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SUMMARY 

 

 

In this paper we present a method of optimally scheduling trips travelling down 

Big Long River. Our model takes the number of campsites and the relative 

distribution of types of trips as parameters and generates a schedule that 

maximizes the number of trips and determines when each should be launched. We 

determine the optimal launch date of each trip by modeling the collection of trips 

as a chemical system of crystallizing molecules and use the method of Simulated 

Annealing to generate a launch schedule in which human interactions are 

minimized. Starting with a mathematically derived upper bound on the number of 

trips we reduce the number of trips until we find an amount which allows the 

model to produce a valid schedule. In this paper we take into account user 

comfort and emergency needs by scheduling three campsites per trip per night. 

This paper also discusses the flexibility of our model and presents sample output 

for a user-defined input. 
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In this paper we present a method of optimally scheduling trips travelling down 

Big Long River. Our model takes the number of campsites and the relative 

distribution of types of trips as parameters and generates a schedule that 

maximizes the number of trips and determines when each should be launched. We 

determine the optimal launch date of each trip by modeling the collection of trips 

as a chemical system of crystallizing molecules and use the method of Simulated 

Annealing to generate a launch schedule in which human interactions are 

minimized. Starting with a mathematically derived upper bound on the number of 

trips we reduce the number of trips until we find an amount which allows the 

model to produce a valid schedule. In this paper we take into account user 

comfort and emergency needs by scheduling three campsites per trip per night. 

This paper also discusses the flexibility of our model and presents sample output 

for a user-defined input. 
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1. Assumptions and Representation 

 
a. Global Assumptions 

 

As per the problem statement we assume that all campsites are evenly spaced, 

with the distance between two consecutive campsites given by 

� = 		 (225	��	
�)/� where Y represents the total amount of campsites. We can 

then represent the schedule as a grid with x-axis representing time in days and y-

axis representing distance (measured in multiples of d). Therefore, each point 

(x,y) with integer coordinates represents campsite number y on day x, where 

campsite 1 is closest to First Launch and campsite Y is closest to Final Exit.  

 

Sample values used to generate data are described in Section 4a: “Sample Input” 

 

b. Modeling a Single Trip  
 

The ultimate goal of the model is to increase the total number of trips while 

preserving quality and variety of trips. When deciding how to best model a trip 

we came to a compromise between these two by enforcing that each trip has a 

specific, pre-determined total length that is determined by the camp director 

before the start of the season. In our model we have decided to set aside three 

campsites per active day of each trip. The first “base” campsite is determined by 

the average pace of the trip. Given the length of the trip we can determine the 

average amount of miles the trip must travel per day, and round down to the 

nearest campsite to determine at which campsite they will spend the night. To 

give campers variety and choice in pace, our model also guarantees that the 

campsites immediately before and after the “base” campsite are also unoccupied. 

This allows boaters to choose between three potential campsites every day, 

meaning that they have three paces to choose between every day. Setting aside 

three campsites for each day of a trip also guarantees that never are more than a 

third of the campsites filled, which reduces the amount of people on river and 

allowing tourists a closer connection to nature and less interaction with other 

trips. 

 

As we discuss our model notice that we completely disregard the fact that there 

are two different kinds of boats. The length of a trip entirely determines the trip’s 

average speed and therefore which campsites must be set aside for it. However, as 

will be discussed in Section 4A, “Results Generated By The Current Model”, the 

kind of boat chosen (motorboat or oar-powered) will affect the length of the trip, 

and is therefore accounted for in our model.  
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The above represents a trip of length 6 (the trip will spend 5 nights in campsites) 

that starts on day 1 and ends on day 5. Each point represents a campsite that is set 

aside for this particular trip on the day specified by the x-axis. 

 

2. Modeling a System of Trips 

 
 

a. Annealing and Crystallization in Chemistry and Metallurgy 

 
Crystallization of a material plays a critical role in Chemistry and Metallurgy and 

is the procedure of converting a material from a ‘impure form’ to a ‘crystalline 

form’. Crystallization arises when a material in ‘impure form’ is heated to a very 

high temperature, allowing individual molecules to transition between almost any 

configurations. As the material is cooled, the molecules begin to favor lower-

energy configurations, and thus begin to collect in local and global minima. 

However, since the temperature is lowered slowly, molecules generally do not 

collect in local minima because a high temperature allows them to jump out of a 

local minimum with much more ease than out of a global minimum. Thus, as the 

energy is lowered, the molecules of the material collect in the global minimum, 
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yielding the crystalline form of the material. This is how crystals are made from 

crude materials in Chemistry and Metallurgy. 

 

b. Energy 

 
Given a system of trips (read “collection of trips”) with determined lengths, we 

can calculate the coordinates of each of the campsites that will be set aside for 

each trip. Define the energy of the system as the amount of times that two trips 

require the same campsite on the same day. For example, if our system consists of 

two trips that are perfectly overlapping (they start on the same day and last the 

same amount of time) then each campsite used by one trip will also be used by the 

second trip. Thus the energy would be twice the total number of campsites 

required by one trip. 

 

c. Simulated Annealing: Overview 

 
We treat a system of trips similarly to the materials described above. A random 

system is generated where N trips are distributed randomly among D total days. 

The energy of the system is calculated, and we define a ‘neighbor’ of this system 

as a system that can be derived by changing the start date (therefore moving all 

campsites) of one trip by no more than five days. Thus, each system has a total of 

ten times the number of trips neighbors. At each iteration of the process, the 

current system picks a random neighbor, and if the energy of the neighbor is 

lower than the energy of the current state, the system moves to this new state. 

Otherwise, if the energy change is unfavorable (ie the energy of the neighboring 

state is higher than the energy of the current state) then the probability of moving 

to this high-energy state is determined by a function of the Temperature of the 

system (details of the form of the probability function can be found in Section 2f). 

 

This process, aptly named “Simulated Annealing”, ensures that the system is 

always make a net move towards a 0-energy system (where there is no overlap 

between trips) but also does not get stuck at local minima. If the system moves to 

a relatively low-energy neighbor) then there is a probability (as a function of 

temperature) that the system will move out of the local minimum. We chose to 

use the Simulated Annealing optimization procedure over a greedy-algorithm 

because of the inherently large amount of possible configurations of Trips and 

therefore large amount of local minima. 
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d. Input Parameters: 

 
• Y: Number of campsites. This is determined by the camp director. 

• Proportion of each kind of trip: this is determined by the camp director 

based on demand for each kind of trip. If the only goal is to maximize the 

total number of trips (without regard to providing a variety of trips) then 

the director should choose to launch exclusively six day trips (because 

shorter trips occupy less campsites overall, and therefore allow for more 

total trips). 

• Length of boating season: For simplification, we assume six months is 

exactly 180 days, but that might not fit exactly with reality. Still, the 

process we use to find the optimum schedule works for any number of 

days. 

 

e. Simulated Annealing: Specifics 
 

According to [2], a simulated annealing algorithm has the following elements: 

 

1. A finite set S representing all of the possible solutions. In our case, this is 

the set of all possible arrangements of start dates of all of the trips, 

regardless of whether the arrangement adheres to the restriction that no 

two trips can use one campsite at the same time.  

2. A function J:S→R which represents the energy of each member of S. Our 

implementation of the energy function is described in Section 2b. 

3. For each element i in S, a subset of S called S(i) which defines the 

“neighbors” of i. In our case, the neighbors of i are all of the elements of 

S where the start date of exactly one trip is changed by no more than 5 

days. 

4. A cooling schedule function defined as T: N → 0 which defines the 

probability that we accept a move from our current state to a worse state.  

5. An initial state. In many Simulated Annealing implementations this initial 

state is randomly selected, but in our implementation we create an initial 

state where trips are distributed evenly throughout the possible starting 

days. 

 

To improve runtime their implementation also includes a matrix with values 

representing the probability of choosing each of the neighbors of the current state. 

Due to time constraints we omitted this modification and chose which neighbor to 

move towards randomly. However, this should not change whether the process 

converges, only runtime.  
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f. The Probability Function 
 

As described by several papers, simulated annealing functions by iterative 

improvements of the initial state [1]. At each iteration, the algorithm randomly 

chooses an element from the neighbors of the current state; if the chosen neighbor 

has a lower energy the algorithm iterates again with initial state equal to the 

neighbor state. If the chosen neighbor state has a higher cost, then the algorithm 

decides whether to accept it as the new current state with probability  

 

� = 	exp( ∆��(�)) 
 

where ∆� is the difference between the energy of the neighbor state and the 
current state (this is negative when the neighbor state has higher energy than the 

current state) and T(I) is the “temperature” of the system as a function of current 

number of iterations the algorithm has gone through. The purpose of the energy 

function is to prevent the algorithm from getting stuck at local minima while also 

being less likely to accept worse solutions as time goes on, thus pushing the 

system to the global minimum of energy 0. 

 

g. The Temperature Function  
 

The probability function is strongly dependent on the choice of the temperature 

function T. According to Theorem 1 from Bertsimas and Tsitsiklis [2], simulated 

annealing using a temperature function of the form T(t) = d/log(t) is guaranteed to 

converge for d > d*, where d* is the maximum “depth” of the local minima of J. 

Thus we have chosen the temperature function  

 

�(�) = 	 30
log	(�) 
 

The number 30 was determined empirically by testing many values for d. We also 

tested temperature functions the decreased more quickly, such as the square root 

function, combinations of power series, and several combinations of these 

functions. In most cases the resulting temperature function declined to quickly, 

allowing the system to get stuck at local minima. 

 

Our usage of simulated annealing is not entirely typical. The intended purpose of 

the Simulated Annealing algorithm is to determine the state with minimum energy 

when the absolute minimum energy attainable is not known. This means that the 

temperature function must grow very slowly to guarantee that the system does not 

get stuck at a local minimum. In our case we know that the absolute minimum 
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energy is 0, and so we can stop the simulation as soon as we find a system whose 

energy is 0. This vastly reduces computation time, which is one of the biggest 

issues with the algorithm 

 

3. Creating a Schedule 
 

a. Upper Bound  
 

Consider the lower 
�
� of the grid. After the first day, our model requires that a trip 

travel at least 
�
� − 1 campsites (this is the lower bound for an 18-day trip) and at 

most  
�
� + 1  campsites. Thus, every trip must stop for the night somewhere in the 

box determined by $1, &'(	$	 �� − 1	, �
� + 1', where D is the total days in which 

trips can run(6 months is approximately D = 180). The total amount of campsites 

in this area is given by: 

 

 

 

 

Notice that it is impossible for any trip to start within 6 days of the last day of the 

season, so the triangle of base 6 and height 
�
) + 2 is inaccessible to trips. Thus we 

are left with a total of 

 

 

 

 

possible first-stop campsites. 

 

Now consider a trip T with total length d. Of the campsites in the area described 

above we will need to set aside at least 3	(*	++, -.�/) campsites for use by a trip 

(i.e. a trip of length 6 will need three campsites and a trip of length 18 will need 

9). Using this, we can calculate an upper bound on the number of trips that we can 

launch. Let P represent the total number of trips and pd represent the number of 

trips of length d. We can write 
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In our model the user is allowed to input the desired frequency of each trip. This 

means that each value 0_� ≡ 		3_�/� is given as input. Thus we have that the 
total number of campsites used (of the ones in the area described above) is given 

by: 

 

 

 

 

 

 

 

 

 

 

 

 

b. Finding the Optimal Schedule 
 

To find the optimal schedule with the maximum number of trips based on the two 

parameters Y and {c_d}, we take a two-step approach. First, we determine a 

starting point for number of trips. This is done by calculating the absolute upper 

bound P as above and then making our first guess for the number of possible 

number of trips some fraction of P. Some experimentation has shown that a good 

starting guess is 4P/5. Then, we use simulated annealing to determine if it is 

possible to create a schedule with that number of trips. If it is, we add one to our 

number of trips and repeat the process until we have found the maximum possible 

number of trips. If it is not possible to create a schedule with trips equal to 4P/5, 

we subtract one from the number of trips and try again until we are able to 

successfully create a schedule.  

 

 

c. Advantages and Disadvantages of our System 
 

One major advantage of our system is that the method to create an optimal 

schedule is not overly dependent on the model of a single trip. This makes it very 

easy to customize. For example, if demand rises to the level where the camp 

director decides that it is worth it to restrict a group to only two possible 

campsites each night, or even just one, then only simple changes are needed in the 

way we define a trip, and nothing in the simulated annealing algorithm needs to 

change. This could also allow groups to choose a custom schedule of how far they 

want to go each day, rather than our current model where a group has to go 

(roughly) equal amounts each day, although they are allowed some variation.  



Team 15421  Page 11 of 16 

 The biggest disadvantage of our model is that it uses simulated annealing 

for something other than its intended purpose. As discussed above, simulated 

annealing is only guaranteed to converge if given infinite iterations, so although it 

is unlikely, our algorithm could potentially return a number of trips that it less 

than the maximum possible. Also, our simulated annealing is slow and the fact 

that our algorithm requires repeated simulated annealing means that it could take 

a long time. A mitigating factor to this is because the planning for the entire six 

months happens at once, the calculations only need to be done once and can be 

done well before the season that the river is traversable begins.  

 Another problem results from our model of a trip. Because we assume that 

a trip moves approximately 225/length miles each day, with can only vary by +-1 

each day, there will be some campsites which are never used, such as the 

campsites which are closer to First Launch than the closest campsite we assign to 

an 18-day trip. This problem would not be difficult to fix with more time to 

develop a more nuanced model of a trip. As has been mentioned before, our 

simulated annealing algorithm can be used with a wide range of types of trips, and 

thus would not have to be changed (as long as the new model of a single trip still 

used its parameters to assign certain campsites to the trip on certain days).  

 

4. Results Generated by the Current Model 
 

a. Sample Input 

 
We have successfully created a program that allows a given input of trips to be 

distributed amongst a given number of days to ensure that there no two trips ever 

require the same campsite. For the results discussed below, we have used the 

following values of input:  

 

 

Quantity Value 

Total Number of Trips 120 

Number of 6-day trips 36 

Number of 8-day trips 24 

Number of 10-day trips 22 

Number of 12-day trips 19 

Number of 14-day trips 9 

Number of 16-day trips 6 

Number of 18-day trips 4 

Number of days 180 

Number of campsites (Y) 50 
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Notice that for simplicity we have only included trips of even-length. This is easy 

to change in the code that runs the model. 

 

The rationale behind the distribution of days above arises by noticing that the trips 

that utilize motorboats (travelling 8 miles per hour) will only need to boat an 

average of 28.125 hours to reach the end of the river. We decided that it is 

reasonable to assume that riders wish to be on the boat at least three or four hours 

a day, meaning that most popular trips for users on motorboats are the shorter 6- 

or 8-day trips. Similarly, oar-powered boats travelling 4 miles per hour will 

require 56.25 total hours to reach the end of the river. We decided that people 

who use oar-powered boats are likely athletic and wish to spend more of their 

time boating and approximated that they will boat an average of 5 or 6 hours in a 

day, meaning that the most popular trips for oar-powered boats will be the 10- and 

12-day trips. As mentioned before, these values are very easily altered in the 

program that runs the simulation. 

 

b. Sample Output 
 

Below you can see two scatterplots: the first shows the campsites used by all of 

the trips after evenly distributing the trips amongst the first 120 days (before any 

optimizations), and the second is the result of the optimization procedure 

discussed in Section 3. Each point on the plot represents a campsite (y-axis) that 

is scheduled to be used by a trip on a specific day (x-axis). Here, dark points 

represent multiple trips requiring the same campsite, something that is strictly 

forbidden in a fully-optimized system. Plot two shows a similar plot after 

optimization is complete, now with zero trip intersections. These darker points are 

absent in the optimized model. As per the upper bound function derived in 

Section 3a, the upper bound on the amount of trips is 258. Below you will find a 

schedule determined for 120 trips. However, due to time constraints we did not let 

our algorithm run until completion, and so did not obtain optimal results. We 

believe that with time our algorithm will be able to fit many more trips into the 

schedule. 
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Figure 1: Random Distribution of trips (before optimization procedure) 

Before optimization the trips are distributed evenly amongst the first 

120 days. Notice that there are many dark circles – each represents an 

intersection of two or more trips (ie two different trips are scheduled to 

use the same campsite). This particular configuration has energy 1268, 

meaning that there are 634 intersections. 
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Figure 2: Trip distribution after optimization procedure 

After optimization the trips are distributed so as to have no intersections. Notice 

that there are no dark circles and that significantly more of the 180 available days 

are used. The energy of this system is 0. This specific optimization required 

approximately 3.4 million iterations of the simulated annealing procedure, totaling 

approximately five minutes of computation time. 

 



Team 15421  Page 15 of 16 

Dear River Manager: 

 

 

 We have prepared a method to determine the maximum number of trips 

which can be sent down Big Long River each year.  

When deciding how to best model a trip we came to a compromise 

between maximizing the amount of trips and giving users many varieties of trips. 

We chose to enforce that each trip has a specific, pre-determined total length 

(determined by yourself before the start of the season). Once a trip begins, every 

night it has three campsites reserved for it. The boaters are told which campsites 

are reserved for their trip and are allowed to choose which of the three sites they 

wish to stop at each day. The purpose of this is two-fold. One, we allow users a 

decent variety of daily pace and allow them some choice in how long they stay on 

river each day. Two, this method ensures that no more than a third of the 

campsites are ever full, which will decrease the likelihood of two groups 

interacting and allows you, the manager, time to organize maintenance of the 

campsites. Although setting aside three campsites per trip, per night decreases the 

amount of total trips that can be sent we believe that this sacrifice is well worth 

the convenience gained from having non-full occupancy. 

As for the specific function of our method, we ask you to input the 

percentage of trips that is a specific length (ie if this season you would like half of 

the trips to last 6 days, you would enter 50% into the slot that determines the 

amount of 6 day trips) and using an optimization procedure called Simulated 

Annealing we calculate the optimal launch schedule for a maximum amount of 

trips. Note that you do not need to tell us what type of boat a trip uses (oar-

powered versus motorized) – we ask you only to input the length of each trip 

(once you have a schedule you can select which of the trips of a given length are 

oar-powered and which are motorized). 

After some calculation, our method produces a schedule where each trip is 

assigned a day when it should be launched. We also produce a diagram which 

tells you which campsites have been reserved for each trip on each night.  

 Our model is currently designed to be very flexible. It is very easy to 

change the model so that less (or more) campsites are set aside for every trip or so 

that trips can have variable lengths (in this case the users, rather than yourself, 

would choose how long their trips would last). For this reason we hope that you 

do not hesitate to offer corrections or changes to the method, as it is quite likely 

that your suggestions will be easy to implement. 

 

Best of luck, 

COMAP Control #15421 
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