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in [a, b]. (A trivial example of this is given when x = x; = a + jh, but x; is not a
Chebyshev zero. For then, 0 = |¢,(x;)| = |es(x))|.) Usually, however, if we are
free to select the interpolating points at our own discretion, we prefer to use
Chebyshev interpolation since we can determine an error bound a priori for all
values of x.
There are other ways of using (5.27) to estimate the error of interpolation.
: For example, let w(x) be a nonnegative weighting function as given in (5.1b).
,. Multiplying the squares of both sides of (5.27) by w(x) and integrating from a to
b yield

b 1/2
leCo, = ( f (f(x) = p())*w(x) dx)

= g b kiled 1} . \ v
- U{ < (n + 1! W(X)> w(x) d.x>

. (5.31)
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After we investigate orthogonal polynomials in a later section, we will show
how to choose the interpolating points, {x;}/_ . in order to minimize ||W||,. We
merely state here that they are not, in most cases, the zeros of a Chebyshev
polynomial.

5.2.4. Translating the Interval

Often it is necessary for practical purposes to take a problem stated on an
interval [c, d] and reformulate the same problem on a different interval [a, b].
This necessity is especially true in problems that require the numerical approx-
imation of integrals or in problems concerning orthogonal polynomials. We
have already come across this problem in Chebyshev interpolation, in which
Theorem 5.6 is applicable to the specific interval [—1, 1] and says nothing about
the optimal choice of interpolation points in an arbitrary interval [a, b]. The
change of variable that usually achieves our purposes of reformulating a prob-
lem on [c, d] to one on [a, b] is the ‘*‘straight line’’ transformation x = mt + 8
fort €[c, d]and x € [a, b]. Here m and B8 are chosen such that x = a when ¢t = ¢
and x = b when r = d. A simple algebraic computation will show that this
transformation is given by

x=<b_a>t+ <“d_”">. (5.32)

d— ¢
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To illustrate this procedure, let us suppose that we wish to perform
Chebyshev interpolation on an arbitrary interval [a, b] instead of the interval
[-1,1]. Thent € [—1, 1] = [c, d] and x € [a, b]; so by (5.32)

_(b—a a+b
o= (7% ()
or (5.33)

. 2 _at+ b\ _2x—a)
“F—a" 2 )

1 = 1s

We now define the “‘shifted’” Chebyshev polynomial of degree k for x € [a, b]

- }
ilx) = Tt = TI;(H o 1> = cos [k cos"‘(z((bx—__;)2 = 1)] . (SJ

Since T,.(¢t;) = 0 for t; = cos((2i + 1)m)/2k, (== k— 1, then x; = (b — a)/2)
+ (b + a)2,0=i=k— 1, are the zeros of T}, (x). Furthermore, T,(x) = 1, T,(x)
= 2(x — a)/(b — a) — 1; and so from (5.29)

T 1(0) = Tiy 1(0) = 2T(t) — Ty (D)
_Atix—~a) ~ a5 _
- 2< b — a) 1> T (x) = T 4(x), k=1, (5.35)

We leave it to the reader to verify that the leading coefficient of 7). (x) is
2k :1(2/(19 — a))*, k = 1. Therefore, if we interpolate in [a, b] at the zeros {x;}/—,
of T, . ,(x), we have W(x) = 27"Q2/(b — a@)) " ' T, ,,(x). Then

max |W(x)‘=2"< . >¥n1

a=sr=b b — a
since

max |74 0| = _max. | T +1(0)] = 1.

Thus the error bound, (5.30), becomes

Kn Kn b — Bl
le)| = |f(x) — pv)| = wED max |W()| = e 1)!< > a) . (5.36)

U!uswsb

It is easily seen that Theorem 5.6 is valid on [a, b] with respect to this W (x), and
so W(x) is the smallest monic polynomial of degree (n + 1) with respect to

|W||l. = max |W()|. =

asr=b

EXAMPLE 5.9. Suppose f(x) = cos(x) and [a, b] = [0, /2], and suppose we wish to
find a value of n and interpolating points {x;}/—, such that the error of the nth-degree
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interpolation is less than 10~¢ for all x in [0, 7w/2]. Now K, = 1 for all n; so with Eq.
(5.36), the smallest value of n for which

__ 1 (b—a\""t 1 e "
2%(n + 1)'< 2 > - 2"(}’1 = 1),(77/4) < 10

is n = 6. Thus the interpolating points are the zeros of T,(x), which are the points
X, = Z—(cos[(zj + Dm/14]+1), 0=j=6.
From (5.36)

|6 = 5y /A = 571 x 107, x €0, m/2].

The transformation technique of this section is quite simple but is used
often and will be referred to in later sections.

PROBLEMS, SECTION 5.2.4
1. Asin Example 5.7, use (5.28) to bound the interpolation error at x = .15 and x = .35
when p(x) interpolates f(x) at x; = .1 + /10,0 =i = 5, for

D) () = cos)  b) [W =0 ©) f) = 74—

Compare the bounds with the actual errors; use the program in Problem 8, Section
5.2.1. -

2. Use (5.36) to bound the interpolation error at any point in [.1, .6] for the functions in
Problem 1 when the interpolation points are the zeros of T).(x) shifted to [.1, .6].
Compare your results with the results of Problem 1.

3. How large should k be if we wish to obtain an interpolation error of 107 or less
throughout [a, b] by interpolating f(x) at the zeros of T(x) for
a) Fx) = cos(x), 0.3 = x=10.6
B)f) =12 +x, -1=x=1
¢) f(x) =Inx), 0.l =x=1
'f(ij“}f(x) =¥ —1=x=1.

4, Let xq, X1, . - . , X, be equally spaced points in [-2, 2], x, = —2, and x,, = 2. Call a
plotting routine to sketch W(x) in increments of .05 for n = 10, 15, 20. Note the

P characteristic shapes and that | W(x)| is largest near the endpoints *2.

f \S)TO use the error estimate (5.28), we need some way of estimating |W(x)|. For
equally spaced interpolation points, there are a number of ways of estimating
\ W(x)|. For simplicity, suppose we are interpolating in [—1, 1] with an odd number
of equally spaced points. Thus suppose that n is even, W(x) = (x — xo)(x — xy). . .




{

5.2 Polynomial interpolation 233

(x — x,) where h = 2/n, x; = xy + jaforj=0,1,...,nand where x, = —1,x, = 1.
Let N = n/2 and show that

Wkx)=&+ Ni)x+ (N— Dh) -+ (x + B)x(x — h)--- (x — (N — Dh)(x — Nh).

For x € [—1, 1], write x as x = rh where r is a number such that —N = r = N.
Suppose next that x, _; < x < x, so that N — 1 < r < N. Show that

(n = DY = x- ) = ) [S[WE)|= nlh"~Hx = x,- )0 = x,)].

/6. ﬁhow that the maximum value of the factor |(x — x,_)(x — x,)| in Problem 5, for

Xp—1 = X = X,, is h*/4. Thus conclude that | W(x)| = n!2"~!/n"*1. Also conclude, for
x = (X, + X,_1)/2, that (n — 1)I2"~Yn"+1 = |W(x)|.

7. In Problem 6, for n = 5, 10, and 20, evaluate the upper and lower bounds for | W(x)|.

Contrast the upper bounds with 1/2", which is the bound on |(x = e = )k 5 =
{»)| where ty, t,, . . . , t, are the zeros of T,.,(x).

8. Given (n + 1) equally spaced interpolation points in [—1, 1] where 7 is even as in

Problem 5, show that W(x) is an odd function [i.e., W(x) = —W(—x)]. Thus if we
can find the maximum of | W(x)| for 0 = x = 1, we have a maximum for | W(x)| for
—1 = x = 1. Show that the maximum of | W(x)| occurs somewhere in (x,_,, x,).
[Hint: Show that
‘ W(x + d1) T
W(x)

for 0 < x < x,_, and for x not an interpolation point.] Use the representation of
W(x) in Problem 5 to establish this inequality. This result means that the upper and
lower bounds established in Problem 6 are upper and lower bounds for ||W||... The
inequality in the hint also shows why interpolation at equally spaced points is
usually more reliable near the center of the entire interval.

9. Let f(x) = 1/(x + 2). Using (5.28) and the results of Problems 6 and 8, give an error

estimate for interpolating f(x) at n equally spaced points in [—1, 1] where n is even.
What is the corresponding error estimate if f(x) is interpolated at the zeros of

2 N\Tn+1(0)?
10./}Let n be odd and let x,, x,, . . ., x, be equally spaced in[—1, 1], x, = —1, X ="1.
" The length of each subinterval is 24 where 4 = 1/n. Show that

Wx) = (x + nh)(x + (n — 2)h). . .(x + h)(x — h). . .(x — (n — 2h)(x — nh).

Show that the maximum value of/W(x) or —h = x = hoccurs at x = 0. [Hint: Group-
the factors of W(x) as (x? — n*h?). . .(x> — h?) and show that W’ (x) and W’ (—x) have
opposite signs for any x in (—h, h).] Evaluate W(0) and determine the maximum
interpolation error for f(x) = 1/(x + 2) with x € (—h, h).

11. Verify (5.29) by showing that

cos((k + 1)0) = 2 cos(f) cos(kf) — cos(tk — 1)0).

12. Using Eq. (5.29), show by induction that

a) T(x) is a kth-degree polynomial with leading coefficient 2¢~1;
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b) T.(x) is an even (odd) function if k is even (odd) [recall that f(x) is an even
function if f(x) = f(—x) and that f(x) is an odd function if f(x) = —f(—x)].

13. /Show that T,(x) defined by (5.35) has leading coefficients equal to

)
21 (b L] a), k= 1.

What are the polynomials T,(x) in the special case in which [a, b] = [0, 1]?

*5.,2.5. Polynomial Interpolation with
Derivative Data

Examination of (5.5) and (5.6) reveals that the type of nth-degree polynomial
interpolation that we have studied up to this point is based on the fact that there
exists a unique solution to the (1 + 1) linear equations, p(x;) = f(x;),0 = j = n,in
the (n + 1) unknowns, q; [the coefficients of p(x)]. Thus p(x) *‘matches’ f(x) at
the interpolating points. It is natural to ask if we might not get a better polyno-
mial approximation to f(x) if we forced some derivatives of p(x) at various
points to match the respective derivatives of f(x) at these points [for then we
would be using more information about f(x) and would expect a better approx-
imation]. The extreme example of this procedure is to take only one point, x,,
and choose the coefficients of p(x) such that p?(x,) = f“(x,) for 0 = j = n. This
method yields the following (n + 1) equations in {a;}'_:

a, + axxg + axxg+ o0+ a,xg = flxo)
a + 2“2-)(() ol o nanxﬂﬁl . f’(-\'())

2a, + -+ n(n — Da,xg™® = f"(x)

nla, = ™ (xo).

We note that this triangular system is nonsingular (the coefficient matrix has
positive diagonal elements), and so p(x) exists and is unique. The reader will
recall from calculus that the Taylor polynomial,

n M 5
g(x) = 2 Jt s-\l») (x — xo)’
J=0 J*
also has the property that ¢’(x,) = f(x,), 0 = j = n; and so, by the uniqueness
of p(x), ¢g(x) = p(x). Thus truncated Taylor’s expansions are actually special
cases of this generalized interpolation problem. Since the error of the Taylor
approximation at x is

f(n + l)(é‘:)

TS
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this approximation is quite good if x is **close’” to x, and usually worsens as x
moves away from x,. Note the similarity of this error formula to that of (5.27).

There are obviously many ways of matching derivatives of a polynomial to
respective derivatives of f(x) at various points in order to obtain a linear system
of (n + 1) equations in (n + 1) unknowns [the coefficients of p(x)]. This problem
in its most general form is known as Hermite-Birkoff interpolation. For exam-
ple, we might ask for a third-degree polynomial, p(x), such that p(x,) = [0,
p""(x0) = f""(x0), p'(x1) = f'(xy) and p"(x;) = f"(x,). In this general setting, the
problem need not always have a solution, and the question of finding conditions
under which solutions exist remains unanswered and the subject of extensive
research.

We wish now to consider a special form of this problem known as Hermite
or osculatory interpolation. This form of interpolation not only is important as
an approximation technique, but is useful in the derivation of the cubic spline
approximations of the next section. For simplicity we assume that n is even and
define N = n/2. We consider N + 1 distinct points {x}\_,, and impose the
conditions that p(x;) = f(x;) and p'(x;) = f'(x;), 0 = j = N. Thus p(x) matches
f(x) and p’(x) matches f’(x) at the interpolating points. Since we have 2IN+1)
= n + 2 equations; so we will be searchihg for p(x) in ®,,,, = ®, ., in order that
we have 2N + 2 unknowns, {a;}?¥{ !. As an illustration of the problem, consider
the following example.

EXAMPLE 5.10. Letx, = «aand x, = 8; and assume that f(x) is given such that f(«) =
Yo, f'(@) = v4, f(B) = y,, and f"(B) = y,. Then N = 1 and so 2N + 1 = 3. Find plx) €@,
such that p(x;)) = f(x;) = y;and p'(x)) = f'(x;) = y/ forj = 0 and 1. If p(x) = ay + a;x +
a,x* + asx®, then the equations above become (in matrix form)

1 a o? a? a Yo
0 1 2a 302 | | ay | _ |98
LB p B? a| |wn|
0 1 2B 382 | | ay i

The determinant of the coefficient matrix for this system equals (8 — «)'. Then when
a # B, p(x) exists and is unique. We could solve this system for the a;’s to obtain p(x),
but we shall show for & < g that p(x) is given by

. x - By x —a)x — B)? | =P (= B — w)?
P y°[(B—a)2+2 @~ ay }+"‘[(B~a)2 T - ay ]
| &= o) = B)? o | & = a)*(x — B)
o] o)

S 4

We could approach the Hermite interpolation problem in the manner of
undetermined coefficients as in Example 5.10, but we choose a Lagrangian-
type approach instead. For each j, 0 = j = N, let ¢,(x) be the Nth-degree
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polynomial, as defined by (5.2), with N substituted for n. Now for each j,
0 = j = N, define the 2N + 1)st-degree polynomials

A_,‘(X) = [1 — 2(.’( = Xj)fj'(.\’_;)]f}z(x)
Bi(x) = (x — x;)fF(x).
We leave to the reader to verify that A;(x;) = §;;, Bj(x;) = 0, Aj(x;) = 0, and Bj(x,)

=8, where 0 =i, j = N, and §,; is again the Kronecker delta. Let {y,, y;, . . -,
Yys Yos Via - . » Y4} be any set of 2N + 2) values, and define p(x) € ®,y,, by

P =S (AW + yBW). (5.389)

i=0
Because of the properties of A;(x) and B,(x), it is easily seen that

N
[)(X,‘) - 2 (-V.i i 6f.i + .V_i’ g 0) =Y O=i=N,

i=0

and

N
pix) =3 (- 0+y-8y)=y, 0=i=N.

i=0
We can also show that the Hermite interpolating polynomial, p(x), in
(5.38a) is unique. Assume that g(x) € ®,y, g(x) # p(x), and g(x) also has the
property that g(x;) = y;and ¢'(x;) = ¥/, 0 =j = N. Let r(x) = p(x) — q(x). Then
r(x) € @y and r(x;) = r'(x;)) = 0,0 = j = N. Thus, counting multiplicities, r(x)
has 2N + 2 zeros, a result which contradicts the Fundamental Theorem of
Algebra. Therefore no such g(x) exists and p(x) is unique. Hence we have just

proved Theorem 5.7.

Theorem 5.7. |
Let {x;}})_, be a set of (N + 1) distinct points and {y;}}_, and {y/})~, be any two
sets of N + 1 values. Then there exists a unique p(x) € ®y ., such that p(x;) =
y;and p'(x;) = y{, 0 = j = N, and p(x) is given by (5.38a).

Usually the y; and y; are given by some function f(x) where f(x;) = y; and
f'(x;)) = ¥/, 0=, = N. In this case, (5.38a) becomes

N
p() =Y  (f()A;0) + f'(x)Bi(x)). (5.38b)
ji=0
We leave as a problem for the reader that (5.38b) reduces to (5.37) in the case in
which N = 1.
In the case in which f”(x) does not exist or is unknown, Hermite interpola-
tion is still sometimes used as in (5.38a) where we set y; = f(x;) and y; = 0,0 =
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J = n. This is known as Hermite-Fejér interpolation, and the following result
was proved by Fejér.

For any N, let {x;}}_, be the zeros of the Chebyshev polynomial T, ,(x). Let
f(x) be any function in C[—1, 1] and let p,,. ,(x) be the Hermite-Fejér inter-
polating polynomial in ®,y,, for f(x). Then

lim { max |f(‘) o pzy+1(—")|} =1,

N—>owx =1=r=1

This theorem of Fejér is a curious result since we ask for the condition
Pav+1(x;) = 0 [which is unrelated to f(x)] and still obtain uniform convergence
of the Hermite interpolating polynomials. The result is doubly curious in that
no matter what set of interpolation points are chosen, there are functions Je
C[—1, 1] such that limy_,.. || py — fl|= = + © where py(x) denotes the Lagrange
interpolating polynomial as in (5.4) (c.f., Natanson 1965).

The error analysis for Hermite interpolation, (5.38b), can be carried out in
much the same way as in Theorem 5.5. This time, however, we define the
auxiliary function as F (1) = f(1) — p(1) - CW(@)* with C = (f(x) — p(x))/W(x)2,
W() =11)Z, (t — x;), and p(7) as in (5.38b). Using Rolle’s theorem as before, we
obtain an expression for the error:

N feNERE W (x)2
&) —plo) = T@N+ 2 (5.39)

5.2.6. Interpolation by Cubic Splines

In some practical problems, interpolating polynomials are not suitable for use
as an approximation. For example, in order to obtain a “*good’’ approximation
to a function f(x) by an nth-degree interpolating polynomial, it may be neces-
sary to use a fairly large value of n. Unfortunately, polynomials of high degree
often have a very oscillatory behavior, which is not desirable in approximating
functions that are reasonably smooth. This disadvantage of polynomial interpo-
lation becomes particularly apparent when interpolating tabular data as is
shown in the example below. Also, computational problems arise when the
number of data points is large. For instance, given 100 data points (x,, y,), (x;,
Y1)s -« 5 (Xgg, Vo), it would usually be foolhardy to find the 99th-degree
polynomial p(x) such that p(x;) = y;, i = 0, 1, . .., 99. One alternative to
interpolation, as we shall see in Section 5.3, would be to find a polynomial of a
low degree that “‘best fits’* the data. Unfortunately,.the polynomial that best
fits the data will not generally interpolate the data as well. When it is desirable
to have an approximation g(x) such that ¢g(x;) = y;, i = 0, 1, . . . , n, then
piecewise polynomial interpolation is an attractive alternative and the one that
we focus on in this section. In piecewise polynomial interpolation, several
lower-degree polynomials are joined together in a continuous fashion so that
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the resulting piecewise polynomial, g(x), interpolates the data. The extreme
case of piecewise polynomial interpolation is the ‘‘broken line’’ as in Example
5.11, in which the approximating function g (x) is obtained by joining (x;, ;) and
(X; 11, i+, by a straight line fori =0, 1, . . ., n — 1. In this case, g(x;) = y;, and
¢(x) is a linear polynomial in each interval [x;, x;4].

EXAMPLE 5.11. The table below represents data taken from a hypothetical experi-
ment.

X;

Vi

In Fig. 5.6, we show the piecewise linear polynomial g(x) (the broken line) and the
tenth-degree interpolating polynomial, p (x). Clearly, unless the function from which the
data were taken is strange indeed, the broken line is a more acceptable approximation
than is the interpolating polynomial. (Note that as mentioned before, the interpolating
polynomial appears to be more reasonable near the center of the interval.)

Although polynomial interpolation may not give an acceptable approxima-
tion, as indicated by Fig. 5.6, the broken line approximation also has its disad-

16

12

= NW Ao O

o

Figure 5.6 Piecewise linear and interpolating approximations of Example 5.11.
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vantages. In particular, the broken line suffers from a lack of smoothness and
has a discontinuous derivative. Thus, except to give a rough idea of the shape
of the graph, the broken line is not well suited to approximate most of the
functions that arise in physical problems since such functions are usually fairly
smooth. To overcome the oscillatory behavior of polynomials and still provide
a smooth approximation, an approximation technique using splines was pre-
sented in a paper by Schoenberg (1946), and has been the subject of extensive
research ever since. This approximation technique resembles a physical proc-
ess that has been used by drafters for many years. Given a set of points, X, =
{x;} -y where @ = x, < x; <--+ < x, = b and a set of functional values,
{f(x)} =, drafters will plot the data points P; = (x;, f(x;)), 0 = j = n. They will
then take a thin elastic rod (called a spline) and a set of weights and will place
the weights on the rod so that the rod must pass over each point P;, 0 < j < n.
The resulting curve traced out by the spline then interpolates f(x) at each x;, and
furthermore smooths out as much as possible between the points because of the
elasticity of the rod. Thus the oscillatory behavior of the approximation is
minimized as much as possible, but the approximation still retains the interpo-
lation property.

We shall now consider a mathematieal procedure that models the drafters’
technique. First consider the set of all functions Sp(X,) such that if S(x) €
Sp(X,) then S(x) satisfies the following three properties.

S(x) € C*[a, b]: thatis, S(x), S'(x), and S"(x) are continuous

on [a, b]. (5.40a)
S(x;) =fix;) =f;,0 =j = n; thatis, S(x) interpolates f{x)
on [a, b]. (5.40b)
S(x) is a cubic polynomial on each subinterval [x;, x; ],
O=j=n-—1. (5.40c)

The function S (x) defined by the three conditions of (5.40) is a piecewise cubic
polynomial and is called a cubic spline. Higher-order splines are defined simi-
larly. For example, a quartic spline would be a function S(x) where S(x) €
C?la, b] and S(x) is a fourth-degree polynomial on each subinterval [x;, x; . ,].
Note the dependence of the set of functions, Sp(X,), on the particular function,
f(x), being interpolated. Also note that S(x) may be a different cubic on each
subinterval; so we let S;(x) denote the cubic polynomial such that S(x) = S;(x)
for x in [x;, ;44,0 =j=n— 1.

Before beginning the mathematical derivation needed to construct cubic
splines, we pause to consider intuitively why we expect that there is any such
function, §(x), satisfying the three conditions of (5.40). For simplicity we let
n = 3 so that S(x) is represented by the cubic polynomials S,(x) on [x,, x,], S,(x)
on [x;, x;], and S,(x) on [x,, x;]. Since each S;(x) € @,, it has four coefficients
that we would like to choose to satisfy the conditions of (5.40). Therefore, in
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this case, we have twelve coefficients or unknowns at our disposal. Since each
S;(x) € @, all of its derivatives are continuous for any x € (x;, x; 4 ;)—the open
: interval. Thus we need worry about the continuity conditions only at the inte-
‘ rior interpolating points, x; and x,, where the cubics must ‘‘patch together”
with second-order continuity. With this point in mind, let us work from left to
right on [a, b] = [x,, x;] and determine the number of equations that must be
satisfied. Since S(x) must interpolate f(x) at each x;, and since §(x) must be
continuous at x; and x,, we have the following six equations to be satisfied:

Solxo) = fo3 Silx) = fis Solx) = S:1(xy); Sa(x2) = fas
S1(x2) = Sy(x2); and Sa(x3) = f3.

Finally since §’(x) and S”(x) must also be continuous at x, and x,, we must have
Solxy) = S{(xy), S5'(x1) = S7(x1), Si(x2) = S3(xy), and §7'(xp) = §5'(x,)—Four more
equations. Therefore we have a total of ten equations in twelve unknowns.

F Thus we not only expect just one solution, but we hope that we can specify two
of the unknowns to be designated arbitrarily and still have a solution for the
remaining ten equations in ten unknowns. So, intuitively we expect that Sp (X,)
is an infinite two-parameter family of functions. Two logical ways to obtain a
good approximation for f(x) would be to choose the two free parameters by
specifying either S’'(x,) and S’(x,) or S”(x,) and S”(x,). We choose the second
alternative in the following mathematical derivation, but will also show how the
first alternative may be implemented.

To construct a function S (x) that satisfies the three conditions of (5.40), we
first introduce some notation and then use the three conditions to obtain a
linear system of equations that will enable us to determine the coefficients of
each cubic polynomial, S;(x). We define h; = Ax; = x;.; — x; and Af; =
f41) — f(x;) = fiv: — f;- We next define §"(x;) = y;’ and note that the
quantities y¢', yi', . . . , ¥, will appear as unknowns in a linear system of equa-
tions that will define the cubic spline S (x). [The reader should note that usually
S"(x;) # f"(x;) and even S'(x;) # f'(x;). All that (5.40) requires is that S(x;) =
f(xj)’ 0 S.] = n']

The construction of the cubic spline proceeds roughly as follows. Suppose
we choose any n + 1 values y{', y{', . . . , y, and then let g(x) be the broken line
such that g(x;) = y;’, 0 = j = n. If we integrate g(x) twice, we obtain a function
S(x) in C?a, b], which is a piecewise cubic polynomial. The question is
whether we can choose y{', y{, . . ., y, so that S(x;) = f;, 0 = j = n. If we can,
then S(x) interpolates f(x); so by (5.40), S(x) € Sp(X,,). Following this idea, we
define the first-degree polynomials, S;'(x), on [x;, x;.,] by

x_xJ'

h;

5 n Xj = K
S = ¥ Ty

O=j=n-—1. (5.41)
h;
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[In (5.41) we have not yet specified yg', y{', . . ., y//; they can be any set of
values.] Note that S/'(x;) = y/, Si'(x;+10) = ¥/, 0 =j =< n — 1. Note also that
Si%1 (1) = 8'(x;4) for 0 < j < n — 2; so the function S”(x), which has
the value S;'(x) for x € [x;, x;,,], is a continuous function defined on [a, b]
[S"(x) is a broken line.] Integrating (5.41) twice, we obtain for x € [y, il

&u)zgﬁuﬁl—ﬂs+%iwx—%y+44x—&)+¢uﬁf—ﬂ (5.42)
J J

where ¢; and d; are constants of integration. To make S(x) continuous and to
satisfy the interpolation constraints, we need to choose the constants of inte-
gration so that S;(x;) = f;, Si(x;,,) = fi+1for 0 =j = n — 1. Substituting these
two conditions into (5.42), we obtain

_Be ¥4 1h; and d, _% yi'hy
j

SO

Sita _ y,-+1hj> (x — x;)

S0) = g (an = 2 + 255000 = ) + ( e
J '} J

fi 'k

* (z. B

Now, S;(x) as defined in (5.43) was chosen to match f(x) at x; and x;,, by

adjusting the constants of integration, ¢; and d;. Since we do this adjustment

independently in each interval [x;, x;4], we have no guarantee that Si(x;) =

Sji(x)forj=1,2,...,n— 1[thatis, that §'(x) is continuous]. Differentiating
(5.43) yields

(5.43)
)(-xj+1 — X), O=sj=n-1.

$i0) =~ G — 0+ G e+ SA - B g, -, s
So the last condition that we must meet to satisfy all of (5.40) is to make S'(x)
continuous at the interior interpolating points. We do this by using (5.44) and
choosing the values y/’, 1 =j<n — 1, so that Six) =S/_{x)forl=j=n—1.
This procedure yields the following linear system of (n — 1) equations in the
unknowns { y;"}i_,:

By a Wy + 2(h; + hi—)yi" + hyi's, = b;

Afi  Afi-y
bj = §{ =2 — —ITL
(hj hj—l

(5.45)
>, 1 & f=g—1,

Since we have (n + 1) unknowns and (n — 1) equations in (5.45), we can specify
fixed values for y; and y,’ and transfer the two terms involving these values to
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the right-hand side. We then have the following (n — 1) X (n — 1) linear system
(written in matrix form and denoted by Ay = b):

Yoo 00 000 I
hy ys hy 0 - 0 0 0 v b,

: e (5.46)
0 0 0 0 - /’l,,f;g Yn-2 /7,,,2 _\’,’,’_2 /)“72

0 0 0 0 -0 l/l",z Ya—1 ,“I’I,-l b,,~1 = II,,,I_V,’I’

where y; = 2(h; + h;—,).
[t is clear that the coefficient matrix A is tridiagonal and diagonally domi-
nant and hence nonsingular (see Chapter 2). Thus, no matter what values we
. select for y; and y//, (5.46) has a unique solution for {y;'}%Z1 (the solution does
depend on our choice of y{' and y;/, of course). Furthermore the {y;'}",Z} can be
easily found by the finite recurrence given for the LU-decomposition of a
tridiagonal matrix. These values are then substituted into (5.43) and thus yield
S(x). It is common, as we shall see shortly, to set y; = v, = 0; and the unique
cubic spline that results from this choice is called the natural cubic spline. A
final point that should be made is that once the values y{', v/, . . ., y,_, are
determined from (5.46), we then use (5.43) to evaluate S(x) at x = «. That is, if

a € [xj, xj4 ], then S(a@) = Sj(a).

EXAMPLE 5.12. In this example, we consider approximating f(x) = |x| by a cubic
spline and contrast the spline approximation with an interpolating polynomial. Let x, =
-2,x,=—=1,x%=0,x; =1, and x, = 2. In this case, h; = 1 forj =0, 1,2,3 and b; =
6(fi41— 2f; + ;1) = 6A%;  forj=1,2,3. Thus we are led to the linear system [as in
Eq. (5.46)]

4y + ;' =0
A ay+ oy =12
M+ Ay = 0,

Solving this system, we find y|' = —6/7, y; = 24/7, and y; = —6/7. Using these values in
(5.43), we can evaluate the cubic spline in any subinterval [x;, x;; ].

The fourth-degree interpolating polynomial for f(x) at the points x; above is easily
seen to be given by p(x) = %xi - %x". We will compare these two approximations in the
interval [1, 2], where to evaluate the cubic spline in [1, 2] we use [from (5.43)]

Ss(x) = =2 — P17 + 2(x — 1) + 82 — x)/7.

Since both of these approximations and f(x) as well have such simple forms, it is easy to
verify that the maximum value of p(x) — |x| occurs at approximately x = 1.6. The
maximum value of (Sy(x) — |x|) occurs approximately at x = 1.423 and [S4(x) — || <
0.055 for all x in [1, 2]. In Table 5.3, we have listed values of S;(x) and p'(x) as well. [As
we shall see, the derivative of the cubic spline provides a fairly good approximation to
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TABLE 5.3

7 fx) Ss(x) Six) p(x) p'(x)
1.0 1.0 1.000 1.286 1.000 1.667
1.2 1.2 1.241 1.131 1.334 1.648
1.4 1.4 1.455 1.011 1.646 1.437
1.6 1.6 1.648 0.926 1.894 1.003
1.8 1.8 1.827 0.874 2.030 0.312
2.0 2.0 2.000 0.857 2.000 —0.667

f'(x). On the other hand, derivatives of the interpolating polynomial are not generally
good approximations to the derivatives of f(x).] Since f') =1for 1 = x = 2, this
example shows how well the cubic spline can duplicate the general shape of f(x). We
shall return to this point when we discuss numerical differentiation in the next chapter.

If the derivatives of f(x) at the endpoints are known, that is, if f"(x,) = y,
and f"(x,) = y, are given, then we may suspect that we will get a better cubic
spline approximation to f(x) if we choose the two free parameters, y; and y}/, in
a manner such that the resulting cubic spline, S(x), satisfies S'(xy) = f"(xo) = y;
and §'(x,) = f"(x,) = y; as well as the interpolation property, S(x;) = f;,0 < j <
n. From Eq. (5.44) we see for j = n — 1 that

" ! V” A = h — n "
f (Xn) = Sn—l(xn) = 2/,-1”"71 (-Xn - Xn~1)2 +%_11 - NTl(yn — Yn-1)s

or

——_ =1 (5.47a)

hn—l " s hn~1 "
. By 1

3 6 IN—1
Similarly, from (5.44) with j = 0, we obtain

hy o hy , A ,
?0}’1 + ?0.\’0 = T{O = Yo (5.47b)

The continuity of S'(x) must be maintained so that all of the equations of (5.45)
must still hold. If Eqgs. (5.45) are written together with (5.47), we getan (n + 1)
X (n + 1) tridiagonal diagonally dominant linear system of equations. These
may be easily solved as before and again substituted into (5.43) to obtain S(x).
(There are other ways of deriving this particular cubic spline, but they involve a
different derivation. See Rivlin, 1969.) N

For brevity of notation we shall denote the cubic spline above as S(x) and
the natural cubic spline as $®(x). These two particular cubic splines are the
ones that are most often used in practice because of the so-called extremal



