244 Interpolation and approximation

properties that we shall now develop. First we note by a simple algebraic
reduction that for any g(x) and S(x) € C*a, b]

b b b
j [gu(x) . Sn(x)]z CI.\' — f grr(x)z dX i S”(-\.)Z d.\'

(5.48)
b
— 2f S"()[g"(x) — S"(x)] dx.
We concentrate on the last integral in (5.48) and see that integration by parts
yields

b

S"(0)[g"(x) = §"(x0)] dx
‘ (5.49)

b b
= $"W[g'x) — S'W]| - f S ()[g"(0) = '] dx.

a

For the first extremal property we let g(x) be any function in C*[a, b] that
interpolates f(x) at {x;}/—,. If S(x) € Sp(X,), then $"'(x) is a constant, say «;, on
each subinterval (x;, x;; ;). Therefore

n—1 X

b +1
J S"g'x) — S'W]dx = Y « [¢'(x) — S'(x)] dx

j=0 £

n—1

S afgy) = SW)]

i=0

=0

Tj+1
l_)
since g(x;) = f(x;) = S(x), 0 =j = n.

Now if S(x) = S®(x) (the natural cubic spline), then §"(b) = $"(a) = 0; and

so the integral on the left-hand side of (5.49) is zero. Using this result in (5.48)
yields

b b b
j g"'"(x)? dx = ST(x)2 dx + f [g"(x) — §"(x)]? dx

(5.50)
b
= Sn(x)z d_x‘

a

We leave it to the reader to show that equality holds in (5.50) if and only if
¢(x) = S?(x). Hence, by (5.50), among all possible functions in C?[a, b] that
interpolate f(x) [including all of Sp(X,), all interpolating polynomials, and even
f(x) itself if f”(x) is continuous], the integral [% g”(x)* dx is minimized if and
only if g(x) = $2x). This is the first extremal property and it explains the origin

5.2 Polynomial interpolation 245

of the name *“‘spline’” for the mathematical approximation since the ‘‘strain
energy’’ of the drafter’s elastic rod is essentially proportional to the integral of
the square of the second derivative, which we see is minimized by S®(x). The
property is also called the **minimum curvature’’ property since the curvature
of any approximation is essentially the integral of the square of the second
derivative. Thus the oscillatory behavior of the approximation is minimized by
$®(x). Yet another interpretation of (5.50) is that among all functions in CHas
b] that interpolate f(x), the natural cubic spline is closest to being a broken line
since the broken line ¢(x) has zero curvature; that is, [2 ¢”(x)? dx = 0.

For the second extremal property we now restrict the function g(x) in (5.49)
to be in the smaller set of functions that interpolate f(x) and also satisfy g’(a) =
f(a) and g’(b) = f'(b) (such as the Hermite interpolating polynomial, for in-
stance). This time we let S(x) = SD(x); so §'(a) = f'(a) = g'(a) and §'(b) =
f7(b) = g’(b). Using this, we-again see that the integral in (5.49) is zero. There-
fore, by (5.48), for all g(x) of this particular form.

b b b
f g (xR dx = S”(x)? dx + [g"(x) — §”(X)] dx. (5.51)
[Equation (5.51) should not be confused with (5.50) since g(x) is now more
restricted, but note that $”(x) has minimum curvature in this smaller class of
functions.] Now we let u(x) be any cubic spline on the points {x;1_ 9, whether it
interpolates f(x) or not. We then let g(x) = f(x) — «(x) and S(x) =SD(x) — u(x).
Note that S(x) is still a cubic spline and has the properties that S(x;) = g(x),0=
J=n,and S’(a) = g'(a) and S’(b) = g’(b). Thus this particular choice of g(x)
and S(x) can be used in (5.51) and yields [% g”(x)> dx = [[g"(x) — §"(x)]? dx,
or

f"[d%f"(x) B L/z,«x)]‘l B f”[d?f(x) B dzsmm]z e,

dx? dx> dx? dx?

[We leave it to the reader to verify that equality holds in (5.52) if and only if
u(x) = §V(x) + ax + B.] Formula (5.52) is the second extremal property. It says
that if we measure the distance between f(x) and any cubic spline u(x) by the
formula [}, [f”(x) — u”(x)]* dx, then this distance is minimized when u(x) =
S$P(x) [so $(x) is a *‘best approximation’” to f(x) in this sense]. In summary,
among all cubic splines u(x), the error f(x) — u(x) has minimum curvature when
u(x) = §V(x). Among all functions g(x) in C*[a, b] that interpolate f(x), the
Junction with minimum curvature is g(x) = S@(x). Ampng all functions g(x) that
interpolate f(x) and satisfy g'(a) = f'(a), g'(b) = f'(b), the function with
minimum curvature is g(x) = SP(x).

We conclude this section by giving error bounds on the approximation of
Sx) by S(x) and the approximation of f”(x) by S’(x) where S(x) can be taken to

246

Iinterpolation and approximation

be either SV(x) or S®(x). For the sake of notation we let the error function be
given by E(x) = f(x) — S(x) for x € [a, b]. Then E’(x) = f’(x) — §’(x) is the error
of the derivative approximation. We also let
h= max (x+1 — X)),
0=i=n—1

the maximum step size. Let x be any arbitrary fixed point in [a, b]: then there
exists some j, 0 < j = n — 1, such that x € [x;, x;,,]. Since E(x;) = E(x;,) =0,
by Rolle’s theorem there exists a point ¢ € [x;, x;,] such that E’(c) = 0. Thus,
[z E"(t) dt = E'(x) — E'(c) = E’(x). By the Cauchy-Schwarz inequality (see
Problem 9, Section 2.6, or Theorem 5.8, Section 5.3), we have

: = (f E"(1)? dt> (J: 12 dt)

= (f E"(1)? dr) lr=g| = hf E”(1)? dt.

E W] =

j "B -1 dt
' (5.53)

From either (5.50) or (5.51) we find

& b b
f E"(1)? dt Sf E'@2dt=| [f(t) — S"(O] dt

a

b b b
= |)P dt — f S”rdt = | fU(t)? dt.

« a
Substituting this expression into (5.53) and taking square roots yield
b 1/2
|E‘)| = | () — 80| = h”‘Z(FE)? dt) for all x € [a, b]. (5.54)
Thus for x € [a, b], |f"(x) — §'(x)| is bounded by an expression proportional to
h'2.,
Now, as above, let x be fixed in [a, b] and thus x € [x;, x;.] for some j.

Since f;;ij E'(f) dt = E(x) — E(x;) = E(x) — 0 = E(x), we have

|E@)| =

f E'(1) dt‘ = J (max ‘E’(z)l) dt = h max, |E"(2)|.

=z=<b
Then by (5.54) we have
b 1/2
|E(x)| = h32 (f7(@)? dt) . (5.55)

giving a bound for |f(x) — S(x)| that is proportional to 4**.

5.2 Polynomial interpolation 247

Formulas (5.54) and (5.55) are important as error bounds, but also since the
bounds are independent of x, they tell us that if we increase the number of
interpolating points in a manner such that 7 — 0 as n — o, then S(x) and S’(x)
converge uniformly to f(x) and f”(x), respectively. The inequality (5.54) is also
significant in that it tells us that S’(«) is a good approximation to f’(«) for a €
[a, b]. Thus cubic splines can be used as a method to find a numerical approxi-
mation for not only f(x) but f’(x) as well (see Example 5.12). This property is
not shared by interpolating polynomials, p,(x), as their oscillatory behavior
tends to exaggerate the difference between f”(x) and p;(x), and one must be
extremely cautious in using interpolating polynomials for the purpose of nu-
merical differentiation.

With a more careful mathematical analysis, sharper error bounds can be
derived. Typical results are the following from Hall (1968). If f9”(x) is continu-
ous for a = x = b, then

9 + 3

[EQ)| = 5/384)||), h* and |E'()| = <*216) || Fe] 7.

PROBLEMS, SECTION 5.2.6

l.i::'To illustrate what can happen in even the simplest Hermite-Birkhoff interpolation
__ problems, consider the following three problems.

a) Find p € @, such that p(0) = 1, p’(0) = 1, pd) = 2,p@) = 1.
b) Find p € @, such that p(—1) = 1, p'(—1) = 1, p()=2,pR2) = 1.
¢) Find p € ®; such that p(—1) = 1, p’(—=1) = —6, p'(1)=2,pR2) =1.

Using the method of undetermined coefficients, show that problem (a) has a unique
solution, problem (b) has no solution, and problem (c) has infinitely many solutions.

2. Find the third-degree Hermite interpolating polynomial for f(x) = cos(x) on [0.3,
0.6], and compare the results with those of Example 5.3 [sin(0.3) = 0.295520 and
~sin(0.6) = 0.564642].
j 3.\ Find in @, the polynomial p(x) that interpolates f(x) = | x| as follows: p(—2) = f(—2),
;)P'(—Z) =/"(=2), p(0) = f(0), p(2) = f(2), and p'(2) = f'(2). Compare your results
" with those of Example 5.12 to see that this polynomial is gﬂg‘_a/lly_,better than the
interpolating polynomial but not as good as the cubic spline.

4. Write a set of subroutines that can be used to generate the natural cubic spline
interpolator on equally spaced knots and that can be used to evaluate, differentiate,
and integrate the resulting cubic spline. These subroutines could take the form
outlined below. @

As a start, assume the main program has the first knot X0, the knot spacing H,
and a value for N; the knots x; are given by x; = X0 + J * H, 0 = J = N. Also assume
the main program has arrays DATA and YPP where DATA(J) = f(x;), and where

