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l. ELECTRICAL NETWORKS.
1.1. Preliminary Definitions.

A graph with boundary is a graph ¢ = (V,E) with a designated subset
AV ¢ V such that every component of G has a vertex contained in V. We write
IntV = V ~ V. and we call elements of 3V boundary vertices and elements
of Int V" interior vertices. We will only deal with graphs that are finite, but we
allow multiple edges and loops. We will use the notation w ~ ¢ ~ v to mean that
u and v are (not necessarily distinct) vertices and e is an edge which is adjacent
to both w and v. A circular planar graph is a graph with boundary which is
embedded into the closed unit disk in the plane in such a way that each of the
boundary vertices lies on the boundary of the disk and the rest of the graph lies
within the interior of the disk. Whenever we number the boundary vertices of a
circular planar graph, we will assume that they are arranged in clockwise order
around the boundary of the disk. An electrical network is a pair (G,~). where
(7 is a graph with boundary and ~ : £ — Ry is a strictly positive function on the
set of edges of . We will typically denote an electrical network (G,+) by . After
we introduce the electrical Lie algebra, we will restrict our attention to the case
when T is a circular planar electrical network, meaning that the underlyving
boundary graph G is circular planar.

Let T = (7, %) be an electrical network, and label the vertices vy, ..., v, in such
a way that vy,...,vx € 9V and vgsy,... ,vn € IntV, where k = |0V, We define
the Kirchhoff matrix of I' (with respect to this ordering of the vertices) to be the
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matrix

- Y, (e) flori#j,
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ki
For clarity, the first sum is over edges whose endpoints are v; and v;, and the second
sum is over edges which have v; as an endpoint and are not loops.

Remark. K is symmelric.

We can therefore write the Kirchhoff matrix A as

s A B
k= (5 &)

where A is the |8V x |8V submatrix corresponding to the boundary vertices and
C' is the | Int V| x | Int V| submatrix corresponding to the interior vertices.

Remark. The submairiz C of the KirchholJ matriz that corresponds fo the interior
vertices is positive-definite. In particular, C is inveriible.

We now define the response matrix of I' (with respect to this ordering of the
vertices) to be the Schur complement of " in K, i.e., the matrix

A(T)=A-BC'BT,

1.2. Network Transformations.

There are several simple transformations that we can apply make to an electrical
network, as we will now discuss.

o Reducing a series connection: Suppose 1" has a pair of edges u ~ e ~ v
and v ~ f ~ w with conductivities e and b, respectively, such that v is an
interior node and has no other edges adjacent to it. We can obtain a new
electrical network by removing v and replacing e and f with a single edge
u ~ g ~ w which has conductivity ab/{a + b).

s b ! b O ob/(arh) 4

—— P — S » —0 E
Vi, v J 0 o,

e Reducing a parallel connection: Suppose T has a pair of edges v ~ ¢ ~ v
and u ~ f ~ v with conductivitics a and b, respectively. We can obtain a
new electrical network by replacing e and f with a single edge g which has
conductivily a = b

a : q*k
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e Removing an interior spike: Suppose I' has an interior vertex v ol degree
one. We can obtain a new electrical network by removing v and the adjacent

edge.

e ko SN <

e Removing a loop: Suppose I' has a vertex with a loop. We can obtain a

new electrical network by removing the loop.

Notice that each of the procedures described above can be performed in reverse.
We will use the term series transformation to refer Lo either reducing or in-
troducing a series connection, and the term parallel transformation to refer to
either reducing or introducing a parallel connection.

Now we describe a transformation which replaces a “Y™ in a circular planar
electrical network I" with a “A”. Suppose [' has vertices v, , y, and z with edges
v~ Ur ~ T, U~ vy ~ Y, and v~ vz ~ z such that v has no other adjacent edges.
Denote the conductivities of the edges a. b, and ¢, respectively. We can obtain
a new electrical network by removing v and replacing v, vy, and vz with edges
&~ Ty ~ Yy~ yz~ z and z ~ zz ~ z having conductivities abf(a + b+ ¢},
bef(a+b+c), and ca/(a—b+c), respectively. We call thisaY —A transformation.
Notice that we can apply this procedure in reverse to transform a “A” into a YA
We will refer to this type of transformation also as a ¥ — A transformation.

N / (o("}f})

Proposition 1.1. Series iransformations, parallel transformations, and ¥ — A
transformations do not change the response matriz for a network,

Let I' be a circular planar electrical network, and label the boundary vertices
¥y, ...y, in a clockwise order. A boundary edge is an edge between two adjacent
boundary vertices {where we consider v, adjacent to v;). A boundary spike is
an edge between a boundary vertex of degree one and an interior vertex. We
can transform an electrical network by removing any existing boundary edge or
boundary spike, and we can also transform an electrical network by attaching a
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boundary edge or a boundary spike. More precisely, we have the following additional
transformations that we can apply to a network.

® Removing a boundary edge: Suppose T has a boundary edge. W

e can
obtain a new electrical network by simply removing the boundary edge.

¢ Contracting a boundary spike: Suppose I has a boundary spike e which
connects a boundary vertex v and an interior vertex u. We can obtain a
new electrical network by removing e and v and turning w into a boundary
vertex which we will rename v,

e Attaching a boundary edge: Suppose v, 1w are adjacent boundary vertices
in I'. We can obtain a new electrical network by adding an edge between v
and w with any specified conductivity.

e Attaching a boundary spike: Suppose v is a boundary vertex in I'. We can
obtain a new electrical network by turning v into an interior vertex and
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renaming it u, adding a new boundary vertex named v, and adding an edge
between w and v with any specified conductivity.

N -~
N\
2 N\
/ /

Notice that any of the transformations that we have defined on electrical net-
works can be viewed as transformations of boundary graphs by simply ignoring any
mention of conductivities.

2. REDUCED WORDS AND BRAID RELATIONS.

We will denote the symmetric group of degree n, which is the group of all
permutations of the set {1,...,n}, by S,. For each 1 <14 < n, let g; denote the
permutation in S,, which interchanges ¢ and ¢ + 1 and fixes all other numbers, We
call the permutations @y, ....0n—1 in Sy the adjacent transpositions.

By a word over the set {1,...,n}, we mean a finite sequence of elements of
{1,...,n}; formally speaking, a word over {1,...,n} is an element of the free
monoid on {1,...,n}. Given any word i, ...i; over {1,...,n}, there is a corre-
sponding permutation in Sy given by oy, --- 0y,

It is a fact that any permutation w € S, can be expressed as a product of
adjacent transpositions, and the smallest such number of adjacent transpositions is
called the length of w. If ¢:, - - - &, is such an expression for w of minimal length,
then the word i = iy - - - iy, is called a reduced word for w.

Observe that the adjacent transpositions satisfy the following relations, which
we will call the braid relations:

(i) 67 =1 for all 4.
(il) oio; = 60 for |i — j| > 1,
(ili) oiojo; = o 00y for |i— j| = 1.
These relations are sometimes referred to as the “Coxeter relations™ {for example
in [Gar02]) since they are a special case of relations for a Coxeter group.
Now consider the following transformations that we can perform on words:

if e =——p cnfleey JORH—Jp >,
. y ---jij--- for[i—j|=1.

We will refer to these transformations as braid moves. Observe that a word i can
be obtained by applying a sequence of braid moves to another word j if and only
if j can be obtained by applying a sequence of braid moves Z; in this case we say
that ¢ and j are related by a sequence of braid moves. The braid moves then give
rise to an equivalence relation on words in the following way: i ~ j il and only if ¢
and j are related by a sequence of braid moves. -
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[t is easy to see that the braid moves correspond in some way to the braid
relations (ii) and (iii) from above: this will be made precise in the following Propo-
sition. But first, notice that there is another transformation performed on words
which corresponds to the braid relation (i), called a nil-move:

ceedjjhe-s —— ik foralld, gk

Proposition 2.1. If two woerds i = iy --- iy and j = jj---js are related by a se-
quence of braid moves, then they delermine the same permautation. i.e., Oiy -+ O, =
Ty " Tjps

Proof. Tirst suppose that i is obtained by performing a single braid move to g-
Then by applying the corresponding braid relation to the expression Gy, -~ 04, , We
get the expression oj, - - - o;,. The general result follows by a simple induction. O

The converse of Proposition 2.1 is also true (it was first proved by Jacques Tits
in [Tit69]}. We state this and another result here; proofs can be found in [Gar02]
and [BB03 ).

Theorem 2.2. (i} Any two reduced words for the same permuiation are related
by a sequence of braid moves.
(ii) Let 0, ---a;, be any expression for @ permutation w and wrile j — j; - -- jg.
Then there & a reduced word i for w which can be obtained by applying a
sequence of braid moves and ni-moves lo J.

3. LiE GROUPS AND LIE ALGEBRAS.

This section will be an extremely brief introduction to Lie groups and Lie alge-
bras. We will state only the definitions and results which will be important to us
once we start talking about the electrical Lie algebra and the electrical Lie group.

3.1. Lie Groups.

A Lie group is a group that is also a smooth manifold, such that the multi-
plication map G X G — G is smooth. One can think of a smooth manifold as a
generalization of a surface. Then, as stated in [Hall5], a Lie group can be thought
of as a “continuous group.” Let us look at some simple examples of Lie groups.

Examples. (i) One of the simplest examples of a Lie group is B®. where the
“multiplication” is given by addition.
(ii) The general linear group GL,,(R), which is the group of n xn invertible real
mairices. is a Lie group whose multiplication is given by matriz multiplication.
(iii) The special linear group SL,(R). which is the group of n x n real matrices
with deierminani 1, is also a Lie group.
{(iv) Consider the 2n x 2n matriz

0 T
&= (-1 o)'

where I dencles the n x n identity matriz. The real symplectic group is
the group

Spa, = {2n x 2n real matrices A satisfying ATQA = Q},

which is also a Lie group. The real symplectic group is especially important
to us because it s closely related to (in fact, it is isomorphic to) the electrical
Lie group, which we will infroduce @n Seclion 5.
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If G and H are Lie groups, a Lie group homomorphism from G to H is
a group homomorphism f : G — H that is also a smooth map. A Lie group
homomorphism f : G — H is a Lie group isomorphism if there exists a Lie
group homomorphism f~!: H —+ G such that f~'o f =idg and fo f~} = idgy.
3.2. Lie Algebras.

Let F be a field. A Lie algebra over /' is a vector space g over F equipped
with a map [~, - : g x g —+ g satisfying the following properties:
(i) Bilinearity. For all X,Y,Z € gand a,b€ F,
[aX +bY, Z] = a[ X, Z] + blY, Z],
[X.aY +bZ] = a[X,Y] + X, Z].
(ii) Antisymmetry. For all X, Y € g,
[X.Y]=-lY, X].
(i) Jacobi identity. For all X,Y,Z ¢ g,
(X, Y. Z]| + [Z. [X.Y]| +[V,[Z,X]] = 0.

We call the map [—,—| the bracket on g. We will restrict our attention to Lic
algebras over R, which we refer to as real Lie algebras.

Examples. (i) The space of all n x n real matrices form a real Lie algebra with
bracket given by [A, B] = AB — BA. This Lie algebra is denoted gl,,.

(i) Consider the space sly = {A € gl : tr A = 0}. Recall that tr{AB) = tr(BA)
for any real n x n matrices A and B, therefore sl,, is closed under the bracket
operation [A, B| = AB = BA. Thus, sl, is also a Lie algebra,

(iii) Let spy, = {A € gly, : ATQ + QA = 0}, where 2 is again the 2n x 2n matriz

0= (_”1 é) i
Notice that for any A, B € sp,,,,
(AB— BAYTQ + Q(AB— BA)=BTATQ - A"BTQ L QAB - QBA
=BT(ATQ + 04) - (BTQ | aB)A
- AT(BTQ +0B) + (ATQ + QA)B
= (),

50 SPoy, is a real Lie algebra with bracket also given by [A, B] = AB — BA.
Observe that for any n x n real matrices A, B, C, and D,

AT CT\ (o0 I DIAB_-CTAT+CD

BT DTIN-T70) " \=F 0)\e D)= \=DT Br)tlog -p
_{c-cT AT+D
“\-A-D* BT-B)’

Sa, a block malriz (2 ﬁ) is in 8Py, if and only if AT = ~D, BT = B, and
cT=0.

(iv} Any associaiive algebra A can be given a Lie algebra structure by defining the
bracket to be the commulator bracket, [z,y] = zy — yr.
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If g and b are Lie algebras, a Lie algebra homomorphism is a linear map
@ : g —+ b of vector spaces such that ¢ ([X,Y]) = [#(X),&(Y)] for all X,V €g. A
Lie algebra homomorphism ¢ is a Lie algebra isomorphism if there exists a Lie
algebra homomorphism ¢~* : h — g such that ¢~ 0 ¢ — idg and ¢ ¢ ¢~ = id,.
Observe that il a Lie algebra homomorphism is bijective, then its inverse must also
be a Lie algebra homomorphism. Therefore, a Lie algebra homomorphism is an
isomorphism if and only if it is bijective.

If g is a Lie algebra, a Lie subalgebra of g is a subspace b of g which is closed
under the bracket operation inherited from g. i.e, [X.Y]| € h whenever X,Y < h.
An ideal of g is a subspace £ of g such that [X, Y] € ¢ whenever X ¢ ¢ and
Y € g. Given a subset X of g, the Lie subalgebra (ideal) generated by X is
the smallest Lie subalgebra {ideal) of g containing X. If ¢ is an ideal in g, then
we can define the quotient Lie algebra to be the subspace g/ (as a vector space
quotient) with bracket given by [X + £, Y + & = [X, Y] +# (one can check that this
is well-defined since € is an ideal).

Later we will want to construct a Lie algebra in terms of generators and relations,
much like we might do for a group. The following description of how this is done
comes from [Hum78]. Let X be a set, and take V to be the real vector space
generated by X. Consider the tensor algebra

T(V)=ReVe(Vavie(Vevel)a. ...

Since T'(V') is an associative algebra, the commutator bracket gives it a Lie algebra
structure. Let L be the Lie subgroup of 7'(V') generated by X. We call L the free
Lie algebra generated by X. If we arc given a subset R ¢ L. the Lie algebra
with generators X and relations R is defined to be the Lie algebra L/1, where
I is the ideal of L generated by R.

Now if we are given a Lie group G, it will give rise Lo a Lie algebra Lie(G).
Moreover, if we are given a Lie group homomorphism, it will give rise to a Lie algebra
homomorphism ®. : Lie(G) — Lie(#). In fact, the assignment G Lie(G),
P —» ®. is a covariant functor from the category of Lie groups Lo the category of
finite-dimensional real Lie algebras.

Remark. The Lic algebras of GL,(R), SL,(R), and Spay, are gl,, sl,. and sp,,,
respectively.

3.3. The Exponential Map.

Let G be a Lie group with Lie algebra g. There is a smooth map exp:g = G,
called the exponential map. While we won't actually give an explicit definition
of the exponential map, we will state some of its properties. The following results
be found in [Leel3).

Proposition 3.1. Let G be a Lie group with Lie algebra g.properties.
(i} For any X € g and s,t € R, exp((s + £1X) = exp(sX) exp(tX).
(i} If G is connected, then for any X, Y € g we have [X,Y] = 0 if and only if
exp(tX) exp(sY) = exp(sY) exp(tX)

Jor all s, ¢t € R. )
(iii) If H is another Lie group with Lie algebra H and ® : & — H is a Lie group
homomorphism, then the following diagram commutes:
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.
g—b

expl lem

Remark. If G is any Lie subgroup of GL4(R) (€., Spa,, is a subgroup of GL2n(R))
with Lie algebra g C gl,,, then the exponential map exp: G — g is given by

o
1
exp(A) = ZA_ —1+A——4‘2
k=0

Theorem 3.2. (Lie Correspondence Theorem) The covariant funclor given by the
assignment G — Lie(G), ® — &, is an equivalence of calegories between the cai-
egory of simply connected Lic groups and the category of finite-dimensional Lie
algebras.

4. THE ELECTRICAL LIE ALGEBRA elay,.

Define the electrical Lie algebra. denoted cls,, to be the real Lie algebra
generated by e),. .., e, subject to the relations
I:'*ne.?] =0ifli jl>1
€:. [eir €5]] = —2e; if [i—j|=1.
The electrical Lie algebra was introduced in [LP15]. The motivation behind the
relations used to define the electrical Lie algebra is somewhat mysterious, but the
important fact is that once we use this to deﬁne the electrical Lie group, we get
relations that suggest some sort of relation to electrical networks (Proposition 5. 1).
It should also be mentioned that one advantage of this definition is that it allows
us to generalize ela,, to electrical Lie algebras of finite Dynkin types; see [Suld] for
a discussion on this.
Let &1.....2, denote the standard basis vectors in B™. Let

a, =¢), a2 =¢61+&2 03 =&2+£3,...,an =En—1 T &n:

i W 1, k=fork—-1=¢
Q-;.. ¢t =~ -
0, otherwise,
therefore we have the following equalities:
) . arb?, k=fork—1=1¢
ArBe= oy (af b)b] = °° :
0, otherwise,
beal, k=Cfork—-1=¢
0, otherwise,
A k=fork—-1=¥¢
0, otherwise,

BeAy = bg (b7 ag)af = {

ApBy Ay = ai (af bs) (b7 ai) af = {

By, k=Ffork—-1=7¢

B{ 4LBg = bf (bl QL) (GL bt) bt .
0, otherwise.

The following result is from [LP13].
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Theorem 4.1. ¢ly, and sp,, are isomorphic as Lie algebras,

Proof. Define a Lie algebra homomorphism & : ey, — 5ps,, by

sored= (3 ). o= (3, )

In order to check that ¢ is well-defined, we must show that it preserves the relations
in elz,; that is, we must show that the relations in ¢ly, above still hold in sp.,, when
we replace each e; with ¢fe;),

Let us compute [¢(e;). ¢(e;)] for different cases of ¢ and j:

)

-f@@@ﬁwﬁﬁ

senetea=[(2 9.( ]

= (5. o) (5 0)~(5 ) (5 o)

stea-. o2l = (o %) (5 0]
G %) (6 0)-(5 06 %)
(- 0
(

AL By 0 3
0 -Bs Ay )

Blear), dlese—1)] = —[d{ear 1), dlear)]

_ [ AeBy 0
- 0 —BgAg

—As B 0
= 0 B Ay )

We wish to show that [@(e;). @(e;)] = 0 for |i — j| > 1. which we have already
shown in the case that i and j have the same parity. If i is odd and j is even,
write i = 2k —1and j = 2{. Then k # fand k — 1 # £ since |i — j| > 1, so
ApB; = 0= BgA, and hence

[o(es), o(e;)] = (A,E)Bé - B(:/\k) - (g 8) .

In the case that i is even and j is odd, we have

[6(es). dle;)] = —[bles), dles)] = (g g)

by the antisymmetry of the bracket and the previous case.
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Now we want to show that [é(e;), [(e;), ¢(e;)]] = —2¢(e;) for |i — j| = 1. First
suppose that i is odd. If we write i = 2k — 1 and j = 2, then we must either have
k=~&ork—1=¢since [i — j| = 1. Therefore,

[b(es). [oles), dle;)]] = [dlean—i). [B(ean 1), B{eag)]]

_ (0 Ag AL By 0 - A By 0 0 A
“\0 0 0 —BeAx 0 -Bs Ar 0 0

[0 —AcBgAg e 0 ApB:A;
A0 0 0 0

_ _of0 A

v 0 0

= - 2(.’3(&;].
Now suppose that { is even, and write i = 2% and 7 =2¢ - 1. Then cither ¢ = k or
£—1=ksince |i — j| =1, so
[0(es), [dlen). dle;)]] = [Blear). [plear), dleae—1)]]

o 0 0 —Agb’k 0 N ."l[Bk 0 0 0
- By 0 0 B;,-Ag 0 BkA,; Bk 0
" 0 0y 8" 95, 0
T \=BiA¢B; 0 By AgBy 0

Ll 1
& B. 0

= —2¢(e).
Thus, we have shown that ¢ : ely, — 5Pay, is a well-defined Lie algebra homomaor-
phism. A proof that ¢ is bijective is given in [LP15).
O

5. THE ELECTRICAL LIE GROUP [Ly,.

By the Lie Correspondence Theorem, there exists a unique {up to Lie group
isomorphism) simply connected Lie group ELs, whose Lie algebra is ¢ly,. We call
EL3 the electrical Lie group.

Note that all of the results of this section come from [LP135].

Remark. Since eloy, 2= sp,,, as Lie algebras, KL, = Spa,, as Lie groups by the Lie
correspondence theorem.

For each i = 1,....2n, consider the one-parameter subgroups u; : B — ELg,

defined by u,(t) = exp(ie;).
Proposition 5.1. The elemenis u;(t) = exp(te;) of Ela, satisfy the following
relations

(z} wil(s)u; (8) = uz(st), :

() wi(s)u;(2) = wi(s)u(t) of i — 7| > 1,
(i) wilrdus(s)ui(t) = wil(st/(r 4+t + rst)hu,(r =1 4 rsl)ui(re/{r + ¢ | ret)) if

[t — 7 =1.
Proof. (i} By part (i) of Proposition 3.1,
u; (s)u;(t) = exp(se;) explte;) = exp(se; + te;) = exp((s + t)e;) = ui(s + £).
(i} Since [e;,e;] =0 for |i — j| > L, by part (ii) of Proposition 3.1 we have
ui(s)u;(t) = exp(se;) exp(te;) = exp(te;) exp(se;) = u;(¢)us(s).
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(iii} By the Lie Correspondence Theorem and part (iii) of Proposition 3.1, since
@ 1 elzy — 5Py, is & Lie algebra isomorphism, there exists a Lie group isomo-
morphism ¢ : ELgy ~+ Spy, such that the following diagram commutes:

Then u;(t) = expite;) =

exp(@(te;)}. Notice that

exp(¢(tea-1)) = exp (

COLLIN LITTERELL

&
eloy — 5Py,

«.xpl lmtp

O exp(p(tey))). Therefore, since @ is an iso-
morphism, it suffices to check the relation when we replace each w;(t) with

0 tA;
0 0

)

_IO__OtAk+Ot.4
L By 0 0 0 0
(T 0 0:Ak+oo_
“\o )7 \o o 0 0
_ItA;.-
“\o T

expld(lea)) = exp (

g
<
g

Ifiisodd and i — j| =1,

exp(d(re,)) exp(d(se;)) exp(o(te;:)) = exp{o(res—1)) exp(d(sea)) exp{ditea—1))

0 0
tBg 0

)
)+(

0

1)

)

0
By

0
1By

I o0
0 I
L0
0 r

T
LBy

then

= I ~rAk‘ I 0 I t."“k
Y] I sBs T 0
_ I+ rsApBe rAg I tAe
- SBL' I 0
T4 rsAcBy tA; +rstALBe Ay + 1A
& sBy stBe AL + 1
) I+ TS.*"A-_ Bﬁ ('I‘ + £ -+ Y‘St):‘ik
B s By atBy A | T
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exp(@(st/(r+t+rst)e;)) exp(d((r + ¢ + rst)e;)) exp(d(rs/(r +t + rst)e;))
= exp(@{st/(r + t + rstjea)) exp(@((r + ¢ + rstleag_1)) expl@(rs/(r +t = rst)ex))

_ I 0N (I (r+t4+rst)Ag ! 0
T \stf(r+t+rst)By I)\O ! ref{r+t+rst)By [

(r+t+rst)Ax I 0
stf r+t+rst)B; stBedp =1 rsf(r+t+rst)By [
I+ I'SA;‘,B[ (r+¢+rst) A
(st 4 vrs)f(r+t+rst)Be + rs?t/(r +t + rst) By Ax By stByA + 1
I +rsd;B; {(r+t+rst)Ag
s(r+t+rst)/(r+t+rst)By  stBeAp +1
I +rsApBy (r+t+rst) A
sy sty Ay + 1 3

If ¢ is instead even and |i — 7| = 1, let
a=stf{r+t+rst), S=r+t4rst, y=rs/{r=t+rst)
so that
r=0v/{a+v+ady), s=a+vy+ady, t=al/(a+v+aly).
Then, since j is odd, we can apply the previous case in reverse to get
() (5)us(t) = wi(Fv/(a + v + adv)usa + v + afy)ulad/ (e - v + afy))
= uj{a)ui(3)u;(v)
= uj(st/(r + ¢+ rst))u;(r + ¢t + rst)u;(rs/(r +t + rst)).
C

There are a few quick remarks we should make here. First, these relations are
strikingly similar to the braid relations from Section 2. Also, these relations seem to
suggest that 1L, is somehow related to electrical networks, For example, relation
(iii) is very reminiscent of the ¥ — A transformation. This relationship between
ELs, and electrical networks will be made precise in Theorem 5.3.

We now define the nonnegative part of ELz,, denoted {ELap)zo. to be the
subsemigroup of ELa,, generated by the set {u;{#) : 1 <i<n, t>0}.

Let w € Szpyy. For any reduced word ¢ = 4; -4 for w, we define a map
Wy ]R;;u = (ELZn)?;‘O by

Wilty, - - -0 t) = wsy (81) - - - ug, (k)
Suppose that j = 7y js is another reduced word for w. By Theorem 2.2, i and
j are related by a sequence of braid moves. Then by applying the corresponding
relations in Proposition 5.1, any element of the image of ¥ is equal to an element
of the image of lu:.. and vice-versa. This means that the images of 15 and o ); are

equal. Thus, we define E{w) to be the image of 3, which depends only on w. The
sets E{w) have the following properties.

Proposition 5.2. (ELa,)wp is the disjoint union of the sels F{w), and each of the
maps ¥; : RE, = E(w) is a diffeornorphism.

Let P{n + 1) denote the set of response matrices of circular planar electrical
networks with n+ 1 boundary vertices. We already know that if two circular planar
electrical networks differ by a sequence of series, parallel, and Y —A transformations,
then they have the same response matrix. Théoréme 4 in [CdVGV986] states that
if two circular planar electrical networks have the same response matrix, then they
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differ only by a sequence of series, parallel, and ¥ — A transformations. Thus.
P(n + 1) is equivalent to the set of circular planar electrical networks with n+ 1
boundary vertices modulo series, parallel, and ¥ — A transformations,

Theorem 5.3. (ELa,)»o acts on Pln + 1).

Proof. Let T be a circular planar electrical network with n +1 boundary vertices,
and label the boundary vertices 1,...,n + 1. We will use the following notation

tzi—1(t) - I' = the electrical network obtained by attaching a boundary
spike with conductivity 1/t to [' at vertex i,
uai (L) - T = the electrical network obtained by attaching a boundary
edge with conductivity ¢ to I between vertices i and i + 1,

Notice that since conductivities must be positive real numbers, this notation doesn’t
quite make sense for ¢ = 0. We would like to think of uz_:(0) - I' as the result
of attaching a spike with “infinite” conductivity (i.e., zero resislance) so that the
endpoints of the spike may be identified, leaving us with a network that is essentially
just I'; similarly. w2;(0} - [ should correspond to attaching a boundary edge with no
conductivity, leaving us again with a network that is essentially just [, With this
in mind, we set u;{(0} - T =1 for all 4.
Now we can define

wi(t) - A(T) = Afus(t) - T)

In order to extend this to give us an action of {ELzz)=0 on P(n + 1), we will first
show that the u;{f) - A(T) satisfy relations analogous to those in Proposition 5.1.

Notice that us;_1(s) - (uai—1(t) - I') is the network obtained from T by attaching
a boundary spike of conductivity 1/¢ at vertex i followed by another boundary
spike of conductivity 1/s at vertex i. Applying a series transformation, we get
the network obtained from [' by attaching a single boundary spike of conductivity
L/(s =) at vertex i.

~ .
\ \ \
Vi A Yisxy) ‘
| J
) /
- / s ’,

Similarly, ug;(s)-(uz;(t)-T') is the network obtained from I' by attaching a boundary
edge of conductivity ¢ between vertices i and 1+ 1 [ollowed by another boundary edge
of conductivity s between vertices ¢ and ¢+~ 1. Applying a parallel transformation, we
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get the network obtained from I by attaching a single boundary edge of conductivity
s + ¢ between vertices i and 7 = 1.

t4!

Therefore, by Proposition 1.1, for any ¢ we have

Afui(s) - (ui(t) - 1)) = Aui(s + 1) - ).
Notice also that u;(s) - (u;(t) - T") and u;(t) (u;(s)-I') are the same network whenever
[t — 7 = 1. This is because, intuitively speaking, we are attaching boundary edges
and/or spikes far enough apart from each other in the network that it doesn’t
matter which order we do them in. So,

A(u{(s) < (uy(t) - T‘)) = .'\('Uj(t) ug(s) [‘))
Now suppose |i — j| = 1, and consider the networks
I = wi(r) - (u;(s) - (usl) - T)).
T = w;(st/(r + ¢+ rst)) - (wi(r + ¢+ rst) - (uj{rs/(r + ¢+ rst)) - T)).

Observe that these networks are related by a Y — A transformation. For example,
when ¢ = 2k — 1 and j§ = 2k, we have the following networks.

So, I and ' are Y — A equivalent and hence
A(T) = A(T™).

Now consider g, (81)---uq (t) € (EL2,)z0. Bby applying the relations of
Proposition 3.1, we can rewrite this as u;,(51) - u;,(s¢), where j = jy+ - jg is



16 COLLIN LITTERELL

a reduced word. By applying the corresponding relations show above, we see that

A (00 (g (02)- -+ (e (B T) +++))) = Alag, () (gl - (i () T) ).

Now let u € (ELgp)»0. and suppose we have two different decompositions for
w uy, (#1) - ug (k) and uy,(81) - --uj,(sg). Based on what we just showed in the
preceding paragraph, let us assume that ¢ = i;---4; and j = j; --- j¢ are reduced
words for w and v, respectively. Then u € im{uy) Nim(y;) = E{w) N £{v), so by
Proposition 5.2 we must have w = v. But this means that ¢ and j are reduced words
for the same permutation, so by Theorem 2.2 they must be related by a sequence of
braid moves. This implies that w;, (t1) - ws, (t) and w;, (51) - - u;,(sg) are related
by & sequence ol moves [rom Proposition 5.1, therefore

At (02 (b (82)- -+~ s () T) ) = A Con) (o2~ (501 T) )

by applying the corresponding relations shown above.
Now we define a map {ELgp)=0 X P(n+ 1) = P(n + 1) by

w A(T) = g, (1) - (e (t2) - (- (e (&) - A(D)) ---))
= Afu, (ty) - (u;‘,(l?)' ( o (“u(‘k) : I“) 1 )))

where u = w;, (t1)---u;, (fx). We have shown that this does not depend on our
decomposition of w, therefore this map is well-defined. It is clear that this defines
a group action of (ELsg)=o on Pn + 1). Q

Let [’y denote the empty network with n+ | boundary vertices; by this we mean
the network with no interior vertices and no edges. Given a permutation w € Szp4.
let ¢ = iy ---ig be a reduced word for w. Using the notation from the prool of
Theorem 3.3, let [',, be the electrical network wy, (1) (wg, (1) (-« (g (1) ) -+ )}
and define G, to be the underlyving graph of T'y,. Observe that although G, does
in fact depend on the reduced word chosen for w, any other choice of reduced word
will result in a boundary graph that is ¥ — A equivalent to Gy: il j = jy--- i is
another reduce word for w, then it is related Lo ¢ by a sequence of braid relations by
Theorem 2.2, so ug, (1) -+ -y, (1) and uj, (t1) - - - uy, (£) are related by a sequence of
relations (i} and (iii) from Propaosition 5.1 (where the parameters #;, ..., #; depend
on these relations). and hence by our proof of Theorem 5.3, the underlying graph
of uj, (t1) -~ uy (k) is Y — A equivalent to Gy

Let 7 be a circular planar graph, and label the vertices 1,...,n + 1 in counter-
clockwise order. Given 1 <4 < j =< n+ 1, we say that (7 is (1, j)-connected il there
exists a sequence of disjoint paths py, p2, ..., P|(j—i+1)72] in G such that for each &,
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the path p; starts at i — 1 + k and ends at J + 1~k without passing through any
other boundary vertex.

— ™

/

e

e 4 -

J 3V 5
Now we introduce a special kind of permut‘é).ion. We say that a permutation w =
S‘-’n+l is efficient if

(i) w(l) <w(3) <w(d) < - <w@n+1),
(i) w(2) < w(d) < w(6) < --- < w(2n),
(iii) w(l) < w(2), w(3) < w(4), ..., w(2n-1) < w(2n).

Assertion. Lel w € San ) be an efficient permutation. Then Gy is (i, j)-connected
if and only #f w(2i) > w(2j - 1).

This claim is stated in [LP15] as a fact without proof. We will present a hand-
wavy explanation as to why this should be true. For simplicity, let us take ¢ = 1
and j = 4.

First suppose that our graph is (1.4)-connected. In order to create a path
between 1 and 4, one must first create a path through the boundary by attaching
boundary edges between 1 and 2, 2 and 3, and 3 and 4. In order to “interiorize”
this path, one must attach boundary spikes at vertices 2 and 3. Lastly, in order to
connect 2 and 3, we must attach a boundary edge between them.

2 \ ! \

¢ 1 1 °____‘& \ ]

|
0'5 43 é i
} ) 3
"M ‘4 & \
v\

This corresponds to the permutation w = (04)(c305){020405). Observe that w(2i) =
w2} =5>4=w(T) =w(2j -~ 1).

Suppose instead that w(2i} = w(2) > w(7) = w(2j — 1). Then it must be that
o204 is a factor of w. But this permutation inverts 3 and 4 and it inverts 5 and
6, so in order for w to remain an efficient permutation, we must multiply by o30s.
But this permutation inverts 4 and 3, so we must multiply by 4. This gives us the
efficient permutation (o4){010;5){(020405). As we described above, the permutation
makes G, {1, 4)-connected.
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"The problem with this argument is that if G, is (1, 4)-connected, the the factors
of the permutation (¢,){oa0s){720405) will be factors of w, but in general 1 #
(¢4)(c303)(0204m5). One approach to prove this assertion is to try to use our
knowledge of braid relations to try to prove the following: G, is (1, 4)-connected if
and only if i) ---i;, 435246 is a reduced word for w for some ¢, ..., 4 if and only
if w(2¢) > w(25 - 1).

Proposition 5.4. If the assertion above is true, then the following are true.
(i} The map ©, : E(w) = P(n + 1) define by Oy (u) = u- A(Ty) is injective if
and only if w € Sop4q 15 efficient.
(it} If w and v are distinci efficient permutations, then in(©,,) Nim(8,) = @.
(i) If w is not efficient, then there is a unique efficien! permutation v such that
im{Q,) =im(0,).

Proof.  {i) There is a partial ordering of Sy, given by ¥ < w if and only if there
exists u € Syny such that w = uv and length(w) = length{u) = length(v). It
is a well-known fact that. It is a fact that v < w if and only if w(i) > w(j)
whenever i < j and v{2) > v(j), i.e.. w inverts ¢ and j whenever » does. Let
w* € Sz, be the efficient permutation

w* = (8p+1)(SnSnt2) (5486 - S2n_0) (8385 - - - S2n—1) (5284 - - - 824).

Observe that w" inverts every possible pair of indices that it can as an efficient
permutation. Therefore, w < w* for any efficient permutation w.

Now notice that G« is the sc-called standard graph of [CIM98|, so by
Proposition 7.3 and Theorem 2 of [CIM98], ©,. is injective. Now let w &
Szp-1 be any efficient permutation. Then since w < w*, there exists u
Son+1 such that w® = ww and length{w*) = length(u) + length(w). Let
iy ++-9g be a reduced word for u and igy) - i a reduced word for w. Then
WY = uw = 84 -84, S, - 85, and £ =length(w™), so &) - fgipyy rigis a
reduced word for w*. Therefore, if ©,, were not injective, then 97 would not
be injective, Hence, ©,, is injective.

Now suppose that w is not efficient. Then w must violate one of the three
conditions given above for efficient permutations. If w violates either condition
(i} or (iii), then w inverts an odd index ¢ with an index greater than i. By
applying braid moves, there must exist a reduced word for w of the form
iy -+ -ixi. Then w;(t) - Ty is Ty with a single boundary spike attached, so we
see that A{u;it) - Tp) =0 = A([y). Therefore,

g, (ll) s Uy (t;;)u,'_{t) g .-‘\{['0) = ?l.,‘_l (tl) 1o u‘-,‘(tk) s x\(u,(t) o r())
=i, (1) - ug, (8) - A(Tp)
tor all ¢ > 0, hence ©,, is not injective. If w violates condition (i), then w
inverts an even index j with another even index greater than j. By applying
braid moves, w must have a reduced word of the form j; -+ je{j + 1)4. Then
by applying a series transformation, w;;(s)u;{t)-I'o becomes u;{1/(s+t))-Ty,
S0
Uy, (tl) s Uy (tk)u_,-ﬂ (-ﬁ‘)?l-j l:f.) <A (ro) = U, (h) st Ugy (tk) s A(‘ui+1 (s)u_,- (ﬁ) : ro)
= uy, (t1) - - uj (E) - Aluj(1/(s +¢)) - L)
= wj, (t1) -+~ s, (8) - Alus(L/ (¢ + 9)) - To)
= uj, (f1) - ugy (i) - Alujpa (8)uy(s) - To)
wy, (t1) - wg, (€ )ujps (E)u;(s) - A(Tp).
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Therefore, ©,, is not injective.
(ii) Observe that since w 7 v. there must exist 1 < ¢,7 < 2n 4+ 1 such that

w(z) = w(j) but v(i) < v(j). Without loss of generality, assume that ¢ < j (il
© > j, switch w and v). Notice that since w is an efficient permutation,

iodd, j odd = w(i) < --- < w(y)
iodd, jeven = wii) < w(i+1) < < w(y)
i even, j even = w(i) < -+ < wij).

Therefore, ¢ must be even and 7 must be odd. Write 1 = 2k and j = 2 — 1
for some 1 € & < £ < n+ 1 so that w(2k) > w(2¢ — 1) and v(2k) < v(2¢ - 1).
By the assertion, G, is (k,{)-connected and G, is not, so G, and G, are
not ¥ — A equivalent by Lemma 5.1 in [CIM98]. Now observe that for any
u € E{w) and u' € E{v), the underlying graph of the network u-I'yis ¥ — A
equivalent to (G, and the underlying graph of the network ' - Ty is Y — A
equivalent to G,. Therefore, u - 'y and u" - 'y cannot be ¥ — A equivalent
as networks, hence u - A(Ig) = A{u-I'g) # Alu' - Gy) = v - A(Tg). Thus,
im(&,,)Nim(8,) = 2.

(iii) If w is not efficient, then as explained in part (i), w has a reduced word #; - - - 4%
such that either iy is odd or i is even and i;_; = 4 + 1. If iz is odd. let
w' =8, -8, so that, as we saw in part (i}, im(8,) = im(©,). fix_; is
even and ix-; = ix + 1, let w' =4 ---dg_1ig s0 that im(©,) = im{©,,). We
can repeat this procedure for w' and so on. Once this process terminates, we
will have found an efficient permutation v with im(©,,) = im{®,).

O

The following result again depends on the validity of the assertion above.

Corollary 5.5. (ELs,)z0-A(g) = {u-A(Ig) : u € (ELaq )=o)} is dense in P(n+1).

6. RELATION TO THE TEMPERLEY-LIEE ALGEBRA.

Let R be a commutative ring, and fix § £ R. The Temperley-Lieb alge-
bra T'L,(5) is the associative R-algebra generated by Uy....,0,_: subject to the
relations

U? =6U; forall i,
UiU; = U5 for |i—j| > 1,
L",'UjU.‘ =U; for |‘l: —Jl =1

The Temperley-Lieb algebra is related to a wide range of subjects, including statis-
tical mechanics, quantum field theory, and knot theory. A good introeduction can
be found in [Abr09].

The Temperley-Lieb algebra has a very nice visual representation in terms of
planar diagrams. Suppose that we have two parallel rows ol n points sitting in
the plane, and suppose that we join the points pairwise with smooth arcs lying
inside the rectangular region determined by the dots such that the arcs do not
cross each other. Consider the set of formal R-linear combinations of all such
diagrams (identified up to planar isotopy). Observe that this set has the structure
of an associative R-algebra, where multiplication is defined in the following way:
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the product of two diagrams is the result of concatenating them and replacing cach
loop that is created with the scalar 4.

U \ U.l U h-\
Observe that they satisfy the relations given for the Temperley-Lieb algebra
% | \ K 1
\ \ .

N
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Now we will describe a relationship between the Temperley-Lieb algebra and the
electrical Lie algebra which was discovered by David Jekel. Take 2 = R and 4 = 0.
Then T Loy, 4+1(0) is the R-algebra generated by U/, . .., s, subject to the relations

U,-2 =0 for all 1%,
UiU; =UU; for [i—3] > 1,
U;U;U:; =U; for [i—j]=1.
We can give 1'Ls, . (0) a Lie algebra structure with the commutator bracket. Then
for |i — 7] = 1,
[, Us] = UGU; = U;U; = 0,
and for |i — 3| =1,

U, Ui, Uj]] = Us(UsU; — U3U) — (UU; — U;U)U;
= ",f"U,- - Ui;U; - Ui U5 + Uﬂf;"
=0-U;-U;+0
- —20;.

These are exactly the relations for els,,.
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