dimensional cell (cross-polytope) whose boundary is {u1, v1} ∗ · · · ∗ {ud, vd}, then the link of u1

in C, lkC(u1), is defined as the (d − 1)-cell whose boundary is {u2, v2} ∗ · · · ∗ {ud, vd}. (The links
of other vertices are defined in a similar way.) If X is a d-dimensional cross-polytopal complex,
v is a vertex of X , and Ci1 , . . . , Cik are the d-cells that contain v, then define the link of v in X ,
lkX (v), as lkSkeld−1(X )(v) (this is the “simplicial” part of the link) together with all the (d− 1)-cells
lkCij

(v), j = 1, . . . , k. Note that if ‖X‖ is a homology d-manifold with boundary, and v is not an

interior vertex of X , then for every two d-cells C,C ′ containing v, the vertex sets of lkC(v) and
lkC′(v) are not the same, and so lkX (v) is a (d − 1)-dimensional cross-polytopal complex (in the
sense of Definition 5.2).

Proof of Theorem 5.17: For Part 1, since X is an (r − 1)-stacked cross-polytopal decomposition
of ∆, Skeld−r(X ) = Skeld−r(∆) = Skeld−r(∆(d − r)). As r − 1 ≤ d − r, Lemma 5.18 (along with
Definition 5.16) then implies that X = ∆(d−r) and that ∆(d−r) has no missing faces of dimension
≥ r. Thus we also have that ∆(d− r) = ∆(r − 1), and Part 1 follows.

For Part 2, let r ≤ d/2, let ∆ be a balanced (d − 1)-dimensional homology manifold, and let
X be an (r − 1)-stacked cross-polytopal decomposition of ∆. By Definition 5.16, we then have
X ⊆ ∆(d− r) ⊆ ∆(r), and to complete the proof it remains to show that X ⊇ ∆(r). To do so, we
rely on Part 1.

Let v be a vertex of X . Then lkX (v) is a (d−1)-dimensional cross-polytopal complex, and since
Skeld−r(X ) = Skeld−r(∆), we infer that

Skel(d−1)−r(lkX (v)) = Skel(d−1)−r(lk∆(v)).

Thus lkX (v) is an (r− 1)-stacked cross-polytopal decomposition of lk∆(v). As lk∆(v) is a balanced

homology (d− 1)-sphere and r ≤ d
2 = (d−1)+1

2 , Part 1 of the theorem yields

lkX (v) = lk∆(v)(r − 1) for all v ∈ V (X ) = V (∆). (5.8)

We claim that

lk∆(r)(v) ⊆ lk∆(v)(r − 1) for all v ∈ V (X ) = V (∆). (5.9)

Indeed, let F ∈ lk∆(r)(v) be a face of dimension ≤ d − 2. Then F ∪ {v} ∈ ∆(r). Therefore,

Skelr(F ∪ {v}) ⊆ ∆, so Skelr−1(F ) ⊆ lk∆(v), and hence F ∈ lk∆(v)(r − 1). On the other hand, if
F ∈ lk∆(r)(v) is a (d − 1)-face (thus, a cross-polytope), then by definition of ∆(r) (see Definition

5.16), there is w ∈ V (∆) of the same color as v such that the r-skeleton of the cross-polytope on the
vertex set V (F ) ∪ {v, w} is contained in ∆. Then Skelr−1(F ) ⊆ lk∆(v), and so F ∈ lk∆(v)(r − 1)
in this case as well. This verifies eq. (5.9).

Comparing equations (5.8) and (5.9), we conclude that X ⊇ ∆(r), and the result follows. �
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6 Balanced sphere bundles over S1

The starting point of this section is motivated by the following question: in the class of all balanced
triangulations of all closed (d−1)-manifolds that are not spheres, which complexes have the smallest
number of vertices and how many vertices do they have? We show that in the class of homology
manifolds that are not homology spheres the answer is 3d, and that the same result holds for
piecewise-linear (PL, for short) manifolds that are not PL spheres.

Proposition 6.1. Let ∆ be a (d− 1)-dimensional balanced k-homology manifold without boundary
that is not a k-homology sphere. Then ∆ has at least three vertices of each color, and hence
f0(∆) ≥ 3d. The same result holds in the PL category.

Proof: The statement is easy if d = 1, so assume d ≥ 2, and pick a color j ∈ [d]. Since ∆ is pure,
∆[d]−j is pure as well. Also, since ∆ is a normal pseudomanifold, each facet of ∆[d]−j is contained
in two facets of ∆. Thus there are at least two vertices of color j. Moreover, if there are exactly two
vertices of color j, say, u1 and u2, it must be the case that lk∆(u1) = ∆[d]−j = lk∆(u2). Therefore,
in this latter case, ∆ is the suspension of lk∆(u1). Since lk∆(u1) is a k-homology sphere and the
suspension of a k-homology sphere is also a k-homology sphere, it follows that ∆ is a k-homology
sphere. Therefore ∆ has at least three vertices of each color, which proves the desired result. The
same proof applies verbatim for the PL category by replacing ‘homology sphere’ with ‘PL sphere’
throughout. �

Our goal now is, for each d, to exhibit a non-simply connected element of the balanced Walkup
class BHd (and hence a PL manifold that is not a sphere) with exactly 3d vertices, see Theorem 6.3.
The underlying topological space of such a complex will be the Sd−2-bundle over S1 that is orientable
if d is odd and nonorientable if d is even. (Recall from [40] that up to homeomorphism there are
only two spherical bundles over S1 – the trivial bundle, which is orientable, and the nonorientable
bundle.) Our construction can be considered a balanced analog of Kühnel’s construction [25].

To start, suppose ∆̃ is a balanced simplicial (d − 1)-sphere with at least 3d vertices. Suppose
further there are two disjoint facets, F = {v1, . . . , vd} and F ′ = {v′1, . . . , v′d}, in ∆̃ such that (1)
vi and v′i have color i for all i, and (2) vi and v′i do not have any common neighbors for all i.

Let ∆ = ∆̃φ be the simplicial complex obtained from ∆̃ through a balanced handle addition that
identifies F with F ′. The following lemma will be useful in determining whether or not ∆ is
orientable. Its first part is a variant of [20, Proposition 11] and might be of interest in its own right.

Lemma 6.2. Let ∆ be a balanced (d− 1)-dimensional simplicial complex with d ≥ 3.

1. If ∆ is a normal pseudomanifold, then ∆ is orientable (i.e., H̃d−1(∆;Z) ∼= Z) if and only if
the facet-ridge graph of ∆ is bipartite (i.e., 2-colorable).

2. Assume that ∆ is a connected, orientable simplicial manifold, and let ∆φ be obtained from ∆
by a balanced handle addition that identifies facets F and F ′ of ∆. Then ∆φ is orientable if
and only if the distance from F to F ′ in the facet-ridge graph of ∆ is odd.

Proof: To verify Part 1, we fix a total order ≺ on the vertices of ∆ that respects colors; in other
words, the only restriction we place on ≺ is that if κ(v) < κ(w), then v ≺ w.

Assume first that ∆ is orientable, and let α =
∑
αF [F ] be a (d − 1)-cycle that generates

H̃d−1(∆;Z). Here the sum is over the facets of ∆, [F ] denotes the ordered d-tuple of vertices of F
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(so [F ] = [v1, . . . , vd], where κ(vj) = j), and αF ∈ {±1}. Let F ′ and F ′′ be two neighboring facets
of ∆, and let G be their common ridge. Then [d]− κ(G) consists of only one color, say, j. Since ∆
is a pseudomanifold, F and F ′ are the only facets that contain G, and we obtain that the coefficient
of [G] in ∂(α) is equal to (−1)j−1αF ′ + (−1)j−1αF ′′ . Thus for ∂(α) to be 0, we must have

αF ′ = −αF ′′ for every two neighboring facets F ′, F ′′.

Therefore, for any two facets, F ′ and F ′′ of ∆, the lengths of all paths between F ′ and F ′′ in the
facet-ridge graph of ∆ must have the same parity (odd if αF ′ = −αF ′′ and even otherwise). Hence
the facet-ridge graph of ∆ is bipartite.

Conversely, suppose the facet-ridge graph of ∆ is bipartite, so we can refer to the facets of ∆
as “red” or “blue” according to the chosen 2-coloring of this graph. Define αF := 1 if F is red and
αF := −1 if F is blue, and set α :=

∑
αF [F ]. The same computation as in the previous paragraph

then shows that ∂(α) = 0. Hence α is a non-zero element of H̃d−1(∆;Z), and so ∆ is orientable.
For Part 2, since ∆ is orientable, we can assume (by Part 1) that the facet ridge graph of ∆ is

endowed with a proper 2-coloring. Let F1, . . . , Fd be the neighboring facets of F and let F ′1, . . . , F
′
d

be the neighboring facets of F ′, where the indexing is chosen so that κ(F ∩ Fi) = κ(F ′ ∩ F ′i ) =
[d]−{i}. Then the facet-ridge graph of ∆φ is obtained from the facet-ridge graph of ∆ by removing
the two vertices corresponding to F and F ′, and connecting the vertices corresponding to Fi and
F ′i by an edge for each i ∈ [d].

If the distance from F to F ′ in the facet-ridge graph of ∆ is odd, then F and F ′ have opposite
colors. Consequently, Fi and F ′i have opposite colors (for all i), and hence adding an edge between
the vertices corresponding to Fi and F ′i (for each i ∈ [d]) does not affect the 2-colorability of the
graph. Thus, in this case, the facet-ridge graph of ∆φ is also bipartite, and hence ∆φ is orientable.

On the other hand, if the distance from F to F ′ in the facet-ridge graph of ∆ is even, then the
distance from F1 to F ′1 is also even, so every path from F1 to F ′1 has an even length in this graph.
Let F1 = H0, H1, . . . ,H2k−1, H2k = F ′1 be such a path that passes neither through F nor through
F ′ (it exists since d ≥ 3 and the facet-ridge graph of ∆ is d-connected, see [9]). Then the same
path together with an added edge between F1 and F ′1 forms an odd cycle in the facet-ridge graph
of ∆φ. Thus, the facet-ridge graph of ∆φ is not bipartite, and so ∆φ is nonorientable. �

We are now in a position to describe our 3d-vertex construction.

Theorem 6.3. There exists a balanced simplicial manifold BMd with 3d vertices that triangulates
Sd−2 × S1 if d is odd, and the nonorientable Sd−2-bundle over S1 if d is even.

Proof: Let ∆1, ∆2, and ∆3 be boundary complexes of d-dimensional cross-polytopes with
V (∆1) = {x1, . . . , xd}∪{y1, . . . , yd}, V (∆2) = {y′1, . . . , y′d}∪{z1, . . . , zd}, and V (∆3) = {z′1, . . . , z′d}∪
{x′1, . . . , x′d}, where we assume that each vertex with index i has color i. Now let ∆̃ = ∆1#∆2#∆3,
where the first connected sum identifies yi with y′i for all i, and the second connected sum identifies
zi with z′i for all i.

Observe that in ∆̃, any vertex xi is only adjacent to vertices in {x1, . . . , xd} ∪ {y1, . . . , yd},
and any vertex x′i is only adjacent to vertices in {z1, . . . , zd} ∪ {x′1, . . . , x′d}. Thus we can perform

a balanced handle addition to ∆̃ by identifying xi to x′i for all i and removing the identified
facets {x1, . . . , xd} and {x′1, . . . , x′d}. Let BMd denote the resulting simplicial complex. After all
identifications, we can write V (BMd) = {x1, . . . , xd, y1, . . . , yd, z1, . . . , zd}.

Since ∆̃ is a sphere and BMd is obtained from ∆̃ by handle addition, the resulting space is an
Sd−2-bundle over S1. Finally, since the distance from the facet {x1, . . . , xd} to the facet {x′1, . . . , x′d}
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in the facet-ridge graph of ∆̃ is 3(d− 1) + 1 = 3d− 2, Part 2 of Lemma 6.2 implies that for d ≥ 3,
BMd is orientable if d is odd, and it is nonorientable if d is even. For d = 2, the resulting complex
is homeomorphic to S1, and hence it is the non-orientable S0-bundle over S1. �

We now show that BMd possesses balanced analogs of virtually all properties that Kühnel’s
construction [25] has. We start with the following observation.

Remark 6.4. Since there is a natural bijection between the set of facets of C∗d on the vertex set
{x1, . . . , xd, y1, . . . , yd} and the set of words of length d in the alphabet {x, y} (e.g., under this
bijection the facet {x1, y2, . . . , yd} corresponds to the word xyy · · · y), the construction of BMd

implies that there is a natural bijection between the set of facets of BMd and the set of words
of length d in the alphabet {x, y, z} containing exactly two of the letters. It then follows that (i)
the group S3 × Sd acts vertex transitively on BMd, where S3 acts by permuting the letters of the
alphabet and Sd by permuting the positions of the d letters inside each word; and (ii) for d ≥ 3, the
graph of BMd is the graph K3,3,...,3 — the complete d-partite graph (also known as Turán graph)
on 3 + 3 + · · ·+ 3 vertices. In other words, BMd is a “balanced 2-neighborly” simplicial manifold.

Proposition 6.5. For all d ≥ 3, the complex BMd is (up to simplicial isomorphism) the only
3d-vertex element of BHd that is not a sphere.

Proof: Let ∆ be a 3d-vertex element of BHd that is not a sphere, and let k ≥ 1 denote the number
of handle additions used in the construction of ∆. Then g2(∆) = 4

(
d
2

)
k ≥ 4

(
d
2

)
= g2(BMd) and

f0(∆) = f0(BMd), and so f1(∆) ≥ f1(BMd). On the other hand, the graph of BMd is K3,3,...,3 —
the complete d-partite graph with 3 vertices of each color, and hence it contains the graph of ∆.
We conclude that f1(∆) = f1(BMd) and that k = 1. Therefore, for ∆ to have 3d vertices, it must
be obtained from three (boundary complexes of) cross-polytopes by using two balanced connected
sums and one balanced handle addition, i.e., ∆ = (Γ1#ψ1Γ2#ψ2Γ3)φ, where Γ1, Γ2, and Γ3 are all
cross-polytopes.

Consider Λ = Γ1#ψ1Γ2#ψ2Γ3. Observe that no vertex of Λ belongs to all three cross-polytopes:
indeed, if vi were such a vertex of Λ of color i, then for any color j 6= i, every two vertices of Λ of
color j would have vi as their common neighbor, and so there would be no way to add a balanced
handle to Λ. Thus, without loss of generality, we can assume that V (Γ1) = {x1, . . . , xd, y1 . . . , yd},
V (Γ2) = {y′1, . . . , y′d, z1, . . . , zd}, and V (Γ3) = {z′1, . . . , z′d, x′1, . . . , x′d}, where ψ1 identifies yi with
y′i, and ψ2 identifies zi with z′i for i = 1, . . . , d. But then, for each i ∈ [d], the only two vertices of Λ
of color i that do not have a common neighbor are xi and x′i. Therefore, the only balanced handle
that can be added to Λ is the one that identifies xi with x′i for all i, and hence ∆ = BMd. �

We close our discussion of the properties of BMd by briefly talking about the face numbers. We
have: f0(BMd) = 3d and g2(BMd) = 4

(
d
2

)
. Hence, it follows from Proposition 6.1 and Theorem 3.9

that for d ≥ 3, in the class of all balanced (d− 1)-dimensional homology manifolds with non-trivial
H̃1(−,Q), the complex BMd simultaneously minimizes f0 and f1. In fact, it minimizes the entire
f -vector:

Theorem 6.6. Let ∆ be a balanced (d− 1)-dimensional homology manifold with β1(∆;Q) 6= 0.

1. If d ≥ 2, then fi−1(∆) ≥ fi−1(BMd) for all 0 < i ≤ d.

2. Moreover, if d ≥ 5, and (f0(∆), f1(∆), f2(∆)) = (f0(BMd), f1(BMd), f2(BMd)), then ∆ is
isomorphic to BMd.
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Proof: Part 1 clearly holds for d = 2, since any 1-dimensional manifold satisfies f0 = f1. It also
holds for d = 3, since in this case 2f1 = 3f2. For d ≥ 4, the proof of Part 1 follows by summing
over vertex links and is almost identical to the proof of its non-balanced counterpart proved in
[43, Theorem 4.7]. We apply Theorem 3.4 (its f -vector form as discussed in [19, Theorem 5.3])
instead of the classic LBT and the inequality g2 ≥ 4

(
d
2

)
of Theorem 3.9 in place of the inequality

g2 ≥
(
d+1

2

)
. We omit the details.

For Part 2, note that if (f0(∆), f1(∆), f2(∆)) = (f0(BMd), f1(BMd), f2(BMd)), then h1(∆) =
h1(BMd) and h3(∆) = h3(BMd), and so

h3(∆)(
d
3

) − h1(∆)(
d
1

) =
h3(BMd)(

d
3

) − h1(BMd)(
d
1

) = 0,

where the last step follows from Remark 5.9. Applying Remark 5.9 once again, we conclude that
for every vertex v of ∆, g2(lk∆(v)) = 0. Since 1 + dim lk∆(v) = d− 1 ≥ 4, Theorem 4.1 yields that
all vertex links of ∆ are stacked cross-polytopal spheres, and so by Corollary 4.12, the complex ∆
lies in the balanced Walkup class BHd. Proposition 6.5 then guarantees that ∆ is isomorphic to
BMd. �

In the remainder of this section we concentrate on the following question: for which values of
n ≥ 3d is there a balanced n-vertex triangulation of the orientable (resp. nonorientable) Sd−2-bundle
over S1? While the situation is obvious for d = 2, we offer the following theorem and conjecture
for d ≥ 3. (For similar results in the non-balanced case, see [5] and [14].)

Theorem 6.7. For all d ≥ 3 and k ≥ 2 there exists a balanced simplicial manifold ∆k,d with 3d+k

vertices that triangulates Sd−2 × S1, and a balanced simplicial manifold ∆̃k,d with 3d + k vertices
that triangulates the nonorientable Sd−2-bundle over S1.

Proof: The proof is very similar to the proof of Theorem 6.3. We first consider the case of an even
k. Let Σ1 denote the boundary complex of a (d− 2)-dimensional cross-polytope whose vertices are
labeled as {x1, x2, . . . , xd−2}∪{y1, y2, . . . , yd−2} where κ(xi) = κ(yi) = i, and let C denote the cycle
graph on 4 +k vertices, which are labeled sequentially as {u1, . . . , uk, xd−1, xd, yd−1, yd}. Then C is
balanced if we declare that κ(u2i−1) = κ(xd−1) = κ(yd−1) = d− 1 and κ(u2i) = κ(xd) = κ(yd) = d.
Let ∆1 = Σ1 ∗ C. Alternatively, we may view ∆1 as the (d− 2)-fold suspension of C.

As in the proof of Theorem 6.3, let ∆2 and ∆3 be the boundary complexes of d-dimensional
cross-polytopes with V (∆2) = {y′1, . . . , y′d} ∪ {z1, . . . , zd} and V (∆3) = {z′1, . . . , z′d} ∪ {x′1, . . . , x′d}.
Let ∆̃ = ∆1#∆2#∆3, where the first connected sum identifies vertex yi with vertex y′i for all i,
and the second connected sum identifies vertex zi with vertex z′i for all i.

Consider the following three facets of ∆̃: X ′ = {x′1, . . . , x′d−1, x
′
d}, X = {x1, . . . , xd−1, xd}, and

X̃ = {x1, . . . , xd−1, uk}. Once again, the vertices in X ′ do not have any neighbors in common with
any of the vertices in either X or X̃. Therefore, we can perform two separate balanced handle
additions. Let Γ be the simplicial complex obtained from ∆̃ through a balanced handle addition
that identifies the vertices of X ′ to the vertices of X, and let Γ′ be obtained from ∆̃ through a
balanced handle addition that identifies X ′ to X̃. Both Γ and Γ′ are Sd−2-bundles over S1 with
3d+ k vertices. Furthermore, by Part 2 of Lemma 6.2, one of them is orientable and the other one
is not. This establishes the existence of both ∆k,d and ∆̃k,d for every even k ≥ 2.

Finally, if k ≥ 3 is odd, then let ∆1 be the (d − 3)-fold suspension of C∗3#C∗3 , let ∆2 be the
(d− 2)-fold suspension over the cycle of length k+ 1, and let ∆3 be C∗d . Then ∆1 has 2 · (d− 3) + 9
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vertices, ∆2 has 2 · (d − 2) + (k + 1) vertices, and ∆3 has 2d vertices, so the resulting balanced
connected sum ∆1#∆2#∆3 has 4d + k vertices. The rest of the construction follows similarly to
the case that k is even by performing a balanced handle operation to ∆1#∆2#∆3, and we omit
the details for the sake of brevity. �

Conjecture 6.8. For all d ≥ 3, the following hold.

1. The orientable Sd−2-bundle over S1 has no balanced 3d-vertex triangulation if d is even; the
nonorientable Sd−2-bundle over S1 has no balanced 3d-vertex triangulation if d is odd.

2. Neither the orientable nor the nonorientable Sd−2-bundle over S1 has a balanced (3d+1)-vertex
triangulation.

Note that according to Proposition 6.5, if there is a balanced 3d-vertex triangulation of Sd−2 × S1

for even d ≥ 3 (resp. of the non-orientable bundle for odd d ≥ 3), then such a triangulation does
not belong to the balanced Walkup class.

We close this section with collecting some evidence in favor of Conjecture 6.8. For small values
of d, Part 1 of the conjecture follows from the following strengthening of Proposition 6.5. Recall
that χ̃(∆) :=

∑d−1
i=0 (−1)iβi(∆; k) denotes the reduced Euler characteristic of ∆. Recall also, that

for a homology (d− 1)-manifold ∆, the following Dehn-Sommerville relations hold [23]:

hd−i(∆) = hi(∆) + (−1)i
(
d

i

)(
χ̃(∆) + (−1)d

)
.

Proposition 6.9. Let d ∈ {3, 4, 5}. If ∆ is a balanced 3d-vertex triangulation of a homology
(d − 1)-manifold with β1(∆;Q) 6= 0 and χ̃(∆) = χ̃(BMd), then ∆ is isomorphic to BMd. Thus,
the first part of Conjecture 6.8 holds for all d ≤ 5.

Proof: We are given that f0(∆) = 3d = f0(BMd), and we also know from Part 1 of Theorem 6.6
that f1(∆) ≥ f1(BMd). However, by Remark 6.4, the graph of BMd is the complete d-partite
graph with 3 vertices of each color. It thus follows that ∆ and BMd have the same graph, and
hence that (h0(∆), h1(∆), h2(∆)) = (h0(BMd), h1(BMd), h2(BMd)). Since d ≤ 5 and since, by
the Dehn-Sommerville relations, the Euler characteristic and the first half of the h-vector of any
homology manifold determine the entire h-vector, we infer that f(∆) = f(BMd). The case d = 5
of the statement then follows from Part 2 of Theorem 6.6.

We now consider the case of d = 3. (Recall that homology manifolds of dimension ≤ 3 are
simplicial manifolds.) Label the vertices of ∆ so that V1(∆) = {x1, y1, z1}. Since the graph of ∆
is K3,3,3 and since ∆ is a manifold, the link of each vertex in ∆ is a graph cycle on 6 vertices. In
other words, the complement of lk∆(x1) in ∆{2,3} = K3,3 consists of 3 edges that form a perfect
matching Mx of K3,3, and the same holds for the links of y1 and z1. Moreover, since every edge of
∆ is in exactly two facets, the three perfect matchings Mx, My, and Mz are pairwise disjoint and
their union is K3,3. Hence there exist ex ∈Mx, ey ∈My, and ez ∈Mz such that {ex, ey, ez} is also
a matching of K3,3. The sets Fx := ex ∪ {x1}, Fy := ey ∪ {y1}, and Fz := ez ∪ {z1} then form a
collection of three pairwise disjoint missing 2-faces of ∆. As in the proof of Lemma 4.5, cut along Fx
and patch with two 2-simplices. Then do the same with Fy and Fz. Since g2(∆) = g2(BM3) = 4

(
3
2

)
,

at most one of these three operations is “undoing a handle”, and we conclude (by counting vertices)
that the complex we end up with is a disjoint union of three copies of C∗3 . Therefore, ∆ ∈ BH3,
and so ∆ is isomorphic to BM3 by Proposition 6.5.
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To treat the case of d = 4, we first show that (up to isomorphism) the only balanced 2-sphere
on 3 + 3 + 3 vertices is C∗3#C∗3 . Indeed, if Γ is such a sphere with f0(Γ) = 9, then f1(Γ) =
3 · 9 − 6 = 21 and f2 = 14. Hence w.l.o.g. f{2,3}(Γ) ≥ 21

3 = 7. On the other hand, since
14 = f2(Γ) = f1(lkΓ(x1)) + f1(lkΓ(y1)) + f1(lkΓ(z1)), and since all vertex links are even cycles,
there must be a vertex of Γ of color 1, say x1, whose link is a hexagon. Therefore, there is an edge
e ∈ Γ{2,3} that is not in the link of x1 although both of its endpoints are. Thus F := e ∪ {x1} is a
missing 2-face of Γ. The claim follows by cutting Γ along F and patching with two 2-simplices.

Now let ∆ be a 3-dimensional complex as in the statement of the proposition, and let v ∈ V (∆).
Since the graph of ∆ is K3,3,3,3, the link of v is a balanced 2-sphere on 3 + 3 + 3 vertices, and so,
lk∆(v) = C1#C2, where Ci (for i = 1, 2) is isomorphic to C∗3 . In particular, lk∆(v) has a unique
missing 2-face; we denote it by F .

Case 1: F is not a face of ∆. In this case we use the same trick as in [42, Proposition 2.3]:
introduce two new vertices v1 and v2 of the same color as v, remove the ball B := v ∗ lk∆(v)
from ∆ and replace it with the ball B′ := (v1 ∗ (C1 ∪ {F}) ∪ (v2 ∗ (C2 ∪ {F}). The resulting
complex ∆′ is balanced. Further, since B and B′ have the same boundary complex (indeed,
∂(B) = ∂(B′) = lk∆(v)), ∆′ is also a simplicial manifold with ‖∆‖ ∼= ‖∆′‖. On the other hand,
f0(∆′) = f0(∆) + 1 and f1(∆′) = f1(∆) + 3, yielding that g2(∆′) = g2(∆) − 3 = 4

(
4
3

)
− 3. This

however contradicts the assertion of Theorem 3.9, and so this case is impossible.
Case 2: F is a face of ∆. In this case, F ′ := F ∪{v} is a missing 3-face of ∆. Cutting ∆ along

F ′ and patching with two 3-simplices results in a simplicial manifold, Λ. Note that Λ is connected
(this is because the graph of ∆ is K3,3,3,3). Thus ∆ is obtained from Γ through a balanced handle

addition, and g2(Λ) = g2(∆) − 4
(
d
2

)
= 0. Hence, by Theorem 4.1, Λ is a stacked cross-polytopal

sphere. Therefore, ∆ is in BH4, and so ∆ is isomorphic to BM4 by Proposition 6.5. �

As for the second part of Conjecture 6.8, we have:

Proposition 6.10. The second part of Conjecture 6.8 holds for d ∈ {3, 4}.

Proof: Assume to the contrary that ∆ is a balanced (3d + 1)-vertex triangulation of one of the
Sd−2-bundles over S1, and w.l.o.g. assume that |Vd(∆)| = 4, while |Vi(∆)| = 3 for all i ∈ [d− 1].

We start with the case of d = 3. In this case, the link of each vertex must be an even cycle,
and hence it must contain at most 6 vertices. On the other hand, since χ̃(∆) = 0 − 2 + 1 = −1
and f0(∆) = 10, it follows (e.g., from the Dehn-Sommerville relations) that f1(∆) = 30, and
f2(∆) = 20. Thus the average degree of a vertex is 2f1/f0 = 60/10 = 6, and we conclude that all
vertex links are hexagons. However, since every 2-face contains exactly one vertex of color 3, it
then follows that f2(∆) = 4× 6 = 24 6= 20, which is a contradiction.

Assume now that d = 4. Then ∆ is an odd-dimensional manifold, and hence it is an Eulerian
complex (i.e., for every face F of ∆, including the empty face, χ̃(lk∆(F )) = χ̃(Sd−1−|F |)). Since
β1(∆;Q) 6= 0, Theorem 3.9 implies that

2h2(∆) ≥ 3h1(∆) + 4

(
4

2

)
= 3(13− 4) + 24 = 51, and so h2(∆) ≥ 26.

On the other hand,

26 ≤ h2(∆) =
∑
S⊆[4]
|S|=2

hS(∆) =
∑
S⊆[3]
|S|=2

(
hS(∆) + h[4]−S(∆)

)
= 2

∑
S⊆[3]
|S|=2

hS(∆), (6.1)
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where the last step is by the generalized Dehn-Sommerville relations [10]. Finally, if S is any 2-
element subset of [3], then hS(∆) = f1(∆S)− f0(∆S) + 1 ≤ 3 · 3− 6 + 1 = 4, and so the right-hand
side of eq. (6.1) is at most 24, which is a contradiction. �

It would be very interesting to prove (or disprove) Conjecture 6.8 for all values of d. Even more
intriguing question is to characterize all possible pairs (f0, f1) of vertices and edges of any balanced
triangulation of an Sd−2-bundle over S1. In the case of all triangulations of such a space, this was
done in [14].

Remark 6.11. In the time that this paper was under review, Zheng [47] proved the remaining
cases of Conjecture 6.8.
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