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Abstract

The Saluda River has spent some of its best years calmly flowing from
Murray Lake, where the hydroelectric dam, which formed the lake, con-
trols the initial conditions which control its path downstream towards
Columbia, South Carolina. Although the power retrieved from the dam
at Murray Lake is significantly large, there are powers even greater and
less controlled. We set out to determine the effects of a potential flood
caused by an earthquake breaching the dam. Floods are dynamic events,
drastically altering the equilibrium of an environment. Fluid flow, and
in particular, unsteady fluid flow is a complicated phenomenon to cal-
culate due the the complex hyperbolic relationship between the spacial
and temporal energy components within the system. In order to model a
flood caused by the dam at Murray Lake breaching during an earthquake,
we model two boundary conditions. We initialize the spacial component
through modeling the geometry of the river and the surrounding area.
The temporal boundary condition is modeled through the behavior over
time of the dam breaching due to the earthquake. This model allows
us to determine the initial quantity and rate that water flows out of the
dam breach. We construct flood models using both first and second or-
der numerical approximations to solve the unsteady flow equations which
govern the dynamics of a sudden, large flow changes in a open channel.
Our model allows us to approximate the height and velocity of water at
any point along the river. Using these we are able to determine the back
flow into Rawls Creek, a small creek which flows into the Saluda a short
distance from the dam. Using the elevation of the flood water, the velocity
as it approaches Columbia and energy conservation, we are able to show
that under the constraints of our flood model, the river will not reach the
Capitol building.
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1 Introduction

Hydroelectric dams provide electricity to millions of people everyday. Com-
munities and cities thrive in the surrounding areas of these dams due to the
accessibility of power in these times of high and rapid energy consumption.
Unfortunately, the hydroelectric dam is not an infallible system. As popula-
tion density increases in the surrounding area of the dam, it is important to
have a detailed analysis of the potential flooding due to dam breaches. This
instructs the development of clear and efficient evacuation plans, and informs
the possibility of preventing or controlling the ensuing damage.

Although there are many ways dam failure can occur, some of the most
devastating and sudden effects come from natural disasters such as earthquakes.
The capitol city of South Carolina rests comfortable at 16 km [1] from the 50,000
acre Murray Lake, a byproduct of the construction of a large earthen dam of
the Salad River in the 1930’s. In the case of a breach in the dam due to an
earthquake, we want to predict when the wave will hit downstream locations,
how fast it will travel, how deep the water will be and what the spread of the
flood will be.

1.1 Outline of Approach

e Construct a geometric model of the river channel mapping the topograph-
ical characteristic utilizing a piecewise linear schematic for both the shape
of river banks and the riverbed structure by taking cross-sectional data at
various grid points of pertinent character along the river.

e We model an earthquake breach in an earthen dam. This allows us to
calculate the maximal flow rate, and compute discharge from the breach.

e Determine a hydrograph of the dam breach (a graphical representation
of the flood discharge with respect to time for a particular point on a
stream or river).

e Model Fluid Dynamics of the flood using dynamic routing, a method of
hydraulic flow routing based on the solution of the Saint-Venant Equations
to compute the changes of discharge and stage with respect to time at
various locations along a stream.

e Utilizing hydrograph data, we determine the floodplain— downstream
areas inundated with water. We then calculate the expected the depth
and distance at which flood water inundates Rawl Creek.

e Using our flood model we determine the initial conditions necessary for
water to reach the Capitol building, which sits atop a hill in Columbia,
South Carolina.
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2 Modeling River Channel

In order to route the flood water, we must first have a model of the the river
channel. Utilizing topographical maps [1], MS paint, a straight edge and some
help from Matlab, we were able to formulate an interpolated geometric model of
the area directly surrounding the river. At various distance intervals depending
on important characteristics— large hills, valleys, locations of concurrent inflows—
we take cross sectional data, measuring an approximate average slope for various
points on either side of the riverbank.

Figure 1: Our model of the river valley. Height above normal river location is
given in feet.

e Simplification: At each cross section along the Saluda River, we construct
a piecewise linear slope on either side of the existent river. We then create an
interpolated river system model by assuming linearity between cross sectional
areas. This is a useful and necessary simplification as we could find no numerical
data on the geometry of the river channel and did not possess the funds or
manpower necessary to collect such data. Our piecewise linear interpolation
allows us to calculate the cross sectional area and depth at any point along the
river.

Assumptions about the Geometry of the River:

e We assume that the surface roughness coefficients are uniform.

e The geometry of the river is fixed, i.e., during the flood, no erosion
occurs. This allows us to utilize flow rates in order to compute cross
sectional area. This in turn tells us the height of the water since the
relationship between cross-sectional area and water depth is fixed as long
as we assume no erosion occurs. This is also a good assumption so that
we may assume that the viscosity of the flood water is uniform. The
unavailability of sediment data, also makes this a reasonable assumption.

e We assume that the overall slope down the river to be constant. The
topological map showed a difference of elevation between the dam and the
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Capitol Building of fifty feet, which appears by eye to be distributed evenly
over the 16 km trek downstream. Since this grade is so shallow, and the
kinetic energy of the flood water so great in comparison, we may assume
that the potential due to gravity is relatively negligible in comparison to
the dynamics of the breach discharge that no significant data is lost in
assuming uniform grade.

e We assume that the curvature of the river is negligible. Both of our dy-
namic routing methods involve a 1-dimensional flow analysis, thus curva-
ture is unimportant.

e We ignore the effects of the two bridges that cross the Saluda river in
order to simplify the problem.

3 Modeling Dam Breach Due to an Earthquake

The simplest model for dynamical routing of a flood would assume a steady
state discharge. After a dam breach, the volume of water flowing out is so large
in comparison to the area it flows out of, it seems reasonable for water to flow
at a constant rate for some time.

However, this is equivalent to assuming that the dam breaks instantly and
simultaneously water begins to flow. For earthen dams, this is not a practical
assumption. When earthen dams breach, the damage tends to occur in local
areas, as water begins to flow, the breach erodes until the water in the reservoir
is depleted, or the dam resists further erosion. The average width of the breach
b tends to be bounded by the height & of the dam [8]:

h<b< 3h. (1)

Using these parameters for the height and width of the breach, we can estimate
the maximal discharge from the breach. A simple formula determined by the
height of water, and breach dimension is given by the equation [9]:

Q= on? (2)

The flow rates are detailed in table (1). The values of The coefficient contains
the force of gravity and mass terms dealing with water viscosity.

3.1 Murray Lake Dimensions

The water level at Lake Murray is at an altitude of 350 to 358 ft above sea level,
which is approximately 170 ft above the Saluda River on the other side of the
dam. The surface area of the lake is 50,000 acres [3].

Using these figures, we give a high and low estimate of the volume
of water behind the dam.

e Rectangular Approximation: 10! m3

e Pyramid Approximation: 3 x10'° m3
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Table 1: Maximal Discharge measured in ft®/sec.

Width(®) [ 3h | h | 2n | 3h |

Height (h)
10 225 490 980 1470
20 1140 2270 5550 8300
30 3820 7640 15300 22900
40 7850 15700 31400 47100
50 13700 | 27400 54800 82000
60 21600 | 43200 86400 130000
70 31800 | 63500 | 127000 | 190000
90 59000 | 119000 | 238000 | 358000
110 95000 | 190000 | 381000 | 570000
130 150000 | 300000 | 597000 | 895000
150 213000 | 427000 | 854000 | 1280000
170 292000 | 584000 | 1170000 | 1750000

3.2 Reality Check

Using the Estimated maximal flow rates, and our assumptions that:
1. An earthen dam breaches in a time period of 1 hour to 3 hours [8].

2. The volume of Murray Lake is large.

We find that in an extreme case, assuming instantaneous complete breach, the
flood would last between 3 and 8 hours. In a large but possible breach, assuming
breach height of 90ft and maximal breach width, the flood would last between
12 and 40 hours.

e This tells us that our numbers make sense, and that the Pyramid volume
approximation is closer to reality than the rectangular estimation.

3.3 Modeling the Boundary Data

With our flow rates based on dimension, and rates of erosion during breach of
an earthen dam [9], we construct hydrographs at the breach.

e A hydrograph is a plot of flow rate vs. time for a particular spacial
instance. Thus our boundary data for modeling the flood is based on both the
steady state hydrographs of the river, and the how they change in time due to
the dynamic hydrograph at the dam breach.

We construct various hydrographs based on breach dimension and the time
it takes for the breach to reach maximal dimension.



Page 7 of 15 Control #31

3.3.1 Approximating the Hydrograph

e Instantaneous dam failure would be approximated in a hydrograph by a
right triangle. The base of the triangle represents the time required for
the reservoir to deplete, the peak flow being represented as the height of
the triangle.

e We assume half of the total volume of water expelled through the breach
is used to erode the dam to full area, our hydrograph is represented as an
isosceles triangle. This is an acceptable model for earthen dams [8].

e We can approximate models with faster breach time by forming triangle
between right and isosceles.

e Given a breach cross-sectional area, a short completed erosion time will
correspond to a higher peak flowrate. This has to do with the fact that
the slower the dam breach erosion occurs, the height in the reservoir is
lower.

Figure 2: Instant and complete dam failure.
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1. In figure 2, we show a hydrograph of the extreme case of total instant dam
failure. This is highly improbable for an earthen dam, but will be used
for comparison of our results.

2. Figures 3 and 4 give are example of hydrograph approximations for a large
but more possible dam breach, and a small breach. Variations on these
are used to construct the data sample for our flood model.

4 Modeling the Flooding Downstream

We construct a model of the flood utilizing our River model and boundary data.
Existing Data
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Figure 3: A large scale, quickly eroded dam breach hydrograph.
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Figure 4: Hydrograph of a comparatively minor, slow eroding dam breach.
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e Note: Our model of the Saluda River extends from the dam at Murray
Lake downstream to Columbia, South Carolina and area surrounding the
State Capitol Building. At each position downstream from the dam, we
have data for the cross-sectional geometry relating to the area that flood

water can fill.

e Before the dam breaches, we assume that the Saluda river is in steady
state. We take initial river flow from existing data detailed in table (2).

Table 2: Steady State River Flow Rates (cfs) before Dam Breach [2]

River | Location | Low Flow | Mean Flow | High Flow |
Saluda River | Lake Murray 205 1000 5800
Saluda River Columbia 236 2500 5140

Congaree River Columbia 1010 9800 15700

e We have a sample collection of hydrographs which relate the flowrate at
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the dam breach to time.

e These flowrates were computed based on the cross-sectional area of the
breach in the dam.

Specifications of Our Flood Model

e In order to model the flooding downstream in the event there is a catas-
trophic earthquake that breaches the dam, we need to estimate the hy-
drographs at locations affected by the discharge of water from the dam.

e Using the cross-sectional area of initial discharge, we estimate the cross-
sectional area of fluid flow at the locations affected at intervals down-
stream.

e We use appropriate flowrate-to-area correlations to model fluid flow, and
derive the time and position models for these simultaneously.

e The height of the flood water is determined from the cross-sectional area
as detailed in our River Model.

4.1 Mathematical Model

Assumptions

o We assume that our flowrate is uniform over the cross-sectional area it
flows through.

e Assuming such uniformity, we can use a one-dimensional fluid flow model.

Dam breach flood hydrographs are representative of dynamic, unsteady flow
events. Therefore, the preferred routing approach is to utilize a full unsteady
flow routing model. It is accepted for many applications that the unsteady flow
of water in a one-dimensional approach is governed by the shallow water or Saint
Venant equations. These represent the conservation of mass and momentum
along the direction of the main flow. In other words, it gives us the relation
for area and flowrate that models our water as, well, water. It constitutes an
adequate description for most of the problems associated with open channel flow
modeled in 1-dimension under the hypothesis of [4]:

e Uniform average velocity over the cross section.

e Small streamline curvature and negligible vertical accelerations. That is,
hydrostatic pressure distribution.

e Small slope of river bed.

The physical characteristics of the Saluda river satisfy the above hypothesis.
The basic form of the hyperbolic, non-linear Saint Venant equations can be
written as the following system of equations:

0A  0Q

N %—0 (3)
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For our one-dimensional model, equation (3) represents the conservation of
mass, and equation (4) represents the conservation of energy. The parameters
involved are:

= gA(So — Sy) (4)

= flow
A = active flow area
g = acceleration of gravity
Sy = friction slope
So = river bed slope
X = flow distance
t = time
In particular, the friction slope is defined in terms of the Manning’s roughness
coefficient n,
Q|QIn?
Sy = 5
A?Rs (5)
with R = A/P, P being the wetted perimeter.
It is convenient to rewrite equations (3) and (4) into the vector form:
oU OF
ot + oz ©)
where the vectors are:
A
U=
o]
Q
F=| @?
A

“= [ ?So—sf)gA]

4.2 Numerical Approximation Schemes
The Idea: We have two sets of boundary data.

1. The hydrograph of the discharge of the dam breach gives us the flowrate
and area (Q(zo,t) and A(zo,t)) for all time values at the position of the
dam.

2. We also have the initial conditions on the steady state flowrate at every
position downstream at the particular instant the dam breaches.

We discretize our data in terms of the variables (z;, t,), where x; represents the
position at the it* position on our grid of the river and ¢, is the nt* time step.
e The value of the function at this position and time step will be denoted with
a subscript for the position index and a superscript for the time step index.

10
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We develop two flood routing models based on numerical approximations of
the Saint Venant Equations. Mathematically, our first model is based on the
two step predictor-corrector MacCormack method for approximating hyperbolic
partial differential equations. This model is accurate up to second order. The
second model is a one step difference scheme of numerical approximation with
first order accuracy.

4.2.1 The Two Step Flood Model

A classical finite difference numerical scheme suitable for the discretization of
equation (6) is the explicit two step predictor-corrector MacCormack method,
which uses the following equations [4].

At
The predictor step: ~ UY = U} — A—Q:(F?Jrl - F}) + AtG} (7
c 14 At P P p
The corrector step: Ui =1U; — A_;U(F’ —F7_)) + AtG] (8)
1
Upt = (U7 +05) ©

The reason that the MacCormack method is useful in treating unsteady dy-
namics is that the behavior in time of one of the discrete nodes in the system
depends on the spacial components on either side, thus it is a good model of
fluid flow.
eThe Error and (in)Accuracy of the Two Step Flood Model:

The Two Step Flood model was highly sensitive to our time step interval. It
worked reasonably well for time steps of 30 seconds. Unfortunately, due to the
higher order of space-time dependence, in order to get data for the entire river
model out of this method, we needed the number of spacial nodes beyond the
confluence of the Congaree river to be in direct correspondence with the number
of time steps we would need to run our model for 30 second time-steps for the
large number of iterations necessary to model the dam breach on a time scale of
hours. Because our river model essentially ended at the State Capitol building
of Columbia, we could not propagate a flood with the existing river model. In
order to compensate, we added a rectangular river modeled with the same area
as our geometric river model to create an “infinite” river. This did give us data
which showed the flow of the flood moving downstream to the point where Rawls
Creek met the Saluda River. Unfortunately, due to the high accuracy required
for this method to approximate well and the highly inaccurate initial conditions
specified by our linearly interpolated geometric river and hydrographs, this flood
model was not compatible with the spacial and temporal boundary conditions
we modeled in order to implement it.

4.2.2 The One Step Flood Model

The idea of the One Step method is similar to the MacCormack model, but
rather than use a two-sided difference, we used a one sided finite difference

11
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Figure 5: 3-D Hydrograph showing river flowrate over time.

method. In this model, given a known space-time coordinate and its flow rate
and cross-sectional area, the next time step is computed from the known follow-
ing spacial coordinate data at the same time instance. The equation is given by

the equation: A
t
Ut = Up - (R — FY) + AKGT (10)
e The largest benefit of this model is its stability. More specifically, it is ca-
pable of coping with discontinuities. Since it is less sensitive to initial boundary

conditions, it is less accurate, but outputs flood data without egregeous errors.

5 Getting Results

Having modeled the geometry of the river, and collected hydrographs of various
erosion and flow rates, it is time to embark into the depths of flood. Unfor-
tunately the fill capacity of our geometric river model could not accommodate
extreme flood conditions. We found a flood insurance model for the area, and
although their floodplain was exaggerated for a safe evacuation, it was clear
from their model that our river model did not span nearly the amount of land
mass that would be necessary to consider an extreme dam breach [5]. This mod-
elers intuition of the power and devastation that could be caused by a breach
in the dam above the Saluda River was clearly clouded by too much time spend
in front of books, and not enough at the river.

Since modeling the extreme case was out, we instead used a slow erosion
low flow hydrograph and a quick large flow hydrograph. The quick large flow
hydrograph utilized in our model reaches its peak flow rate of 3000m?/s at 50
minutes after the breach. Although we were not able to extrapolate the most

12
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extreme effects of a dam breach, according to [8], this is a very large flowrate
corresponding to one of the largest breaches that is probable to occur in an
earthen dam.

5.1 Rawls Creek

Our flood model allows us to determine the maximal cross-sectional area of flood
water present where Rawls Creek meets the Saluda River. The flood depth
corresponding to this maximum area is computed using the known riverbed
geometry.

e Initializing a maximal dam breach discharge of 3000 m?®/s under condi-
tions of fast erosion we calculate the corresponding flood depth at 12.5
meters. We estimate the flow up Rawls Creek to 3.5km.

e Setting the breach to be a slow eroding breach of discharge reaching max-
imal output at 1000m?/s, the water depth was 8.9 meters. This corre-
sponds to flood waters rising to an elevation which at maximum would
flow a distance of 2.5km up Rawls Creek.

Figure 6: Hydrograph at Rawls Creek of Large Discharge Breach Model.
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5.2 The State Capitol
5.2.1 Simple Estimates

We determine a necessary condition for the floodwaters to reach the capitol
using energy conditions. Specifically, consider a point p in the river. When we

13
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Figure 7: Hydrograph at near the State Capitol Building.
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examine a drop of water at p of mass m, velocity v, and height above sea-level
h, we find
Energyatp = E,
KE, + PE, + remaining terms
= 1 xm=*v?+mx* g+ h+ remaining terms
where g is the force of gravity, KE denotes kinetic energy, and PE denotes
potential energy. The kinetic energy when the droplet reaches the capitol must
be at least zero, so
Eip = KEip+ PE,, + remaining terms
> 0+ m*g=h'+remaining terms
By conservation of energy, the remaining terms at the top are greater than
the remaining terms at the bottom. Applying this to the equation
0 = Etop — Epottom = m * g * h' + remaining terms,,, — 5 * m * v> — m % g « h — remaining terms; ., >
we see that:

1
m*g*h’—i*m*v2—m*g*h<0

thus,

1
i*m*v2>m*g*h'—m*g*h:m*g*(h’—h)

or rather, it must be that

v>1/2%xgx(h —h)

for the water to reach the capitol building.

14
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5.2.2 Implications in Our Model

Without accounting for the change in height of the flood waters toward the
bottom of the Saluda River, this implies that the river must be traveling at
least 65 mph. Using the data from the hydrographs at Columbia city from our
slow, low flow model the flood elevation when the peak flow reached the city
was 5.24m. With the flood elevation from our model, the water would have to
be moving at a speed of 25 mph. In our model the river is flowing at 5 mph.
Clearly this is a ridiculous speed for our flood to be traveling.e Testing the
System We attempt to maximize flowrate and minimize cross-sectional area
in order to maximize the kinetic energy through extensive testing on computer
generated hydrographs, i.e. hydrographs that did not fit within the parameters
specified by our flood mode. In our model, whenever the maximal depth of
the floodwater at the capitol building was 10.6m. The maximal velocity at
this height was .32 m/s which did not have enough energy to reach the capitol
building. Without the ability to test extreme flowrates from the dam breach,
our model was incapable of reaching the State Capitol Building.

6 Strengths and Weaknesses of Our Model

The one-dimensional open channel flood model we adapted is relatively easy to
understand and to perform calculations with. However, it is insufficient if accu-
rate floodplain estimation is needed. By the nature of our river model, where
we assume that the river does not change direction, implicitly and explicitly
we assumed that water could only flow in one direction. This made computa-
tion of specific behavior of the flood at points off the mainstream difficult. A
one-dimensional One Step Flood model could not predict forces of back flow
in any direction other than downstream. Thus our estimate of the distance up
Rawls Creek was entirely dependent on the depth of the flood water and our
less than perfect elevations of the modeled river geometry. This is still a fairly
decent approximation since the topographical data around the creek was very
wide and flat, thus water flow in our model would spread so as to remain flat
and fill the cross sectional area.

A strength of he one-step model is a robust model that allows works well at
any time step and with less than perfect initial conditions while still yielding
attenuated waveflow.

15
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