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Abstract

In this paper, we present a computerized model by applying the
method of Cellular Automaton to simulate a series of cars’ actions under
the rule restriction. With the theory of probability that any given object
move to its neighborhood with certain probability based on speed, risk
coefficient, and etc, we calculate all possible steps for each object and
generate a simulation which performance the traffic flow under different
situations not limiting on light and heavy traffic. In order to analyze
the influence of the Keep-Right-Except-To-Pass Rule (KRETPR) on the
tradeoff between traffic flow and safety issue regarding to modern freeway
traffic, a new model based on the microscopic scale cellular automaton
model is proposed. Traditional Cellular Automaton model with single-
row lattice is expanded into a multi-row two-dimensional lattice as the
simulation of multi-lane freeway, with number pairs describing the vehic-
ular status and inter-vehicular interaction.
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1 Introduction

Tradeoff between traffic flow, i.e. efficiency, and safety of traveling by car has
been a main concern in the field of traffic regulation with the preference of
driving in short and medium distance. Different rules are adopted to cope
with such problem in case of multi-lane freeway in countries of different driving
style. The effectiveness of one common rule will be analyzed through building
mathematical model.

1.1 The Common Rule

For most countries where vehicles are driving on the right of the road, the
common rule for multi-lane freeway that is the Keep-Right-Except-To-Pass Rule
(KRETPR), where drivers are required to drive in the right-most lane. The rule
is ought to be obeyed unless vehicles are passing over another vehicle, in which
case they move one lane to the left, pass, and return to their former travel lane.
This overtaking process relies on human judgment for compliance.

1.2 Goal Of The Model

The first goal of the model is to analyze the performance of the KRETPR under
different conditions by comparing the traffic flow and the risk of car accidents.
Possible rules better than KRETPR will be provided as well. Only common
conditions with an observable potential influence on traffic flow and safety are
considered in the analysis, which are listed as follow:

(a) The effectiveness of KRETPR in promoting better traffic flow under light
and heavy traffic conditions and the magnitude to which they are affected by
this rule.

(b) The effectiveness of KRETPR under different sets of maximum and
minimum speed limits and compare the currently adopted speed limit with
the most appropriate ones from calculation.

(c) The effectiveness of KRETPR under different weather conditions like
rain, snow, ice, and fog as for their influence on the fraction factor between
tire and road surface as well as visibility. Weather conditions with different
magnitude are also considered.

The model is also designed to analyze the possibility of adopting a cor-
responding rule, i.e. Keep-Left-Except-To-Pass Rule (KLETPR), in countries
where vehicles are driving on the left. The KLETPR is only different from
KRETPR in a simple change of orientation of the preferred lane. Other pos-
sible factors such as vehicular interior arrangement and the influence of the
neighboring lanes, which are in the opposite direction, will be discussed.

The third goal of the modern is to adjust the existing model by introducing
new parameters in order to cope with the situation where vehicle transportation
on the same roadway was fully under the control of an intelligent system through
either part of the road network or the imbedded structure in the design of all
vehicles using the roadway. The effectiveness of the adjusted model will be

3



Team #29224 4

analyzed under the aforesaid conditions that would influence the traffic flow
and safety of vehicular transportation.

1.3 Existing Models For The Problem

The key of the model is the simulation of the freeway?s traffic flow in order
to predict the vehicular speed and density in any future moments. The exist-
ing approach can be divided into three categories with respect to the scale of
observation: microscopic scale, macroscopic scale, and mesoscopic scale.

1.3.1 Microscopic Scale Models

The often-used microscopic scale models are the Nagel-Shreckenberg (NS) model
and Fukui-Ishibashi (FI) model, which are based on cellular automaton (CA)
and every vehicle is treated as individual. The freeway in these models is treated
as a one-dimensional lattice and the vehicular motion is treated as the hopping
processes within the lattice [2]. Classes of vehicle m is also considered for their
difference of maximum velocity vm. The key of CA model is the treatment
of individual lattice as a number pair with two variables, the coordination of
position j and the coordination of time t. Therefore, the configuration of vehicles
of class m on individual lattice can be reproduced by a variable σm(j, t), where
σm(j, t) possesses the value of 1 if any vehicle of class m occupies the site and
possesses 0 for the rest of situations. Therefore, the lattice configuration can be
represented by the sum of vehicles of different classes

M∑
m=1

σm(j, t)

with great simplicity. Another feature of the CA model is the simulation of
vehicular advancement in the one-dimensional lattice through the defining the
slowdown factor exp[−W (j, σ(j, t))] as the influence of other vehicles with re-
spect to distances.

All vehicles’ states can be deduced via iteration of the ordinary differen-
tial equation (ODE) of the position function σm(j, t) and the expectation of
transition probability E of neighboring vehicles.

d

dt
Eσm(j, t) = EGσm(j, t)

where G is the generator of Markov process (σm, σ). However, none of the ex-
isting CA models take into consideration the overtaking process, which involves
the cellular hopping between one-dimensional lattices.

1.3.2 Macroscopic Scale Models

The most commonly adopted macroscopic scale model is the Lighthill-Whitham
(LW) model of fluid dynamics simulation, where traffic flow is literally consid-
ered as a flowing liquid and the theory of fluid dynamics is applied to analyze

4



Team #29224 5

the speed u, density k, and their multiplication, i.e. the flux q of the traffic flow.

q = ku

This model deals with the overtaking process effectively by solving partial differ-
ential equations (PDE) system based on the hypothesis that the sum of increase

of traffic flow density in unit time ∂k
∂t

and the change of traffic flux in unit length

∂q
∂x

is zero. [4]

∂k

∂t
+
∂q

∂x
= 0

Overtaking, in this case, is simulated as the viscosity coefficient µ as a clear
reference to the hydrodynamics, where τ is defined as a value that is proportional
to the shear velocity and contacting area, which is

τ = λA
∂u

∂y

In the case of improved LW model, the viscosity coefficient of traffic flow is
defined as

Z = f [µ∆v
h

h− dmin
]

where ∆v is the speed difference, and dmin is the safety distance. Combining the
PDE of traffic flow and flow density, the adjustment factor for overtaking, and
the classical velocity-acceleration ODE in the Newton’s Second Law of Motion,
which is

du

dt
=

1

T
[ue(k)− u(x, t)] + µ

where u stands for vehicle speed and T stands for the necessary deceleration time
at the safety distance. Consequently, it is possible of applying to the KRETPR
with an additional coefficient of perpendicular movement, yet there might be
bigger deviation from reality due to its limited modeling power.

1.3.3 Mesoscopic Scale Models

In a common mesoscopic scale models, the Anisotropic Mesoscopic Scale (AMS)
model, the vehicular speed response is represented in a macroscopic manner
while the influence of vehicles in front of individual cars in the speed influencing
region (SIR) are considered when analyzing their speed in a similar way in the
microscopic scale model. The calculation is based on the relationship between
traffic density k and speed of i th vehicle in the SIR

vti = p(kt−1i )

where p : k → v is the non-increasing speed-density relationship function [3].
The advantage of AMS is the simplification of iteration of every single vehicle
units in the CA model while keeping a relative comprehensive concern of various
factors that influence traffic flow and safety.
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1.3.4 Our Approach

Our model is mainly based on the microscopic scale model of CA with necessary
adjustments to fit into the KREPTR, where speed of different lanes is influenced
by all driver’s tendency of driving on the rightmost lane unless overtaking other
vehicle. Rules are introduced to differentiate inter-lane and intra-lane position
change with an incorporation of probability theory through separate considera-
tion of vehicle and position. Details of the model will be discussed in following
paragraphs.

2 Approach

2.1 Multi-Lane Freeway Model

The foundation of our model is an expanded cellular automaton model
with a two-dimensional lattice grid map as the simulation of multi-lane freeway,
where status of individual vehicle is iterated in order to maintain the accuracy
and comprehensiveness while simulating the freeway driving in reality. The
adoption of two-dimensional lattice grid map is also necessary as for simulating
the overtaking process, where neighboring lanes are involved, as a basis of in-
troducing the KRETPR into our model. The two-dimensional grid map used in
our model is an m ∗ n lattice, where m is the number of rows (lanes) and n is
the length of each row (lane). The states of cell (i, j) in the m∗n grid is defined
via two rules:

1. the cell possess a value of -1 if there is no car occupying the position (i, j)
at this moment;

2. the cell can possess any value except -1 if it is currently occupied by the
cth car;

To analyze the situation of overtaking, the neighborhood of a certain cell should
be considered so as to avoid potential collision when changing lanes. The neigh-
borhood of cell (i, j) is defined as (i′, j′) where:

1. 1 ≤ i′ ≤ m and 1 ≤ j′ ≤ n;

2. there exists a car c in the cell (i′, j′) in the current situation;

3. it is possible for c to go to cell (i, j) at the next iteration.

This is the basic model that we use to simulate the behavior of multi-lane high-
way. Additionally, there should be one or more rule(s) adopted when updating
the cells’ states in each iteration regarding kinematics among individual cars
and their safety issue. The rules will be discussed in detail in section 2.3.
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2.2 Vehicle Speed Model

The speed of individual vehicle is crucial during the process of simulation,
not only for analyzing overall traffic conditions, but for judging the possibility
of lane-change in the overpassing situations. Numerous data regarding existing
regulation of freeway vehicle speed can be found in publication and reports
from the government as well as NGO, yet none of them show the concern of
KRETPR. Therefore, we chose to produce a general model for all potential
cases before applying any of the data into our model considering the variation
of difference of road situations and specific rule details in different areas. Data
in our model is generated through mechanical simulation for further comparison
with the following method. Suppose the speeds of vehicles on a freeway speedc
obeys Normal Distribution, which is the simplest and most realistic distribution
to describe the randomness of speed of different cars, where number of cars with
an extremely high and extremely low speed is small considering the speed limit
of the freeway. So, the speed of individual car c on the freeway would be:

speedc = µ+ σ ×N (0, 1)

where µ is the pre-defined average speeds on the highway and σ is the pre-
defined standard deviation of speeds. Therefore, µ + 4 × σ and µ − 4 × σ are
the highest and lowest speeds on the highway respectively.

In addition, we could also simulate different road conditions mentioned in the
Introduction paragraphs, like weather and potential influence of traffic accident,
by adjusting the value of µ and σ. For example, µ is smaller in sunny days than
in storm days and σ is smaller on all-good highway than the highway with
several defective segments.

2.3 Cell State Update Rules

How to update cell states for all individual cars in a comprehensive while
simple way is our next major concern after the generation of the two-dimensional
lattice. At each iteration of CA, we need to update cells’ states reasonably. The
confinement of real situation is summarized into the following rules:

1. all updates must be in accordance with the KRETPR;

2. the speed of vehicle at the iteration must correspond to the normal distri-
bution stated above;

3. acceleration and deceleration of any car must be reasonable so that a car
whose speed changes significantly never exists;

4. drivers are all intelligent, and they will choose a path where the potential
risk they undergo is as low as possible.

We add the fourth rule to keep consistence with the given conditions of the
problem as well as for simplification. For each car, we calculate the probability
that the car c will go from cell (i, j) to (i′, j′) in next iteration, then we move
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the car to its most likely cell accordingly. For car c, if its most likely target cell
is conflicted with the cell that has been occupied by another car, it should go
to its next most likely target. Two cells are conflicted may because they are
actually the same cell, or the distance between these two cell is less than the
safety distance.

In order to simplify the computation, instead of iterating every cell (i, j) and
calculating the probability that its neighbors will go to itself, we iterate every
car c and calculate the probability for each cell (i, j) that c might go.

2.3.1 Terminology

1. Pcar(c, i, j): the probability that car c will go to (i, j) in the next iteration;

2. Ploc(c, i, j): the probability that there will exist car at (i, j) in the next
iteration before Pcar(c, i, j) is calculated.

2.3.2 Order of Calculation and Update

In the real world, when a driver decides to turn, accelerate, or change lane,
he always looks at his front car, and makes decision mainly according to the
movement of his front car. So intuitively, in our model, front cars have priority
to calculate probabilities and choose its most likely cell as its target. Besides,
since we have to follow KRETPR rule, so we give the same priority to the car
in the left lane.

2.3.3 Correspondence to KRETPR

In each iteration, a car has three options in directions choices: 1. moves
one-step left; 2. remains in the same lane; 3. moves one-step right. According
to KRETPR:

1. in option 1, the speed of the car has to be faster than its front car. So when
we consider the potential target in the left lane of car, we only consider
cells to which car will have larger speed than its front car;

2. priority(3) > priority(2) > priority(1). After we calculate all the prob-
abilities of car’s potential target location, we factor the cells in the right
lane by 0.45, the cells in the same lane by 0.35, and the cells in the left
lane by 0.2.

2.3.4 Correspondence of Speed to Normal Distribution

For each potential target cell (i′, j′) for car c, we calculate the speed v
that c needs to have to reach from its current cell to (i′, j′). As we mentioned
above, the speeds fit normal distribution with parameter µ and σ. The we calcu-
late the probability that v exists under such normal distribution by probability
distribution function of normal distribution:

Pv(v) =
1

σ
√

2π
e−

(v−µ)2

2σ2
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Intuitively, Pcar(c, i, j) increases when Pv(v) increases.

2.3.5 Reasonable Speed Change

On highway, it is very dangerous to accelerate or decelerate instantly. So we
also consider the speed of change in the next iteration as a part of Pcar(c, i, j).
The larger speed change is, the less the probability that the car c goes to (i, j)
in next iteration is.

2.3.6 Risk

Suppose all the drivers are intelligent and all of them care about their own
safety. As a result, every time when a driver makes a decision, he will consider
the potential risks caused by this decision. In this problem, the potential risks
mainly come from the relationship between actual distance between two cars
and their safety distance. Specifically, if actual distance between two cars is
greater than the safety distance, when the potential risk is 0, or infinitely small.
When the actual distance between two cars is smaller than the safety distance,
then the potential risk increases when the actual distance decreases, and the
potential risk will increase exponentially.

Assume car c follows car c′ on freeway, and speed of c is v. Then we define
the safety distance as the distance that c needs to completely stop from its
original speed. Then we could have

v2 − 02 = 2ax

[1]
Where 0 is the speed when c is completely stopped; a is acceleration (related

to car’s model); and x is the distance that c needs to completely stop from its
original speed, which is safety distance. Then we could conclude

x ∝ v2

Then risk potential is defined as

riskpotential = e−r
x
l = e−r

v2

l

Where r is a constant coefficient, and l is the actual distance between c and
c′.

Since the driver of c will never know which cell in front of him will be
occupied until the next iteration, so he has to approximate the risk potential
caused by movement from cell (i, j) to cell (i′, j′).

There are two types of risk potential in this case. The first one is risk
potential between c to its front car riskfront, the second one is risk potential
between c to its back car riskback. Here are the methods to calculate them.
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1. Assume the potential target cell of car c is (i, j) and we are about to
calculate the potential risk between c and car c′ that might appear at cell
(i, j′) and j′ ≥ j. Then we have

riskpotential(c, c
′) =

j′−1∏
j+1

Ploc(c, i, j)× e−r
v2

l

Where v is the speed of c when it moves from its original cell to (i, j).
Since l is distance between c and c′,

l = j′ − j

Then we get

riskpotential(c, c
′) =

j′−1∏
x=j+1

(1− Ploc(c, i, x))× Ploc(c, i, j
′)× e−r

v2

j′−x

So we have that for this car, the risk potential caused by its movement to
(i, j) is

riskfrontpotential(c) =

∞∑
j′=j+1

j′−1∏
x=j+1

(1− Ploc(c, i, x))

×Ploc(c, i, j
′)× e−r

v2

j′−x

2. Assume the potential target cell of car c is (i, j) are about to calculate the
potential risk between c and car c′ that might appear at cell (i, j′) and
j′ ≤ j. This case is slightly different than the case above, because safety
distance is not related to speed of c anymore, but that of the car c′ that
is right behind c.

We define that, for a cell (i, j), the probability that the car in that cell is
c is

Pcar−at−cell(c, i, j) =
Pcar(c, i, j)∑

all−car(c′) Pcar(c′, i, j)

riskbackpotential(c) =

j′−1∑
j′=j0+1

j−1∏
x=j′+1

(1− Ploc(c, i, x))× Ploc(c, i, j
′)

×Pcaratcell(c, i, j)× e−r
v2
c′

j−x

+

j−1∏
x=j0+1

Ploc(c, i, x)× e−r
v20
j−x

Where vc′ is the speed of c′ when it moves from its original cell to (i′, j′)

10



Team #29224 11

Finally, the total risk potential that car c will have by moving to cell
(i, j) is

riskpotential(c) = riskfrontpotential(c) + riskbackpotential(c) =

∞∑
j′=j+1

j′−1∏
x=j+1

(1− Ploc(c, i, x))

×Ploc(c, i, j
′)× e−r

v2

j′−x

+

j′−1∑
j′=j0+1

j−1∏
x=j′+1

(1− Ploc(c, i, x))× Ploc(c, i, j
′)

×Pcaratcell(c, i, j)× e−r
v2
c′

j−x

+

j−1∏
x=j0+1

Ploc(c, i, x)× e−r
v20
j−x

2.3.7 Summary

From all of above, we could calculate the value of Pcar(c, i, j), where

Pcar(c, i, j) = z × Pv(v)× riskpotential(c)× e|speed−change|

where z is the coefficient corresponding to the lanes changes (0.45 for right,
0.35 for same, and 0.2 for left).

2.4 Flow and Safety

We initialize the locations of cars on the lattice grid map and speeds ran-
domly, and then update the locations and speeds of cars in every iteration. We
count the number of iterations needed so that all cars could leave the map. We
also accumulate the risks caused by every movement that a car makes. In order
to avoid variance of this method, we repeat the program for several times with
same parameter. Then the average number of iterations could represents the
flow and the risks could represents the safety issue. When average number of
iterations is small then the flow is fast, and when the risk is smaller, then it is
safer.

3 Result

Here are the fact that we find from our model:

1. As Figure 1 shows, when the density of car increases, the flow becomes
slower and it takes more time to have cars left the road segment.

11



Team #29224 12

Figure 1: Car Density to Time

2. As Figure 2 shows, when the average speed increases, the risks increase
relatively. So we could conclude that the average speed is proportion to
the risk coefficient.

3. As Figure 3 shows, we can find from our graphs and output that the
average speed of cars within our road segment has inverse relation with
the time that the cars can pass by. And the actual time used under
KRETPR is always slower than the expected time ( length

speed )

Comparing the KRETPR with the rule that not limiting cars to move on
the right-most line, we can find that the KRETPR is more likely to cause traffic
for the following reasons:

1. Once a car changes line to the left, it will cause a viscosity occurs in the
traffic and hence influence all the nearby cars.

2. All cars have speed depend on the leading car moving on the right-most
line since the following cars have only two choices. The first one is to
decrease speed to avoid collision and when the cars after the leading one
speed down one-by-one, the traffic congestion will occur.

However, if we do not apply the rule, the traffic flow can be separated into
multiple and hence the right-most-line will not have heavy pressure.

For countries where driving automobiles on the left is the norm, our model
will give the same results, because we only consider the probability that the
driver will choose location (i, j).
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Figure 2: Car Speed to Risk

Figure 3: Car Speed to Time
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When vehicle transportation on the same roadway was fully under the con-
trol of an intelligent system, I think there will be improvement on both flow and
safety. Our model is based on driver’s decision, which means that every driver
only takes care about their time and safety. So the global flow and safety issue
will be negatively affected by their own decision. However, when an intelligent
system control the roadway, then it will optimize the global flow and safety
regardless the issue of a specific person.
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