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Abstract

Fingerprinting is one of the oldest techniques for identification, and
it is still used by many agencies today. The primary motivation for this
is that fingerprints are believed to be unique. This claim has been sup-
ported by empirical evidence, but there has been no scientific proof that
it should be true. We provide a mathematical foundation to analyze the
existence of such a phenomenon. This is accomplished by considering
the physical limitations involved in recording a fingerprint, as well as the
theoretical implications of defining a metric on the space of fingerprints.
We pose a possible interpretation of fingerprint enumeration in terms of
sphere packing. We also develop two concrete models to estimate the
number of distinct fingerprints in existence and the likelihood that no two
human beings in history have had the same fingerprint. The first model
is a graph-theoretic approach based on the Voronoi diagram of minutiae
distribution. This method is invariant under rotation, scaling, and trans-
lation. However, it appears to be too sensitive to perturbations caused
by experimental error. As a result, it is unrealistic to consider this model
for practical use. We produce an estimate of 1.11 × 1021 distinct finger-
prints for a uniform distribution of 36 minutiae, and therefore find the
probability that no two people in history have had the same fingerprint to
be 0.00011. The second model we consider is based on correlating minu-
tiae between two fingerprints that are sufficiently similar. We look at the
probability that two independently generated thumbs will have a specified
number of matching minutiae. We then consider the effect of perturbing
each minutia by a normally distributed amount. By looking at the corre-
lation between a given fingerprint and its perturbed counterpart, we are
able determine a reasonable number of matching minutiae to expect when
comparing any two fingerprints. This allows us to estimate the probabil-
ity that two randomly generated fingerprints will be identified as coming
from the same person. With this model we find values of 1.95× 1036 and

e
− 1

2×1015 for the number of distinct fingerprints with 36 minutiae and the
probability that no two people have ever had the same fingerprint.
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1 Introduction

The process of identifying individuals based on various biometrics is a rapidly
growing field. Having been studied for well over a century, the most traditional
biometric used to for identification is the fingerprint. It is a common belief that
fingerprints are unique to each human being; however, this biological occurrence
has never been scientifically proven. To begin investigating the likelihood of this
phenomenon, we state some rudimentary assumptions:

• By the term fingerprint we mean a 2-dimensional grayscale image repre-
senting the ridge structure of a person’s finger.

• In deciding how many unique fingerprints exist, we acknowledge that mul-
tiple acquisitions of a particular fingerprint must not be counted more than
once.

In order to decide what it means to count the number of possible fingerprints,
we feel it is necessary to develop a brief mathematical framework for the theory
of fingerprint matching.

1.1 A Mathematical Theory of Fingerprint Identification

The first concept we need is that of a similarity metric. This is a tool for
measuring the apparent ‘distance’ between two fingerprints. Each similarity
metric falls into one of two categories:

• Continuous – Associated with any two fingerprints is a real number
representing the dissimilarity between them.

• Discrete – Any two fingerprints are considered distinct or equivalent.

We denote by d(X, Y ) the distance between two fingerprints X and Y .

Notice that the discrete metric may be derived from the continuous one by
setting a threshold. That is, if d(X, Y ) ≤ c, for a specified constant c, then the
fingerprints X and Y are determined to be equivalent.

Defining a similarity metric allows us to be more precise when discussing
the error involved in repeat fingerprint acquisition. One can imagine taking
many images of a particular person’s finger and then determining the maximum
distance between any two of these fingerprints. This gives us an estimate of how
different two fingerprints must be so that they are detectably distinct. We are
lead to the following definition:

Definition: Let X1, . . . , Xn represent n fingerprints taken from the same
finger. Then for a continuous similarity metric we define the detectabil-
ity radius Rdetect by
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Rdetect = max{d(Xi, Xj) | for all i 6= j}

Note that the detectability radius is dependent on both the apparatus for
acquiring fingerprints and the metric for comparing them.

1.2 Fingerprint Uniqueness via Spheres

One can interpret the question of fingerprint distinction in terms of sphere pack-
ing. The sphere of radius r about a fingerprint X is the set of all fingerprints
Y whose distance to X is no greater than r:

S(X, r) = {Y | d(X, Y ) ≤ r}
Suppose one were to record the fingerprint of every individual on the planet.

If the distance between any two of these fingerprints is less than the detectability
radius (Rdetect), then the fingerprints will be within the margin of experimental
error and they must be considered equivalent. Therefore, if the union of all
spheres centered around these fingerprints with radius 2Rdetect forms a disjoint
set, then we will have determined that no two people have the same fingerprint.
Formally,

Let X1, . . . , Xn represent the fingerprints of every individual in a given
population. Then

No two people have the same fingerprint ⇐⇒
n⋂

i=1

S(Xi, 2Rdetect) = ∅

This suggests a method for determining the number of unique fingerprints:

1. Define a metric on the space of all fingerprints.

2. Determine a reasonable value for Rdetect.

3. Estimate the number of non-overlapping spheres with radius Rdetect that
can be packed into the space of all possible fingerprints.

Unfortunately, as will be shown, this approach is not especially practical.
However, the concepts underlying it will be useful for analyzing the models we
develop in this paper.

2 Basic Information about Fingerprints and Thumbs

Throughout this paper we will be using some specific vocabulary to describe
thumbprints. We provide the definitions here:

Pattern area – the primary region of a fingerprint.
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Figure 1: The six basic types of fingerprints [1]: (a) arch, (b) tented arch, (c)
right loop, (d) left loop, (e) whorl, and (f) twinloop.

Fingerprint type – The basic classification of a fingerprint: arch, tented
arch, right loop, left loop, whorl, and twinloop. See Figure 1.

Ridge – A path of raised skin on the pad of a finger.

Core – The approximate center of a fingerprint.

Delta – A reference point on a fingerprint which, together with the core,
is used to orient a fingerprint (see Figure 1c).

Bifurcation – A single ridge that divides into two ridges.

Ridge ending – A ridge that ends abruptly.

Minutia – A characteristic singularity in the ridge pattern of a finger.

Minutia type – A classification of minutiae. The most common types are
bifurcations and ridge endings.

Minutia direction – A vector that characterizes the minutia’s orientation.

2.1 The Information Contained in a Fingerprint

Human skin is fairly elastic. Accordingly, anomalies such as translation, rota-
tion, scaling, and local perturbations sometimes occur while producing a finger-
print. The crucial features to consider when comparing fingerprints are those
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which do not vary much between successive prints from the same source. There
are other details discernable in fingerprints, such as skin pores, curvature of
ridges, and spacing of ridges. However, these information sources are less reli-
able and ignored in many widely accepted fingerprint identification procedures.

2.2 Facts About Fingerprints

• The typical pattern area recorded in a fingerprint is 72mm2 [3].

• The number of discernible minutiae in most fingerprints is between 20 and
70 [5]. In our models we assume an average of 36 minutiae, as done by [3].

One more fact [3] that we use extensively in our models is the followings:

Upon repeated printing of the same finger, there is a %97.5 chance that the
minutiae will be within 0.69mm of the original location.

2.3 Assumptions about Fingerprints

To determine the number of unique fingerprints and the probability that no two
people in history have had the same thumbprint we need to make a few general
assumptions. Most of these have been supported by the literature available on
fingerprinting.

1. People’s fingerprints do not change over time [3].

2. When comparing fingerprints it is sufficient to consider only overall print
type and attributes pertaining to the minutiae [2].

3. The basic structure of the human fingerprint has not changed drastically
throughout history [4].

4. Thumbprints exhibit the same characteristics as prints taken from other
fingers of the hand.

5. Minutiae are uniformly distributed throughout the pattern area of the
finger [9].

3 Model I: A Discrete Similarity Metric

One of the most desirable features of a fingerprint comparison algorithm is
invariance under translation, rotation, and scaling. This seems to indicate that
the problem of identifying fingerprints is of a topological nature, rather than
geometrical. In this model we develop a graph-theoretic approach to analyze
the process of fingerprint comparison and use it to produce a lower bound on
the number of detectably distinct fingerprints.

We would like to understand the topology of a given minutiae distribution.
For this reason we consider a spatial tessellation derived from the relative loca-
tions of the minutiae.
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Figure 2: The minutiae Voronoi diagram of an image-enhanced fingerprint.

3.1 Minutiae and Voronoi Diagrams

A 2-dimensional tessellation, known as a Voronoi diagram, may be produced
from any planar region by the following method [8]:

1. A finite collection of seed points is produced. These points may either
be generated by a stochastic process, or acquired from a preexisting data
source.

2. To each seed point is associated a planar sub-region known as a cell. Each
cell consists of all points which are closer to the given seed point than any
other seed point in the collection.

This tessellation is uniquely determined by the seed points.

Our model considers the Voronoi diagram obtained from the minutiae of a
given thumbprint, which we refer to as a minutiae Voronoi diagram.

We produced a minutiae Voronoi diagram (using the Qhull [6] algorithm)
for a real fingerprint. The result is pictured in Figure 2. The original finger-
print image with minutiae identified by small boxes is seen in Figure 3. The
thumbprint data and minutiae extraction were provided by [7].
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Figure 3: The original fingerprint from Figure 2 with minutiae represented by
small boxes.

3.2 The Role of Graph Theory in this Model

We are interested in enumerating the possible configurations of minutiae in
fingerprints. However, there is a constraint that two fingerprints which are
sufficiently similar (i.e. within Rdetect) must be matched correctly. Therefore,
we would like a way to compare Voronoi diagrams such that small perturbations
in the position of seed points will not affect the comparison. To accomplish this,
we consider the graph obtained from the minutiae Voronoi diagram.

We refer to the graph obtained from the minutiae Voronoi diagram as the
minutiae graph.

This graph contains all the topological properties of the Voronoi diagram.
It tells it which vertices are connected, but it does not contain any geometric
measures, such as the lengths of the edges and the angles they form at each
vertex.

We are now ready to define the fingerprint similarity metric for this model.

Definition:
We consider two fingerprints X and Y to be equivalent, d(X, Y ) = 0, if
their respective minutiae graphs are isomorphic, and distinct, d(X, Y ) = 1,
otherwise.

Since we are attempting to estimate the number of distinct fingerprints in
existence, it is important to be able to determine the number of isomorphism
classes of a large collection of graphs very quickly. We use the Nauty software
package [10] to produce a standard representation of each graph, known as a
canonical label. Having done so, the two graphs may be tested for isomorphism
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by seeing if their canonical labels are equal.

Using isomorphism classes of minutiae graphs to compare finger-
prints has the following advantages:

1. Any unintentional rotation, translation, or scaling factor when recording
a fingerprint will have absolutely no effect on the comparison.

2. A slight perturbation in the location of minutiae points will result in a
topologically equivalent minutiae graph.

3. The complete graphic information in a Voronoi diagram generated by n
points can usually be stored in 4n2 bits.

The last assertion is based on the average number of vertices in a Voronoi
diagram generated by n seed points [8].

3.3 Sensitivity of Minutiae Point Perturbation

In this section we investigate the sensitivity of this model to slight perturbations
in the location of minutiae points. The similarity metric we are using here is
the discrete one. Namely, graphs are either isomorphic or non-isomorphic. As a
result, we are unable to directly measure Rdetect. We know that minutiae graphs
generated by sufficiently similar minutiae point distributions are isomorphic,
but we would like to relate this vague statement to the more precise language
of detectability radii. One possible interpretation is the following:

The inherent metric involved in this model is not really the discrete one, but
rather a much more complicated metric which is then transformed into a

discrete metric according to some sort of thresholding process.

In order to develop an understanding of how slight changes in the seed point
distribution affect a Voronoi diagram, we perform the following experiment:

• Randomly distribute 36 minutiae.

• Generate the minutiae graph corresponding to that particular configura-
tion of seed points.

• For each seed point, adjust its x and y coordinate by a random amount
given by a normal distribution.

• Generate a new minutiae graph from these perturbed seed points.

• Determine if these two graphs are isomorphic.

In Figure 4 we see the result of this experiment for two different pertur-
bations of an initial minutiae point distribution. All three graphs look similar,
but in fact have topological differences and are therefore not isomorphic.
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Figure 4: Three similar but non-isomorphic minutiae graphs.

To estimate how much the minutiae can be perturbed before the graph
changes topologically, we produce 10 initial minutiae distributions, perturb each
one 100 times, record the number of isomorphism classes that occur, and then
average this number over the 10 distributions. The result is depicted in Figure
5.

We see that for a standard deviation less than 0.005mm, only 5 different
isomorphism classes were observed. Recall there is a %97.5 chance that a given
minutia will remain within 0.69mm of its initial location upon repeated fin-
gerprinting. From this we can assume a normal distribution with standard
deviation of 0.2mm, which is 40 times greater than 0.005mm. This shows
that the similarity metric in this model is hyper-sensitive. Therefore, this al-
gorithm would probably not work very well as a practical means of comparing
fingerprints. However, it is still applicable to estimate the number of distinct
fingerprints in the human race from a theoretical standpoint. The technology
for acquiring fingerprints has been steadily increasing in recent years, so in the
near future it is quite plausible that the location of minutiae will be determined
with a much greater accuracy.

3.4 Estimating the Total Number of Distinct Fingerprints

Given n minutiae, we produced m = 50, 000 uniformly distributed configura-
tions of these points and their corresponding minutiae graphs. The number
N of isomorphism classes that occurred is shown in Figure 6 for values of n
ranging between 1 and 20. This plot closely resembles the logistic equation:

dN
dn = N(a− bN),

where a
b = m is the carrying capacity of the system. The explanation for this

behavior is that the number of distinct graphs observed for a given number
of minutiae is limited by the total number of graphs generated (50,000 in this
case). This imposes an artificial bound on the population growth of isomor-
phism classes. By considering only small values of n, so that the growth is
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Figure 5: The number of isomorphism classes observed when perturbing the
seed point distribution according to a normal distribution N(0, σ2) for various
values of sigma.

approximately exponential, we estimate the number N of isomorphism classes
for a given value of n minutiae to be

N = 14e0.8(n−6)

This extrapolates to a value of N = 3.7× 1011 for n = 36 minutiae.

This value of N represents the number of distinct fingerprints possible based
solely on a uniform distribution of 36 points. We can make this estimate more
realistic by taking into account the various fingerprint types and distinguishing
between bifurcations and ridge endings in minutiae. The approximate distribu-
tion of these traits is listed in Table 1.

From this data we see that each fingerprint of 36 minutiae contains on aver-
age 25 bifurcations and 11 ridge endings. Based on this we produce the following
estimate:

The number of distinct fingerprints with 36 minutiae is approximately
(3.7× 1011)

(
36
11

)
(5) = 1.11× 1021

4 Model II: A Continuous Similarity Metric

Given two fingerprints, we would like to determine the number of minutiae that
lie in corresponding locations. To do this, we need a standardized coordinate
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Figure 6: The number of isomorphism classes observed as a function of the
number of minutiae considered.

Table 1: Distribution of fingerprint and minutia types [11].

Fingerprint Type Probability of occurrence
Left loop 0.338

Right loop 0.317
Whorl 0.279
Arch 0.037

Tented arch 0.029
Twin loop rare

Minutia Type Probability of occurrence
Bifurcation 0.7

Ridge ending 0.3
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system. We must assume that the fingerprints we are working with have already
been aligned. This is usually accomplished by locating the core and delta of the
two fingerprints.

In this model we perform the following procedure:

1. Randomly select a fingerprint type from among the basic five according
to their relative proportions (see Table 1).

2. Uniformly distribute 36 minutiae on a square region representing a finger’s
pattern area.

3. To each point, randomly associate a minutia type and direction (a real
number between 0 and 360 degrees).

4. Repeat this process to create another fingerprint so that the two may be
compared.

For any two minutiae from two different fingerprints, we say that they match
if they are within 0.69mm of each other. We also stipulate that the minutiae
directions must be within 22.5 degrees for them to be considered a match. This
is based on empirical data of experimental error [3].

To determine the distribution for the number of minutiae matches from two
randomly generated fingerprints, we first see if the fingerprints are of the same
type. Next, we compare the type of each corresponding minutia in the two fin-
gerprints. Finally, we see if the location and direction of each minutia is within
the specified bounds.

We generate two independent fingerprints 50,000 times and produce a distri-
bution for the number of minutiae matches. See Figure 7. We then reproduce
the perturbation simulation from Model I, this time incorporating a pertur-
bation in minutiae direction. We perform 50,000 repetitions of this experiment,
producing the distribution for the number of matching minutiae seen in Figure
8.

4.1 Statistical Analysis

We want to find the probability that two independent fingerprints have at least
27 minutiae matches. This will be our estimate for the minimum number of
minutiae matches required so that two fingerprints are considered equivalent.
In other words, this is the thresholding number for our similarity metric. In or-
der to estimate this probability, we need the complete probability distribution
of matches from different prints. We only completed 50,000 repetitions, so we
are forced to extrapolate from our data. There are two ways to do this.

The first approach is to approximate the number of matches with a normal
distribution. By looking at a normal QQ plot, this seems like a reasonable
approximation. To find the mean of this normal distribution, we first look at
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Figure 7:
Distribution of Matches From Two Different Fingerprints

Number of Matches

D
en

si
ty

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 8:
Distribution of Matches From Repeated Finger Printing
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the expected number of matches from the distribution in Figure 7, which we
determine to be .504. To find the variance of this normal distribution, we look
at the probability of seeing 4 or more matches.

P (number of matches ≥ 4) = 1449
50000 = .029

We know that x−µ
σ is N(0, 1), and that the Z value for .029 is 1.9. Hence we

find that σ = 1.83.

To find the probability that 27 or more minutiae match, we look at the prob-
ability of seeing a Z-Score of 27−µ

σ = 14.5. Under the normal distribution, this
probability is 2.03×e−46. However, we think a more appropriate approximation
can be achieved with an alternate method.

The second approach for determining this probability is by looking at the
Poisson distribution. We can assume that there is some rate at which matches
occur. This rate is the number of matches divided by the number of trials
simulated, which in this case equals .504. Using the Poisson approximation
formula, we calculate that

P (27) = e−.504(.50427)
27! = 5.12× 10−37

This is an upper bound on the probability of seeing at least 27 minutiae matches,
and hence matching two randomly generated fingerprints.

We can estimate the number of distinct fingerprints in existence simply by
taking the inverse of this probability:

The number of distinct fingerprints with 36 minutiae is approximately
1

5.12×10−37 = 1.95× 1036

4.2 Error Analysis and Sensitivity

This model was run with 36 uniformly distributed minutiae, an error-radius
of 0.69mm, and σ equal to 0.69√

2Z.975
. We ran the same simulations with varied

parameters to determine how much our overall results would be affected. We
first tried doubling the error-radius. This resulted in more minutiae matches
when comparing two random fingerprints. The histogram had upwards of 10
matching minutiae for the two random fingerprints. Of the times that there
were matches, the average number was closer to 5. Since 10 matches are oc-
curred approximately one ten-thousandth of the time, this model is no longer
realistic. The FBI considers 10 matching features to be sufficient to identify the
fingerprints [2].

Changing the number of minutiae resulted in a smaller proportion of minu-
tiae matches between random fingerprints, whereas the proportion of matches
in the same fingerprint stayed about the same. We looked at distributing 20
and 28 minutiae. The probability of two random minutiae matching when using
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20 minutiae was 3.68×10−34. This does not differ drastically from our previous
estimate.

This leads us to our last two potentially influential parameters for this model.
These are the distribution of minutiae over a fingerprint, and the N(0, σ2) error
term. Beginning with σ, we look at what would happen if its value were doubled.
That is, comparing two fingerprints from the same finger, we vary the minutiae
coordinates by N(0, (2σ)2). This results in the average number of matches
between fingerprints from the same finger going down from 34 to 29. The
spread of this distribution is larger than before. This tells us that with more
variation in the coordinates, the number of minutiae required for a match goes
down.

Through our own observations we have noticed that the minutiae might not
be distributed uniformly. We test the effect of clumping 6 to 10 minutiae on
either side of the core. With this as our distribution we find that the number of
matches between random prints goes down. This means that our assumption of
a uniform distribution might be leading to a slight overestimate of the number
of matches.

5 The Probability of Fingerprint Uniqueness

The total population of the human race is estimated to be about 100 billion [12].
Let M denote the number of distinct fingerprints and N = 1011 the number of
people who have ever lived. Then the probability that all fingerprints are unique
is given by:

M
M × M−1

M × · · · × M−N
M = M !

MN+1(M−N−1)!

This formulation is valid, but we do not have sufficient computing power to
get a reasonable estimate from it. We can avoid this problem by making an
estimate using the Poisson distribution. We do this under the assumption that
two different fingers are matched to the same fingerprint at the rate λ. With
this approximation we get that:

• Model I: e−λ = e
− 1022

1.1×1021 = 0.00011

• Model II: e−λ = e
− 1022

2×1037 = e
− 1

2×1015

6 Conclusion

Either all human beings throughout history have had unique fingerprints or they
have not. If we were to generate a population of 100 billion, the probability
that it would have unique fingerprints, according to our first model, is 0.00011.
According to our second model, this probability is e

− 1
2×1015 ≈ 1. With either

estimate, it seems quite conclusive that the fingerprint uniqueness is a reality,
not just a myth.
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6.1 Fingerprint vs DNA Evidence – A Final Test

According to the State of Wisconsin Department of Justice [13], the probability
of DNA misidentification is of order one in a billion. Our second model, the
probability of misidentification from fingerprinting is 10−37. This indicates that
fingerprinting is substantially more reliable than DNA testing.
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